Strength of Authentication for Biometrics: An Evaluation Framework

Elaine Newton, NIST
Colin Soutar, Deloitte & Touche LLP
Agenda

• Background on the Advanced Identity Workshop: Applying Measurement Science in the Identity Ecosystem

• Purpose & Scope

• Approach:
 • Problem Statement
 • System Attack Analysis
 • Zero Information Attack
 • Consider an Additional Factor: Effort
 • Incorporating Effort
 • Strength of Function for Authenticators (SOFA)
 • Ultimate Goal: Comparing & Combining Authentication Technologies
Background on the Advanced Identity Workshop: Applying Measurement Science In the Identity Ecosystem

• January 12-13th @ Gaithersburg

• Focus on quantifying strength of function to enable risk based decisions

• Three focus areas:
 1. Strength of Authentication
 2. Strength of Proofing
 3. Attribute Confidence

• Strength of Authentication will focus initially on measuring the strength of \textbf{Biometric Authentication Systems}

• The overall goal of this area is to reach the point where the strength of authentication mechanisms can be \textit{measured, compared}, and eventually \textit{combined}

• Why start with biometrics? Growing availability and use.
Purpose & Scope

• Produce a framework for measuring and evaluating the strength of a biometric authentication system that enables:
 • Greater understanding of how much trust can be placed in solutions
 • Better alignment of solutions with assessed risks

• Focus is on positive authentication and one-to-one matching:
 • Does not address watch-list applications
 • Does not deal with situations where users are avoiding identification

• Intended to be modality agnostic

• Framework will be released as a report from NIST, but may be used as contribution to a standards development effort

• Framework will be open for public comment throughout its development
Approach
Problem Statement

• Starting point: What generally accepted measurements exist around “strength” of authenticators?
 • Entropy and the strength of passwords/key length
 • Strength of Function: Common Criteria

• How can we compare strength of biometric authentication mechanisms to each other, and to other types of mechanisms?
 • Can we create a comparable measure in biometrics to entropy or strength of function?

• Can we establish a general framework for comparing different mechanisms?
 • SOFA = Strength of Function for Authenticators
Many attacks can be mitigated by core security controls: e.g., encryption, mutual authentication, limiting of unsuccessful attempts.
System and Attack Analysis: Biometric Specific

Two aspects stood out as unique to biometric authN: **Presentation Attacks** and the **Matching Performance**; each carries potential metrics to contribute to strength.

PAD Error Rate: Probability of a successful presentation attack

FMR: Probability of a false match occurring
Approach

• Isolate the aspects of biometric technologies that can be quantified
• Assume a baseline of “cyber hygiene”
• Inherent biometric strength
 • “Zero information” attacks,
 i.e., the attacker doesn’t have the PIN or biometric pattern
 • “Targeted” attacks
• Additional controls (e.g., limiting failed attempts) may be layered on top of the quantified strength to improve the overall security of a system
• What are the relevant factors for the framework?
Zero Information Attack

Factors: FMR and PADER

False Match Rate (FMR)
- Proportion of impostor attempt samples falsely declared to match the compared template
- Empirically determined
- Combination of
 - Inherent discrimination
 - Signal fidelity; sensor performance; processing and matching capabilities

Presentation Attack Detection Error Rate (PADER)
- Proportion of presentation attacks incorrectly classified as bona fide presentations at the PAD subsystem in a specific scenario*
- Error rates and testing being developed in ISO/IEC 30107-3 and FIDO Alliance
- Testing standards and procedures may address...
 - Type of attacks used
 - Number of attempts
 - Types of tests: verifying vendor claims, or full statistical significance trials?

Hypothesis—FMR and PADER can be combined to produce a measure that can be compared to a password’s entropy.

Assumption—FMR and PADER are independent of one another.

