Multi-Stage Stratified Sampling for the Design of Large Scale Biometric Systems

Jad Ramadan, Mark Culp, Ken Ryan, Bojan Cukic

West Virginia University
Problem

• How to create a set of biometric samples for research?
 • How many subjects to include in a sample?
 • How are subjects chosen?

• Performance prediction requires adequate population samples too.
 • Convenience sampling introduces strong bias.
 • Alternative sampling methods have cost and practicality implications for data collections.
Stratification Benefits

- Stratification - the process of dividing population into homogeneous, mutually exclusive subgroups.
- Multi-stage stratified sampling design increases “trustworthiness” of match rate estimates
 - Lower costs and smaller performance prediction errors.

- We address the following specific questions:
 1. How can a researcher use existing large datasets to generate stratified samples for the purpose of biometric performance prediction?
 2. What are practical benefits of stratification?
Our Approach

• The process:
 • We investigate the Performance Prediction phase.
 • Sample size estimation approach for Rank 1 identification rate estimation.
Stratified Sampling in Biometrics

- Stratified Sampling first partitions the population into L available groups (e.g. males, females).
 - Within each group, a sample is created by taking an independent simple random sample.
- Goal: Participants within each group are as similar as possible.
 - Individual stratum variances are minimized.
- What is the criteria for effective grouping?
 - There should be clear differences in match rates between strata.
 - May be algorithm dependent!
 - Strata based on eye color, facial hair or hair color do not exhibit this.
 - In face recognition, age group, ethnicity and gender could be used as strata.
Stratified and Simple Random Sampling: Difference

- *Simple Random Sampling* takes a sample from a population in a way so that each sample has the same chance of being selected.

- In *stratified random sampling*, the population is first separated into non-overlapping strata. A sample is created by simple random sampling from each stratum.

- Sample size from each strata may differ.
Intuition: How tall are NBA players?

- # Players: 434; Mean height: 79.04in; Variance: 12.9 in²
- How many players must be sampled to estimate the average height to within one inch?
- Grouping the players by position reduces variance
 - 5.94 in.² (guards), 2.32 in.² (forwards), 1.85 in.² (centers)
- Simple random sampling: 47 observations.
- Stratified sampling: 13 (optimally allocated) observations.
- A stratified sample of 7 guards, 4 forwards, and 2 centers selected from any NBA season will yield an estimate of the mean height from that season, within an inch, 95% of the time.
Large Face Data Sets

• In large data sets, the number of false matches tends to increase.
 • Imposter score correlations *close to 0* within each cluster helps reduce the FMR.

• We investigated imposter score correlations within the strata (e.g. African American females, Caucasian males).
 • Pinellas County Sheriff’s Office data set.
 • Most of the subjects are white males.
 • 2.5K each for male/female and black/white demographics.
 • Experiment: FaceVACS 8.6.0, 10,000x10,000 match scores.
Genuine/Imposter Score Distributions

- Score distributions change with demographic information.
- Black female similarity scores exhibit a larger variance.
 - Added uncertainty will have a significant impact in matching.
Cohort Interactions

- If the variation in similarity scores among black females is reduced,
 And
- If no imposter score correlation existed,
 - Black females would become more identifiable.
Impostor Score Correlation

Imposter Scores of 2 Black Females

- The correlation coefficient above is 0.595.
- Similarity scores between different, unrelated subjects exhibit almost a linear relationship.
- The matcher has difficulties differentiating between the black females.

Imposter Scores of 2 White Females

- The correlation coefficient here is -0.006 (no relationship).
- This is desirable because the matcher is having a much easier time differentiating the individuals in these images.
Stratified Sampling, Correlation, Large Samples

- Stratified sampling assigns a higher “weight” to cohorts that are seen to cause difficulties in facial recognition.

- Correlations among imposter scores of black females likely due to insufficient training with black female samples [Klare et al.]
Match Results

Table: Genuine Accept Rates (GAR) at a fixed False Accept Rate of 0.01%

<table>
<thead>
<tr>
<th>Demographic</th>
<th>Black Females</th>
<th>Black Males</th>
<th>White Females</th>
<th>White Males</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAR</td>
<td>0.8048</td>
<td>0.87</td>
<td>0.8684</td>
<td>0.916</td>
<td>0.853</td>
</tr>
</tbody>
</table>

Grouped by Gender

<table>
<thead>
<tr>
<th></th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>94.4%</td>
<td>88.7%</td>
<td>94.4%</td>
</tr>
</tbody>
</table>

Grouped by Ethnicity

<table>
<thead>
<tr>
<th></th>
<th>Black</th>
<th>White</th>
<th>Hispanic</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-30</td>
<td>91.7%</td>
<td>94.6%</td>
<td>94.4%</td>
</tr>
</tbody>
</table>

Grouped by Age

- Large difference in GAR between black females and white males.
- *Face Recognition Performance: Role of Demographic Information [Klare et al.]*
 - There seem to be extra interactions with gender and ethnicity that increase differences in match rates.
 - Dynamic face matcher selection.
Sample Size Equations

- \(B \) represents a chosen bound.
- \(N (N_k) \) is overall sample (strata) size.
- \(p (p_k) \) is the GAR at FAR 0.01%.

