NFIQ 2.0
Open Source Distribution

Michael Schwaiger
secunet Security Networks AG

Elham Tabassi
NIST
Agenda

- Development kit
- Operational software
Distribution packages

- Development kit
 - Aimed for developers and researchers
 - Includes NFIQ 2.0 Framework
 - Plug and play of different combinations of quality features and machine learning techniques

- Operational software
 - Aimed for operational use
 - Includes command line tool
Development kit
Motivation for NFIQ 2.0 Framework

- Lessons learned from NFIQ re-training in 2009/2010
 - NBIS source code changes necessary for adaptation of
 - machine learning algorithm
 - quality features
- Modular approach for NFIQ 2.0 development is desired
 - to be flexible regarding the implementation
 - to have a common basis of functionality needed for NFIQ 2.0 development which might then be extended by exchange of certain modules
 - because project team is distributed and located all over the world
 - because only certain project partners have access to certain fingerprint databases
 - to allow sharing and re-using of results
 - to simplify the development process
Development kit
Architectural Overview of NFIQ 2.0 Framework

- NFIQ 2.0 Development Tools
 - extractQualityFeatures()
 - calculateUtility()
 - startTraining()
 ...

- NFIQ 2.0
 - checkQuality()

- NFIQ 2.0 light

Image Format Converter

- Input/Output Interface
- Quality Feature Extraction Interface
- Utility Estimation Interface
- Machine Learning Interface

Framework

- Input/Output Module
 - Fingerprint images
 - Quality features
 - Comparison scores
 - Utility values
 - Feature extraction

- Quality Feature Extraction Module
 - - Utility computation
 - Fusion & binning

- Utility Estimation Module
 - Machine Learning Module
 - - Prediction
 - Training

- Database
- Filesystem
- Quality feature x
- Utility x
- MLP
Development kit
NFIQ 2.0 development tools and interchange file format

- Implemented on top of the NFIQ 2.0 Framework
 - ComputeQualityFeatureData, ComputeQualityVector
 - ComputeUtilityValues
 - StartTraining
 - ComputeQuality (final or intermediate NFIQ 2.0 algorithm)
 - XMLExportImport

- XML interchange file format defined
 - exchange of training and evaluation data among project partners
 - fingerprint comparison scores of several databases
 - utility values and quality scores
 - quality features
 - referenced by unique IDs
Development kit
Example: How to perform training with the NFIQ 2.0 Framework I

- Assume that necessary data for training is stored in database X
- Compute quality features
 \[\text{computeQualityFeatureData}(X, <\text{featureID}_1>, \ldots, <\text{featureID}_M>) \]
- Compute and fuse utility values
 \[\text{computeUtilityValues}(X, <\text{providerID}_1>, <\text{utility}_ID>) \]
 \[\ldots \]
 \[\text{computeUtilityValues}(X, <\text{providerID}_N>, <\text{utility}_ID>) \]
 \[\text{fuseUtilityValues}(X, <\text{providerID}_1>, \ldots, <\text{providerID}_N>, <\text{utility}_ID>) \]
- Select images for training
 \[\text{defineImagesForTraining}(X, <\text{trainingSet}_X>, <\text{testSet}_X>) \]
 \[\text{and/or} \]
 \[\text{partitionDataForTraining}(X, <\text{seed}>, <N_train_X>, <N_test_X>) \]
- Start training
 \[\text{train}(<\text{providerID}_1>, \ldots, <\text{providerID}_N>, <\text{utility}_ID>, <\text{featureID}_1>, \ldots, <\text{featureID}_M>, \text{useWeights}) \]
Development kit
Example: How to perform training with the NFIQ 2.0 Framework II

- Select images for evaluation
 `defineImagesForEvaluation(X, <evaluationSet_X>)`
 and/or
 `partitionDataForEvaluation(X, <seed>, <N_eval_X>)`

- Start evaluation
 `evaluate(<providerID_1>, ..., <providerID_N>, <utility_ID>,
 <featureID_1>, ..., <featureID_M>)`
Development kit
Open source libraries

- NFIQ 2.0 Framework will be open source

- External library dependencies
 - OpenCV for image processing
 - FingerJetFX minutiae extraction
 - RapidXML for XML parsing
 - NIST Biometric Data Interchange (BIOMDI)
Development kit
Input / output modules

