Making decisions with biometric systems: the usefulness of a Bayesian perspective

A. Nautsch*, D. Ramos Castro†, J. González Rodríguez†, Christian Rathgeb*, Christoph Busch*

*Hochschule Darmstadt, CRISP, CASED, da/sec Security Research Group
†Universidad Autónoma de Madrid, ATVS Biometric Recognition Group

NIST IBPC’16, Gaithersburg, 03.05.2016
Outline

1. Decision Frameworks in Biometrics and Forensics
2. Bayesian Method: making good decisions
3. Metrics, operating points and examples
4. Conclusion
Note: separate decision subsystem
Making Decisions with Biometric Systems

Decisions are involved in most applications of biometric systems

- **Access control**
 Accepted-rejected decision

- **Forensic Investigation**
 Decide the list to investigate
 e.g., AFIS

- **Intelligence**
 Decide where to establish
 relevant links in a database

- **Forensic Evaluation**
 Communicate for the court
to decide a verdict
Making Decisions with Biometric Systems

Decisions are involved in most applications of biometric systems

- **Access control**
 Accepted-rejected decision

- **Forensic Investigation**
 Decide the k list to investigate
e.g., AFIS

- **Intelligence**
 Decide where to establish
 relevant links in a database

- **Forensic Evaluation**
 Communicate for the court
to decide a verdict
Decisions are involved in most applications of biometric systems

- **Access control**
 Accepted-rejected decision

- **Forensic Investigation**
 Decide the k list to investigate
 e.g., AFIS

- **Intelligence**
 Decide where to establish relevant links in a database

- **Forensic Evaluation**
 Communicate for the court to decide a verdict
Decisions are involved in most applications of biometric systems:

- **Access control**
 Accepted-rejected decision

- **Forensic Investigation**
 Decide the k list to investigate
e.g., AFIS

- **Intelligence**
 Decide where to establish
 relevant links in a database

- **Forensic Evaluation**
 Communicate for the court
to decide a verdict
Making Decisions with Biometric Systems

- **Decision** maker faces multiple sources of information
 - Biometric system is one of them, but also ...
 - Prior knowledge about users/impostors/suspects
 - Other evidence from other biometric systems
 - ...

- Decisions must consider all that information
 - Formalizing decision framework helps
 - Especially in complex problems
 - Example: medical diagnosis support
Bayesian Decisions with Biometric Systems

- A proposal: Bayesian decision theory
 - Decisions are made based on posterior probabilities
 - Considering all the relevant information available
 - Updating strategy: likelihood ratios (LR)

Example biometrics systems in forensic evaluation of the evidence

Value of Evidence: Likelihood Ratio (LR)

- Two-class \((H_1, H_2)\) decision framework
- Likelihood Ratio: probabilistic value of the evidence, also: the ratio of posterior to prior odds

\[
P(H_1) = 1% \\
P(H_2) = 99% \\
\text{LR} = 1000 \\
P(H_1 | E) = 91% \\
\text{odds: 1000:99}
\]

\[
\frac{P(H_1)}{P(H_2)} \times \frac{P(E | H_1)}{P(E | H_2)} = \frac{P(H_1 | E)}{P(H_2 | E)}
\]
Decisions Using Biometric Systems

- Binary classes (hypotheses): H_1 and H_2
- Inference
 - Prior probability, before knowing the biometric system outcome
 - Posterior probability, after the biometric system outcome
 - LR is the value of the biometric evidence
 - Changes prior odds into posterior odds

Prior odds \[\longrightarrow\text{Inference}\longrightarrow\text{Posterior odds}\]

\[\frac{P(H_1 | E)}{P(H_2 | E)}\]
Decisions Using Biometric Systems

- Costs: Penalty of making a **wrong** decision towards H_1 (C_{f1}) or H_2 (C_{f2}).
- Can be different — example in access control:
 - is it better to accept an impostor (cost C_{f1})
 - or to reject a genuine user (cost C_{f2})?
Decisions Using Biometric Systems

- Decision: Minimum-risk decision
 i.e.: minimum mean cost

- Decision rule considers
 - Posterior odds
 - Costs

\[
P(H_1 \mid E) C_{f1} \geq P(H_2 \mid E) C_{f2}
\]

Prior odds \(\rightarrow\) Inference \(\rightarrow\) Posterior odds

LR (Biometric System) \(\uparrow\) Costs \(C_{f1}, C_{f2}\) \(\uparrow\) Decision \(H_1\) or \(H_2\)?
Bayesian Method