* This is very similar to the APCER measure used in the draft of ISO/IEC CD 30107-3
Consider an Additional Factor: Effort

- To understand the inherent strength of a biometric system, more than PADER and FMR are required—effort should also be considered

<table>
<thead>
<tr>
<th>Password/Pin</th>
<th>Biometrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length and complexity</td>
<td>Sample size and complexity</td>
</tr>
<tr>
<td></td>
<td>Access to sensor/device</td>
</tr>
<tr>
<td></td>
<td>Computational complexity of matching</td>
</tr>
</tbody>
</table>

- Zero Info:

- Shoulder surf
- Notepads

- Targeted:

- Retrieve biometric
- Create artefact
Incorporating Effort

- Effort = Level of effort required to attack specific components of an authentication system.
 - Focuses on the point of input or sensor
 - Requires qualitative assessment and comparison of attacks extending across systems
 - The time, knowledge, and resources required for an attack may contribute to the effort
 - Consequences may also be considered
- Many factors could be incorporated into effort: further exploration required

Effort Scale

- Easy
- Brute Force (PIN/PW or “Passive Imposter”)
- Artefact
- Coercion
- Difficult
Strength of Function for Authenticators (SOFA)

Inherent Strength

• Incorporating the FMR, PAD, and effort into a single measure of strength could look something like this:

\[
\text{Effort} = \frac{\alpha \cdot \text{SOFA}_{\text{Zero Info (Biometrics)}}}{\text{FMR} \times \text{PADER}}
\]

• In the case of targeted attacks, the measure of strength may look like:

\[
\text{Effort} = \frac{\alpha \cdot \text{SOFA}_{\text{Targeted (Biometrics)}}}{(1 - \text{FNMR}) \times \text{PADER}}
\]
Ultimate Goal: Comparing & Combining Authentication Technologies

• Goal is to move towards developing metrics that can be compared and combined to better understand authentication systems

• Ultimately, we would be able to determine the same type of measure for most authentication systems

\[
\text{SOFA}_{\text{Zero Info}} \text{ (Biometrics) } \alpha \quad \frac{\text{Effort}}{\text{FMR} \times \text{PADER}}
\]

\[
\text{SOFA}_{\text{Zero Info}} \text{ (PIN/PW) } \alpha \quad \text{Effort} \times N^L
\]

For PIN/PW, \(N\) is the number of possible symbols and \(L\) is the length of the string of the set of \(N\) symbols.
Next Steps

- NIST will produce an initial draft document
- Using short, open public comment periods the document will be iteratively reviewed and updated based on community feedback
- NIST will finalize the document and identify the most appropriate venue to forward additional work
- Your feedback is welcomed and encouraged through the entire process! Please send comments to (sofa@nist.gov) or through the comment mechanism during the iterative public review periods
References

• M1.4 AHGBEA – *Study Report on Biometrics in E-Authentication*
• OASIS – *Analysis of Methods of Trust Elevation Version 1.0* (2013) and *Electronic Identity Credential Trust Elevation Framework Version 1.0* (2014)
• ISO 19092:2008 - *Financial services -- Biometrics -- Security framework*
• ISO/IEC 30107-1:2016 - *Information technology -- Biometric presentation attack detection -- Part 1: Framework*
• Committee Draft of ISO/IEC 30107-3 - *Information technology -- Biometric presentation attack detection -- Part 3: Testing and Reporting*
• ISO/IEC 24745:2011 - *Information technology -- Security techniques -- Biometric information protection*
• “Measuring Strength of Authentication” - *Workshop: Applying Measurement Science in the Identity Ecosystem*
Contributors

NIST

- **Elaine Newton, PhD**
 - National Institute of Standards and Technology
 - enewton@nist.gov

- **Kevin Mangold**
 - National Institute of Standards and Technology
 - kevin.mangold@nist.gov

- **Paul Grassi**
 - National Institute of Standards and Technology
 - paul.grassi@nist.gov

Contract support to NIST

- **Colin Soutar, PhD**
 - Deloitte & Touche LLP Cyber Risk Services
 - csoutar@deloitte.com

- **Ryan Galluzzo**
 - Deloitte & Touche LLP Cyber Risk Services
 - rgalluzzo@deloitte.com

- **Raj Dinh**
 - Deloitte & Touche LLP Cyber Risk Services
 - abdinh@deloitte.com

Special guest contributions to NIST

- **Cathy Tilton**
 - CSRA Inc.
 - cathy.tilton@csra.com