‘The Cost of Enabling the Digital Thread’

Matthew F. Bowden
Michael C. Jones
31 March, 2020
Agenda

- Background
- Purpose
- Assumptions
- Method
 - Data Synopsis
 - Data Normalization Synopsis
- Analysis
- Conclusion
- Future Research
- Questions?
Background - Definitions

MBE – “an organization and/or an operation that uses model-based definitions (MBD) for the purpose of commissioning, operating, servicing, and decommissioning a product.” (Hedberg et al, 2017)

MBD – “The practice of using 3D datasets containing the exact solid representation, associated 3D geometry and 3D annotations of a product’s dimensions, tolerances, materials, finishes and other notes to specify a complete product definition.” (MIL-STD-31000; ASME Y14.41)

Digital Thread – a method “to convey the data flows between engineering, manufacturing, business processes, and across supply chains.” (Hedberg et al, 2016)
Background – MBD/MBE

2D Drawing vs. 3D MBD

(A)

(B)

Graphics obtained from Hedberg et al, 2016
Background – MBD/MBE

MBD

For Human Consumption

For Computer Consumption

<?xml version="1.0" encoding="UTF-8"?>
<ModelTree3D Version = "1.0">
 <Node Name="DIM">
 <Property Name="cadEntityId" Value="1339"/>
 <Property Name="dimensionText" Value="{0; n }{1:8D}{2; # 0.13}"/>
 <Property Name="dimensionType" Value="DIMTYPE_DIAMETER"/>
 <Property Name="displayedValue" Value="19.000"/>
 <Property Name="gt1_gtolType" Value="GTOOLTYPEPOSITION"/>
 <Property Name="gt1_isComposite" Value="false"/>
 <Property Name="gt1_isOverallTolerance" Value="true"/>
 <Property Name="gt1_isPerUnitTolerance" Value="false"/>
 <Property Name="gt1_materialCondition" Value="GTOIMATERIALCONDMMC"/>
 <Property Name="gt1_overallToleranceValue" Value="0.250000"/>
 <Property Name="gt1_primaryBasicDatumName" Value="C"/>
 <Property Name="gt1_secondaryBasic DatumName" Value="B"/>
 <Property Name="gt1_showAllAroundSymbol" Value="false"/>
 <Property Name="gt1_showDiameterSymbol" Value="true"/>
 </Node>
</ModelTree3D>

Graphics obtained from Hedberg et al, 2016
Background – Existing Research

‘Testing the Digital Thread in Support of Model-Based Manufacturing and Inspection’
(Hedberg et al, 2016)

• Compared 2D DWG processes vs 3D MBD processes
 – Design -> Manufacture -> Inspect (for mechanical components)

• Three different test cases of varying level of annotations
 – Full, hybrid, and reduced annotations

• Findings: 3D MBD more efficient overall, but can be more labor some during design phase
Background – Existing Research

Graphic obtained from Hedberg et al, 2016

Fig. 8. Comparison of drawing-based and model-based processes
Background – Existing Research

Table 2. Observed time to annotate the design definition

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>84</td>
<td>3.1</td>
<td>8.7</td>
<td>5.6</td>
</tr>
<tr>
<td>2</td>
<td>57</td>
<td>2.7</td>
<td>2.1</td>
<td>-0.6</td>
</tr>
<tr>
<td>3</td>
<td>53</td>
<td>2.2</td>
<td>2.0</td>
<td>-0.2</td>
</tr>
<tr>
<td>Total</td>
<td>194</td>
<td>7.9</td>
<td>12.8</td>
<td>4.9</td>
</tr>
</tbody>
</table>

Graphic obtained from Hedberg et al, 2016
Purpose

• Fill literature gaps
 – Findings supported by **quantitative evidence** are limited
 – Findings supported by **real-world/non-piloted evidence** are limited
 – Quantitative analysis from a **Systems Engineering use case/viewpoint**

• Validate/Extend existing work

• Focus on **ROI & potential counterproductiveness**
Assumptions

- model organization schema for MBD data include annotations and no attributes (as defined by ASME Y14.47)
- the data sets best compare to the full annotations test case of Hedberg et al.’s 2016 [2] study
- model organization schema for the MBD data sets are for human consumption
- the scope of all data sets is inclusive of annotating the design definition only
- learning curves are non-existent as both the 2D DWG and 3D MBD are not new to the designers/engineers
- both the 2D DWGs and 3D MBD geometric models were created in the same CAD environment using the same business rules
- both the 2D DWGs and 3D MBD have dimensions and tolerances in accordance with ASME Y14.5
Method

Stepped approach conducted in three parts:

1) Validation of existing research on MBD
 - Comparison of 2D vs 3D Design Effort for Mechanical Components using real-world data (raw and normalized data)

2) Extending the existing research...
 - Comparison of 2D vs 3D Design Effort for Varying Types of Drawing Formats using real-world data (raw and normalized data)

3) Extending the existing research...
 - Comparison of the trends between Part 1 and Part 2
Data Synopsis

The data being used is suitable for the comparison as...

• products for the 2D DWG and 3D MBD practices are of similar content, size and complexity

• 2D DWG data were annotated using MIL-STD-100G and ASME Y14.5

• 3D MBD data were annotated using MIL-STD-31000A and ASME Y14.5
Data Normalization Synopsis

• Part 1 & 3
 – Normalized for number of views

• Part 2
 – Normalized for number of views
 – Normalized for number of parts

• Using ASME Y14.47 it was determined that the MBD was ...
 – maturity states of M3 (i.e. production)
 – geometry states of G3 (full)
 – annotation and attribute states of A3 (full)
Analysis

Part I – Validate Hedberg et al, 2016 findings

Comparison of 2D DWG and 3D MBD Design Efforts for Components
Analysis

Part 2 – Extending existing research

Comparison of 2D DWG and 3D MBD Design Efforts for Assemblies
Part 3 – Comparison of the trends between Part 1 and Part 2a

Comparison of 2D vs 3D Proportion Trends Between Components and Assemblies
Conclusion

• Part 1
 – Partially validates Hedberg et al, 2016’s work
 – Sets a benchmark for the study and validates data

• Part 2
 – Suggests the trends found by Hedberg et al, 2016 are consistent at the assembly level

• Part 3
 – Inconclusive due to affects of unknown variables
Future Research

• Compare 2D DWG vs 3D MBD assemblies in a controlled environment
• Compare 2D DWG vs 3D MBD for varying engineering disciplines
• Extend the research of this paper to the manufacturing and inspection phases to calculate ROI
• Investigate the benefits of MBD throughout the change process
QUESTIONS?
References