Decision Process: Competences

- Total separation between
 - The comparator (biometric system outputing a LR)
 - The decision maker (depends on the application)
Decision Process: Consequences

- Duty of the biometric systems: yielding LR values that lead to the correct decisions
 - The LR should support H_1 when H_1 is actually true
 - The LR should support H_2 when H_2 is actually true

- LR values must be calibrated, which leads to better decisions

\[
\begin{align*}
\text{Prior odds} & \quad \text{Inference} \quad \text{Posterior odds} \\
\text{LR} & \quad \text{Should lead to the correct decision!} \\
\text{Costs} & \quad \text{Decision} \\
C_{f1}, C_{f2} & \quad \text{H}_1 \text{ or H}_2?
\end{align*}
\]
Biometric Systems

- Score-based architecture
 - Widely extended
 - Especially in black-box implementations (COTS)

- Score: in general the only output of the system
 - It may not be directly interpretable as a likelihood ratio
 - Depends on its calibration performance
Bayesian Method

LR-Based Computation with Biometric Systems

- A further stage is necessary: score-to-LR transformation

Objective:
- output discriminating scores
- Score-based architecture
- Improve ROC/DET curves

Objective:
- transforming the score into a meaningful LR ⇒ Calibration of LRs [2,3]

A further stage is necessary: score-to-LR transformation

Objective: output discriminating scores
- Score-based architecture
- Improve ROC/DET curves

Objective: transforming the score into a meaningful LR
⇒ Calibration of LR [2,3]

Bayesian Method

LR-Based Computation with Biometric Systems

- A further stage is necessary: score-to-LR transformation

- Objective: output discriminating scores
 - Score-based architecture
 - Improve ROC/DET curves

- Objective: transforming the score into a meaningful LR
 ⇒ Calibration of LRs [2,3]

Bayesian Decision: Advantages

- Competences of the biometric system are delimited:
 - Biometric system: comparator
 - Decision maker: final decision considering all the information
 - Separation of roles: important in some fields (e.g. forensics!)

- Information is integrated formally
 ⇒ LR into a probabilistic framework

- LR computation: great experience in other fields
 ⇒ Example: forensic biometrics
Metrics and Examples

Revisiting ISO/IEC JTC1 SC37 SD11

FNMR, FMR \leftrightarrow DET

Data Capture Subsystem

Data Storage Subsystem

Comparison Subsystem

Decision Subsystem

Signal Processing Subsystem

Biometric Claim

Reference

Probe

Features

Captured Biometric Sample

Comparison Score(s)

Decision Policy

Verification Outcome

Identification Outcome

$\pi = F_{NMR}$, $F_{MR} \rightarrow \text{DET}$

Revisiting ISO/IEC JTC1 SC37 SD11

Metrics and Examples

Nautsch, Ramos, et al. Bayesian Biometrics / NIST IBPC'16, Gaithersburg, 03.05.2016
\[\frac{P(H_1)}{P(H_2)} = \pi \frac{1}{1-\pi} \]

\[\Rightarrow \pi \]

Metrics and Examples

Revisiting ISO/IEC JTC1 SC37 SD11

- FNMR, FMR \leftrightarrow DET

Bayesian Biometrics / NIST IBPC'16, Gaithersburg, 03.05.2016
Metrics and Examples

Revisiting ISO/IEC JTC1 SC37 SD11

\[
\frac{P(H_1)}{P(H_2)} = \frac{\pi}{1-\pi}
\]

\[\Rightarrow \pi\]

Data Capture Subsystem

Data Storage Subsystem

Comparison Subsystem

Decision Subsystem

FNMR, FMR ↔ DET

DCF ↔ APE & NBER

Nautsch, Ramos, et al. Bayesian Biometrics / NIST IBPC'16, Gaithersburg, 03.05.2016

16/32
Revisiting ISO/IEC JTC1 SC37 SD11

\[\frac{P(H_1)}{P(H_2)} = \frac{\pi}{1-\pi} \Rightarrow \pi \]

Metrics and Examples

FNMR, FMR ↔ DET

DCF ↔ APE & NBER

ECE

Nautsch, Ramos, et al. Bayesian Biometrics / NIST IBPC'16, Gaithersburg, 03.05.2016
Revisiting ISO/IEC JTC1 SC37 SD11

\[\frac{P(H_1)}{P(H_2)} = \frac{\pi}{1-\pi} \]

\[\Rightarrow \pi \]