Stratified Random Sampling:

\[
n = \frac{4 \left(\sum_{k=1}^{L} N_k \sqrt{p_k (1 - p_k)} \right)^2}{N^2 B^2 + 4 \sum_{i=1}^{L} N_i p_i (1 - p_i)}
\]

Simple Random Sampling:

\[
n = \frac{4Np(1-p)}{(N-1)B^2 + 4p(1-p)}
\]
Data Stratification

Table: Allocation of the sample based on Stratification

<table>
<thead>
<tr>
<th></th>
<th>Black Female</th>
<th>Black Male</th>
<th>White Female</th>
<th>White Male</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Sample Size (probes)</td>
<td>~30%</td>
<td>~25%</td>
<td>~25%</td>
<td>~20%</td>
</tr>
</tbody>
</table>

- Stratified sampling, using the 4 cohorts of interest, now allows for 230 fewer tests to estimate performance within 1%.
- An added bonus:
 - The next collection may emphasize the sampling of black females, the most troublesome cohort.

Note: The error bound for the plot above ranges from 0.9% to 1%.
Results

- The total sample sizes below were obtained using an error bound of 1%.

Simple Random Sampling

- Total Size: 3341
 - Allocation:
 - 843 black females
 - 834 black males
 - 842 white females
 - 822 white males
 - Estimated GAR of 85.3% at an FMR of 0.01%.

Stratified Random Sampling

- Total Size: 3109
 - Allocation:
 - 933 black females
 - 777 black males
 - 777 white females
 - 622 white males
 - Estimated GAR of 85.3% at an FMR of 0.01%.

- Stratified random sampling achieved the same performance using 232 fewer subjects.
Data Extrapolation

- The total sample sizes below were obtained using an error bound of 1%.
- Differences when predicting a population of one billion. From previous studies, we are assuming a GAR of 85.3% at .01% FMR.

SRS vs. Stratified Comparison

<table>
<thead>
<tr>
<th>Bound</th>
<th>Required Sample Size</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.008</td>
<td>8000</td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>7000</td>
<td></td>
</tr>
<tr>
<td>0.012</td>
<td>6000</td>
<td></td>
</tr>
<tr>
<td>0.014</td>
<td>5000</td>
<td></td>
</tr>
<tr>
<td>0.016</td>
<td>4000</td>
<td>472</td>
</tr>
</tbody>
</table>

- Difference: 472

Allocation for Stratified Sampling

- Black Females: 5016 required, 4544 obtained, difference: 472
- White Females: 1363 required, 1136 obtained, difference: 227
- Black Males: 909 required, 909 obtained, difference: 0
- White Males: 1363 required, 1363 obtained, difference: 0
Now, we calculate the necessary sample size using an **error bound of 0.01%**.

How many samples from a population of 1 billion would we need to estimate the GAR at 0.01% FMR to within 0.0001?

SRS vs. Stratified Comparison

- **Required Sample Size**
 - Bound: 0.00008
 - SRS: 47,760,886
 - Stratified: 43,430,444

 Difference: 4,330,442

Allocation for Stratified Sampling

- **Required Sample Size**
 - Bound: 0.00008
 - Black Females: 13,029,133
 - White Females: 10,857,611
 - Black Males: 8,686,089
 - White Males: 6,190,547
Sample Size Reduction

- Stratified sampling requires around 10% fewer subjects to achieve the same performance estimate, regardless of the chosen error bound.
- In general, the choice of error bound will not have an impact on the sample size reduction due to stratification.
The Effect of Errors in Stratification

- In a simulation, 10% and 33% of African American population was reclassified as white and vice versa.

 Simulate the effects of an incorrect classification by an algorithm or experimenter.

- Results (baseline is the leftmost table):

<table>
<thead>
<tr>
<th></th>
<th>Black</th>
<th>White</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAR at .01% FMR (no errors)</td>
<td>83.3 %</td>
<td>89.02 %</td>
</tr>
<tr>
<td>GAR at .01% FMR (10% errors)</td>
<td>83.4 %</td>
<td>88.26 %</td>
</tr>
<tr>
<td>Differences:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Black</td>
<td>White</td>
</tr>
<tr>
<td></td>
<td>+0.1 %</td>
<td>-0.76%</td>
</tr>
</tbody>
</table>

33% errors

<table>
<thead>
<tr>
<th></th>
<th>Black</th>
<th>White</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>84.3 %</td>
<td>86.06 %</td>
</tr>
<tr>
<td></td>
<td>+1.0 %</td>
<td>-2.96%</td>
</tr>
</tbody>
</table>
Summary

• Applied a stratified sampling design to face recognition. Approach offers savings in performance prediction for large systems. Offers guidance for performance prediction from existing collections.

• Unbiased performance predictions from a stratified sample. Given valid assumptions, performance predictions are accurate. The reward comes from the ability to allocate the sample.

• Investigated the effect of errors in demographic information. The strata seem robust to small strata misclassification.

• Should be extended to other biometric modalities. The role of matching algorithms.