1. **Abstract**

- For superconducting quantum computers to continue to scale, multiple processors will need to be networked.
- Optical channels provide a low-loss link capable of spanning long distances.
- Combining hot optical photons with milliKelvin superconducting circuits at microwave frequencies in a dilution refrigerator would appear incompatible.

Question 1: How do we connect the microwave and optical regimes quantum mechanically?

Question 2: What is the best way to use optical channels to entangle superconducting processor nodes?

Question 3: Will YOU be the first person in the world to experimentally demonstrate a “Quantum Internet” capable of distributing arbitrary quantum states?

2. **Microwave-Optical Transduction**

Collaborators at CU/JILA: Lehnert/Regal Lab

- Three coupled resonators (optical, mechanical, microwave): with “membrane in the middle” superconducting circuit

 - Efficiency: 47% (record)
 - Added noise: 9 photons
 - Target < 1 photon

Collaborators at NIST: Silverman/Mirin Lab

- Three coupled resonators (optical, acoustic, microwave): with quantum dot emitter

 - High generation rates
 - Integrated design
 - Low power

3. **Continuous Variables Approach**

- Based on measuring continuous field quadratures instead of discrete number states. This is an infinite Hilbert Space. It’s Analog!
- Optics: A quantized electromagnetic field => use squeezed light.

4. **Squeezed Light**

- **Uncertainty Principle:**
 \[
 \langle (\Delta E_1^2) \rangle \langle (\Delta E_2^2) \rangle \geq \frac{1}{4}
 \]
 The proportion is not fixed.
 Unequal is “squeezed.”
 Y1 quadrature noise is below vacuum fluctuations; Y2 is above.

- **Precision metrology:** LIGO

5. **Network Topology Study**

For imperfect transducers, lossy channel, Gaussian operations, is it better to:

- Distribute or swap entanglement?
- Squeeze in the optical, microwave, or combined optical/microwave domain?
- Introduce squeezing intrinsic or extrinsic to transducers?

Distribute:

- Optical Paths
- Electrical Paths

Swap:

- Optical measurement
- Electrical measurement

Modeling the Network Topologies:

- Transducer cooperativities, transmissivities, thermal noise (Temp. > 0).
- Optical channel loss.
- Calculate entanglement thresholds.

6. **Experimentally Making it Work**

7. **Future Research Topics**

- Demonstration of extrinsic optical distribution through transducers.
- Demonstration of short-distance entanglement of superconducting nodes.
- Demonstration of long-distance entanglement of superconducting nodes.
- Demonstration of entanglement across a free-space channel.
- Heterogenous quantum network demonstration between superconducting qubits and trapped ion nodes.
- Networking with exotic optical states with non-Gaussian processes.
- Networking with distillation of weak Gaussian states or coherent feedback control to overcome noise and loss.

Contact: tassi@nist.gov