DCF \leftrightarrow APE & NBER

C\textsubscript{F1}, C\textsubscript{F2}

ECE

Nautsch, Ramos, et al. Bayesian Biometrics / NIST IBPC’16, Gaithersburg, 03.05.2016
Metrics and Examples

Detection Error Trade-off (DET) diagrams

Nautsch, Ramos, et al. Bayesian Biometrics / NIST IBPC’16, Gaithersburg, 03.05.2016
Metrics and Examples

From Bayesian Decisions to Cost Functions

- **Bayes theorem**
 \[
 \frac{P(H_1)}{P(H_2)} \times \frac{P(E|H_1)}{P(E|H_2)} = \frac{P(H_1|E)}{P(H_2|E)}
 \]

- **Decision rule**
 \[
 P(H_1|E) C_{f1} \geq P(H_2|E) C_{f2}
 \]
 \[
 \iff \frac{P(H_1|E)}{P(H_2|E)} \geq \frac{C_{f2}}{C_{f1}}
 \]

- **Bayesian threshold \(\eta \)** for Log-LRs (LLRs) by posterior odds
 \[
 \eta = \log \frac{C_{f2}}{C_{f1}} - \log \frac{P(H_1)}{P(H_2)} \geq \text{LLR}
 \]
Metrics and Examples

From Bayesian Decisions to Cost Functions

- **Bayes theorem**

 \[
 \frac{P(H_1)}{P(H_2)} \times \frac{P(E | H_1)}{P(E | H_2)} = \frac{P(H_1 | E)}{P(H_2 | E)}
 \]

- **Decision rule**

 \[
 P(H_1 | E) \ C_{f1} \geq \ P(H_2 | E) \ C_{f2}
 \]

 \[
 \Leftrightarrow \frac{P(H_1 | E)}{P(H_2 | E)} \geq \frac{C_{f2}}{C_{f1}}
 \]

- **Bayesian threshold \(\eta \) for Log-LRs (LLRs) by posterior odds**

 \[
 \eta = \log \frac{C_{f2}}{C_{f1}} - \log \frac{P(H_1)}{P(H_2)} \geq \text{LLR}
 \]
From Bayesian Decisions to Cost Functions

- **Bayes theorem**

Prior odds \(\frac{P(H_1)}{P(H_2)} \) \times LR \(\frac{P(E|H_1)}{P(E|H_2)} \) = Posterior odds \(\frac{P(H_1|E)}{P(H_2|E)} \)

- **Decision rule**

\[P(H_1|E)C_{f1} \geq P(H_2|E)C_{f2} \]

\[\Leftrightarrow \frac{P(H_1|E)}{P(H_2|E)} \geq \frac{C_{f2}}{C_{f1}} \]

- **Bayesian threshold** \(\eta \) for Log-LRs (LLRs) by posterior odds

\[\eta = \log \frac{C_{f2}}{C_{f1}} - \log \frac{P(H_1)}{P(H_2)} \geq \text{LLR} \]
Metrics and Examples

From Bayesian Decisions to Cost Functions

- Bayesian error rate: Decision Cost Function (DCF)

\[DCF(P(H_1), P(H_2), C_{f1}, C_{f2}) = P(H_1) \cdot FNMR(\eta) \cdot C_{f1} + P(H_2) \cdot FMR(\eta) \cdot C_{f2} \]

\[\eta = \log \frac{C_{f2}}{C_{f1}} - \log \frac{P(H_1)}{P(H_2)} \]

- Simplifying the operating point \((P(H_1), P(H_2), C_{f1}, C_{f2}) \rightarrow \tilde{\pi}\)

1. Mutually exclusive priors: \(\log \frac{P(H_1)}{P(H_2)} = \log \frac{\pi}{1-\pi} = \text{logit} \pi\)

\[DCF(\pi, C_{f1}, C_{f2}) = \pi \cdot FNMR(\eta) \cdot C_{f1} + (1-\pi) \cdot FMR(\eta) \cdot C_{f2} \]

2. Introducing an effective prior: \(\tilde{\pi} = \frac{\pi \cdot C_{f1}}{\pi \cdot C_{f1} + (1-\pi) \cdot C_{f2}}\)

\[DCF(\tilde{\pi}) = \tilde{\pi} \cdot FNMR(\eta) + (1 - \tilde{\pi}) \cdot FMR(\eta) = DCF(\tilde{\pi}, 1, 1) \]

\[\eta = - \text{logit} \tilde{\pi} \]

\(\Rightarrow\) meaningful LLR operating points: \(\tilde{\pi}\) or \(\eta\)

Metrics and Examples

From Bayesian Decisions to Cost Functions

- **Bayesian error rate: Decision Cost Function (DCF)**
 \[
 DCF(P(H_1), P(H_2), C_{f_1}, C_{f_2}) = P(H_1) \text{FNMR}(\eta) C_{f_1} + P(H_2) \text{FMR}(\eta) C_{f_2}
 \]
 \[
 \eta = \log \frac{C_{f_2}}{C_{f_1}} - \log \frac{P(H_1)}{P(H_2)}
 \]

- **Simplifying the operating point** \((P(H_1), P(H_2), C_{f_1}, C_{f_2}) \mapsto \tilde{\pi}\)
 1. Mutually exclusive priors:
 \[
 \log \frac{P(H_1)}{P(H_2)} = \log \frac{\pi}{1-\pi} = \logit \pi
 \]
 \[
 DCF(\pi, C_{f_1}, C_{f_2}) = \pi \text{FNMR}(\eta) C_{f_1} + (1 - \pi) \text{FMR}(\eta) C_{f_2}
 \]
 2. Introducing an *effective prior*:
 \[
 \tilde{\pi} = \frac{\pi C_{f_1}}{\pi C_{f_1} + (1 - \pi) C_{f_2}}
 \]
 \[
 DCF(\tilde{\pi}) = \tilde{\pi} \text{FNMR}(\eta) + (1 - \tilde{\pi}) \text{FMR}(\eta) = DCF(\pi, 1, 1)
 \]
 \[
 \eta = - \logit \tilde{\pi}
 \]

⇒ meaningful LLR operating points: \(\tilde{\pi}\) or \(\eta\)

From Bayesian Decisions to Cost Functions

- **Bayesian error rate: Decision Cost Function (DCF)**
 \[
 DCF(P(H_1), P(H_2), C_{f1}, C_{f2}) = P(H_1) \cdot \text{FNMR}(\eta) \cdot C_{f1} + P(H_2) \cdot \text{FMR}(\eta) \cdot C_{f2}
 \]
 \[
 \eta = \log \frac{C_{f2}}{C_{f1}} - \log \frac{P(H_1)}{P(H_2)}
 \]

- **Simplifying the operating point** \((P(H_1), P(H_2), C_{f1}, C_{f2}) \mapsto \tilde{\pi})
 1. Mutually exclusive priors: \(\log \frac{P(H_1)}{P(H_2)} = \log \frac{\pi}{1-\pi} = \text{logit} \pi\)

 \[
 DCF(\pi, C_{f1}, C_{f2}) = \pi \cdot \text{FNMR}(\eta) \cdot C_{f1} + (1-\pi) \cdot \text{FMR}(\eta) \cdot C_{f2}
 \]

 2. Introducing an effective prior: \(\tilde{\pi} = \frac{\pi C_{f1}}{\pi C_{f1} + (1-\pi) C_{f2}}\)

 \[
 DCF(\tilde{\pi}) = \tilde{\pi} \cdot \text{FNMR}(\eta) + (1-\tilde{\pi}) \cdot \text{FMR}(\eta) = DCF(\pi, 1, 1)
 \]

 \[
 \eta = - \text{logit} \tilde{\pi}
 \]

 \(\Rightarrow\) meaningful LLR operating points: \(\tilde{\pi}\) or \(\eta\)

From Bayesian Decisions to Cost Functions

- Bayesian error rate: Decision Cost Function (DCF)

\[
\text{DCF}(P(H_1), P(H_2), C_{f1}, C_{f2}) = P(H_1) \cdot \text{FNMR}(\eta) \cdot C_{f1} + P(H_2) \cdot \text{FMR}(\eta) \cdot C_{f2}
\]

\[
\eta = \log \frac{C_{f2}}{C_{f1}} - \log \frac{P(H_1)}{P(H_2)}
\]

- Simplifying the operating point \((P(H_1), P(H_2), C_{f1}, C_{f2}) \mapsto \tilde{\pi}\)

1. Mutually exclusive priors: \(\log \frac{P(H_1)}{P(H_2)} = \log \frac{\pi}{1-\pi} = \logit \pi\)

\[
\text{DCF}(\pi, C_{f1}, C_{f2}) = \pi \cdot \text{FNMR}(\eta) \cdot C_{f1} + (1 - \pi) \cdot \text{FMR}(\eta) \cdot C_{f2}
\]

2. Introducing an effective prior: \(\tilde{\pi} = \frac{\pi \cdot C_{f1}}{\pi \cdot C_{f1} + (1 - \pi) \cdot C_{f2}}\)

\[
\text{DCF}(\tilde{\pi}) = \tilde{\pi} \cdot \text{FNMR}(\eta) + (1 - \tilde{\pi}) \cdot \text{FMR}(\eta) = \text{DCF}(\pi, 1, 1)
\]

\[
\eta = - \logit \tilde{\pi}
\]

⇒ meaningful LLR operating points: \(\tilde{\pi}\) or \(\eta\)

From Bayesian Decisions to Cost Functions

- Bayesian error rate: Decision Cost Function (DCF)

\[
DCF(P(H_1), P(H_2), C_{f1}, C_{f2}) = P(H_1) \text{FNMR}(\eta) C_{f1} + P(H_2) \text{FMR}(\eta) C_{f2}
\]

\[
\eta = \log \frac{C_{f2}}{C_{f1}} - \log \frac{P(H_1)}{P(H_2)}
\]

- Simplifying the operating point \((P(H_1), P(H_2), C_{f1}, C_{f2}) \mapsto \tilde{\pi}\)

1. Mutually exclusive priors: \(\log \frac{P(H_1)}{P(H_2)} = \log \frac{\pi}{1-\pi} = \logit \pi\)

\[
DCF(\pi, C_{f1}, C_{f2}) = \pi \text{FNMR}(\eta) C_{f1} + (1 - \pi) \text{FMR}(\eta) C_{f2}
\]

2. Introducing an effective prior: \(\tilde{\pi} = \frac{\pi C_{f1}}{\pi C_{f1} + (1 - \pi) C_{f2}}\)

\[
DCF(\tilde{\pi}) = \tilde{\pi} \text{FNMR}(\eta) + (1 - \tilde{\pi}) \text{FMR}(\eta) = DCF(\pi, 1, 1)
\]

\[
\eta = - \logit \tilde{\pi}
\]

\(\Rightarrow\) meaningful LLR operating points: \(\tilde{\pi}\) or \(\eta\)

Example on Decision Cost Functions (DCF)

- Speaker recognition iVEC/PLDA scores (I4U list/NIST SRE’12)

 ![Graph of LLRs and pdf](image)

 - Example: $\text{DCF}(1:1, \eta = 0)$ vs. $\text{DCF}(1:100, \eta \approx 4.6)$

 ![Graph of Cost vs. η](image)

 \Rightarrow actual vs. minimum DCF: calibration loss
 \Rightarrow LLR meaning: aligning scores for Bayesian support
Example on Decision Cost Functions (DCFs)

- Speaker recognition ivec/PLDA scores (I4U list/NIST SRE’12)

- Example: $\text{DCF}(1:1, \eta = 0)$ vs. $\text{DCF}(1:100, \eta \approx 4.6)$

⇒ actual vs. minimum DCF: calibration loss
⇒ LLR meaning: aligning scores for Bayesian support
Example on Decision Cost Functions (DCFs)

▶ Speaker recognition ivec/PLDA scores (I4U list/NIST SRE’12)

▶ Example: \(\text{DCF}(1:1, \eta = 0) \) vs. \(\text{DCF}(1:100, \eta \approx 4.6) \)

⇒ actual vs. minimum DCF: calibration loss
⇒ LLR meaning: aligning scores for Bayesian support

Nautsch, Ramos, et al. Bayesian Biometrics / NIST IBPC’16, Gaithersburg, 03.05.2016
Visualizing DCFs

- Applied Probability of Error (APE) curve
 - Simulating DCFs on multiple operating points
 - default: all LLRs = 0, i.e.: \(\text{DCF} = \tilde{\pi} + (1 - \tilde{\pi}) \)
 - Area-under-APE: cost of LLR scores
 \[\Rightarrow \text{Goodness of LLRs: } C_{llr} \]

\[\logit \tilde{\pi} = -\eta \]

Metrics and Examples

Visualizing DCFs

- Applied Probability of Error (APE) curve
 - Simulating DCFs on multiple operating points
 - default: all LLRs = 0, i.e.: $\text{DCF} = \tilde{\pi} + (1 - \tilde{\pi})$
 - Area-under-APE: cost of LLR scores
 \Rightarrow Goodness of LLRs: C_{llr}

![Graph showing visualizing DCFs]

$\logit \, \tilde{\pi} = -\eta$

Metrics and Examples

Visualizing DCFs

- Applied Probability of Error (APE) curve
 - Simulating DCFs on multiple operating points
 - default: all LLRs = 0, i.e.: DCF = \(\tilde{\pi} + (1 - \tilde{\pi}) \)
 - Area-under-APE: cost of LLR scores
 \(\Rightarrow \) Goodness of LLRs: \(C_{llr} \)

\[\text{logit} \tilde{\pi} = -\eta \]

Visualizing DCFs

- Applied Probability of Error (APE) curve
 - Simulating DCFs on multiple operating points
 - default: all LLRs = 0, i.e.: $DCF = \pi + (1 - \pi)$
 - Area-under-APE: cost of LLR scores
 \Rightarrow Goodness of LLRs: C_{llr}

Logit $\tilde{\pi} = -\eta$

![Graph showing DCFs and ROCCH](image)

EER: 0.5%

Metrics and Examples

- Visualizing DCFs
 - Simulating DCFs on multiple operating points
 - default: all LLRs = 0, i.e.: $DCF = \pi + (1 - \pi)$
 - Area-under-APE: cost of LLR scores
 \Rightarrow Goodness of LLRs: C_{llr}

Metrics and Examples

Normalized Bayesian Error Rate (NBER)

- APE-plot visually misleading on error impact
 - EER operating point: lots of scores to mismatch
 - FMR1000 operating point: few scores to mismatch
- Normalizing by default performance
 ⇒ wider range of operating points can be compared

\[\eta = - \text{logit} \tilde{\pi} \]

Note: in the BOSARIS toolkit, the x-axis is swapped, i.e.: depicting purely the effective prior.
Revisiting ISO/IEC JTC1 SC37 SD11

\[
\frac{P(H_1)}{P(H_2)} = \frac{\pi}{1-\pi}
\]

\[\Rightarrow \pi\]
Empirical Cross-Entropy (ECE)

- Objective measure of performance
- Motivation by Information Theory
 - Prior entropy $\xrightarrow{\text{Evidence}}$ Posterior entropy
 - Divergence of system to Grund-of-Truth (GoT)
 - ECE: approximating Kullback-Leibler divergence $D_{\text{GoT}||\text{system}}$

$H_{\text{system}}(H_1, H_2)$

$D_{\text{GoT}||\text{system}}(H_1, H_2 | \text{LLRs})$

$H_{\text{GoT}}(H_1, H_2 | \text{LLRs})$
Empirical Cross-Entropy (ECE)

- We expect the reference, but obtain the system’s LLRs
- Measuring performance of LR in terms of uncertainty
 - The lower the better
 - Calibration loss: overall performance \Leftrightarrow discriminating power
 - C_{llr} at $\log(\text{odds}) = 0$ \Rightarrow no information on H_1/H_2 prior

![Graph showing ECE vs Prior log10(odds) with System, Optimal calibration, and default (LLRs=0) curves]

Empirical Cross-Entropy (ECE)

- We expect the reference, but obtain the system’s LLRs
- Measuring performance of LR in terms of uncertainty
 - The lower the better
 - Calibration loss: overall performance \Leftrightarrow discriminating power
 - C_{llr} at log(odds) = 0 \Rightarrow no information on H_1/H_2 prior

![Graph showing ECE vs Prior log10(odds)]

Examples

- **Signature recognition** [8]
 - Performance of feature space normalization
 - Simulation of application-independent decision performances

Examples

- **Speaker recognition** [9]
 - Overview of application-dependent decision costs in 10 dB/10 s
 - Conventional score normalization vs. quality-based

\[\eta = - \log \tilde{\pi} \]

Examples

- Speaker recognition [10]
 - Examining calibration schemes in 55 quality conditions
 - Discrimination vs. calibration loss on 55-pooled
 - Goal: approx. binning performance, avoiding binning

![Bar chart showing discrimination and calibration loss for conventional, QMF, FQE, and binning schemes.]

Examples

- Recurring challenges in biometrics
 - NIST Speaker Recognition Evaluation (SRE)
 ⇒ DCFs (since 1996) & C_{llr} (since 2006)
 - ICDAR Competition on Signature Verification and Writer Identification (SigWIcomp)
 ⇒ C_{llr} & C_{llr}^{min} (both since 2011)

- Non-biometric forensics [11]
 - Glass objects
 - Car paints
 - Inks

Conclusion

Summary

- Bayesian decision framework
 - Bayes theorem & decision rule employing costs
 - Biometric systems: generator of Bayesian support (LLRs)
 - Decisions by posterior knowledge of priors and LLR score

- Score-to-LLR calibration: meaningful LLRs
 - Necessary step, requiring a calibration data set
 - Essential for validation/accreditation

- Performance reporting
 - Decoupled decision policy
 - APE curves
 - NBER diagrams
 - ECE plots
 - Scalars: actDCF, minDCF, C_{llr} & C_{llr}^{min}
Summary

- Bayesian decision framework
 - Bayes theorem & decision rule employing costs
 - Biometric systems: generator of Bayesian support (LLRs)
 - Decisions by posterior knowledge of priors and LLR score

- Score-to-LLR calibration: meaningful LLRs
 - Necessary step, requiring a calibration data set
 - Essential for validation/accreditation

- Performance reporting
 - Decoupled decision policy
 - APE curves
 - NBER diagrams
 - ECE plots
 - Scalars: actDCF, minDCF, C_{llr} & C_{llr}^{min}

![Graph showing discrimination and calibration loss]
Perspectives

- From forensics to biometrics in general
- Forensics: distinct separation of role provinces

\[
\text{Suspect reference} \rightarrow \text{Feature extraction} \rightarrow \text{Evidence analysis (comparison)} \rightarrow \text{Score} \rightarrow \text{Guilty (Accept)} \rightarrow \text{Not-Guilty (Reject)}
\]

Province of the forensic scientist \rightarrow \text{Province of the court}

\[\Rightarrow \text{Non-forensic biometric companion/equivalent} \]

Note: neither forensic scientists nor courts shall be automated, its an analogue.

Nautsch, Ramos, et al.
Bayesian Biometrics / NIST IBPC'16, Gaithersburg, 03.05.2016
Conclusion

Application fields

- Operating point independent performance reporting
 - Discrimination loss \leftrightarrow Goodness of scores w/o calibration
 - System calibration (meaningful)
 - Forensic state-of-the-art

\Rightarrow European Network of Forensic Science Institutes (ENFSI): adopted Bayesian methodology (strong recommendation)

- Fix-operational testing: no need

\Rightarrow But: fundamental in technology testing

This work has been funded by the Center for Advanced Security Research Darmstadt (CASED), and the Hesse government (project no. 467/15-09, BioMobile).

Nautsch, Ramos, et al. Bayesian Biometrics / NIST IBPC'16, Gaithersburg, 03.05.2016
Evaluation of evidence strength

 Metrics in the Bayesian Framework
 ▶ Application-independent generalization [2]:

 \[
 \text{Goodness of (Log-Likelihood Ratio) scores } C_{llr} = \frac{0.5}{|H_1|} \sum_{S \in H_1} \log \left(1 + e^{-S}\right) + \frac{0.5}{|H_2|} \sum_{S \in H_2} \log \left(1 + e^S\right)
 \]

 ▶ Information-theoretic generalization [7]:

 \[
 \text{Empirical Cross-Entropy (ECE)}
 \]
 \[
 \text{ECE} = \frac{\pi}{|H_1|} \sum_{S \in H_1} \log \left(1 + e^{-(S \cdot \frac{\pi}{1-\pi})}\right) + \frac{1-\pi}{|H_2|} \sum_{S \in H_2} \log \left(1 + e^{S \cdot \frac{\pi}{1-\pi}}\right)
 \]

 ▶ Metrics represent (cross-) entropy in bits

 ▶ Performance reporting with decoupled decision layer

Brief introduction to calibration

- Linear: logistic regression (robust model)
 - Transform: $S_{\text{cal.}} = w_0 + w_1 S$

- Non-linear: Pool-Adjacent-Violator (PAV) algorithm (optimal)
 - Transform: monotonic, non-parametric mapping function