- Modules for
 - PostgreSQL DB
 - NIST Record-Store format
 - File system

- Everyone can add new modules to adapt the NFIQ 2.0 Framework to their existing infrastructure!
Development kit
Quality feature modules

- More than 100 features integrated
 - NFIQ 1 features
 - FJFX minutiae count and minutiae quality features
 - Orientation Certainty Level, Ridge Valley Uniformity, Radial Power Spectrum, Local Clarity Score, …
 - ROI area features
 - Contrast features (Mu, Mu Mu Block, Sigma, …)
 - Quality map features
 - Gabor features

- Adding new features is easy!
Development kit
Machine learning modules

- Random Forest implemented
- Self Organizing Maps to be added for NFIQ 2.0 lite
Operational software
Why two different software distributions?

- Operational software package is what will be used in applications
- NFIQ 2.0 has overhead that is not needed in applications
 - Input/output modules
 - Utility modules
 - Features that were not selected for the NFIQ 2.0
- Operational software provides optimized code (not features itself but the usage of them)
- Command line tool will be provided
 - Input: Fingerprint image
 - Output:
 - Quality score
 - Actionable quality feedback
 - Quality feature values (optional)
 - Performance numbers (optional)
Operational software
NFIQ 2.0 command line tool

NFIQ2 <fingerprintImage> <imageFormat> <outputFeatureData> <outputSpeed>

- <fingerprintImage>: path and filename to a fingerprint image
- <imageFormat>: one of following values describing the fingerprint image format: BMP, WSQ
- <outputFeatureData>: if to print computed quality feature values (true|false)
- <outputSpeed>: if to print speed of quality feature computation (true|false)

- Command line tool calls internal library that can be used to easily integrate NFIQ2 algorithm into applications
Operational software
NFIQ 2.0 examples

- Development version with 29 quality features

NFIQ2: Achieved quality score: 97
Time needed for quality score computation: 213.000 ms
Actionable quality (EmptyImageOrContrastTooLow):
165.580 -> HIGH actionable quality
Operational software
NFIQ 2.0 examples

- Development version with 29 quality features

NFIQ2: Achieved quality score: 7
Time needed for quality score computation: 128.364 ms
Actionable quality (EmptyImageOrContrastTooLow):
199.397 \rightarrow \text{HIGH actionable quality}
Operational software
NFIQ 2.0 examples

- Development version with 29 quality features

NFIQ2: Achieved quality score: 0
Time needed for quality score computation: 0.515 ms
Actionable quality (EmptyImageOrContrastTooLow):
253.108 -> LOW actionable quality
Operational software
NFIQ 2.0 examples

- Output with feature values

 FingerJetFX_MinutiaeCount: 57.000
 FingerJetFX_MinCount_COMMinRect300x200: 39.000
 FingerJetFX_MinCount_COMMinCircle200: 24.000
 FingerJetFX_ROIBlockArea: 0.280
 FJFXPos_Mu_MinutiaeQuality_0: 0.000
 FJFXPos_Mu_MinutiaeQuality_1: 0.088
 FJFXPos_Mu_MinutiaeQuality_2: 0.421
 FJFXPos_Mu_MinutiaeQuality_3: 0.491
 FJFXPos_COMMin_MMB_224: 127.428
 FJFXPos_OCL_MinutiaeQuality_0: 0.000
 FJFXPos_OCL_MinutiaeQuality_20: 0.018
 FJFXPos_OCL_MinutiaeQuality_40: 0.053
 FJFXPos_OCL_MinutiaeQuality_60: 0.421
 FJFXPos_OCL_MinutiaeQuality_80: 0.509
 Mu: 165.580
 MMB: 165.580
 OCL: 0.803
 OCL_CD: 0.821
 ImgProcROIParamAbs: 105166.000
 ImgProcROIParamArea: 0.685
 ImgProcROIParamMean: 127.076
 OrientationMap_ROIFilter_CoherenceSum: 308.950
 OrientationMap_ROIFilter_CoherenceRel: 0.687
 LowFlowMap16_ROIArea_HighFlowBlocks: 443.000
 RVU_P: 0.485
 RVU_NP: 0.494
 RPS_ROIArea: 5189.663
 LCS: 0.825
 OF: 0.864
Operational software
NFIQ 2.0 examples

- Output with feature speed

 - Contrast features (Mu, MMB): 0.454 ms
 - FJFX features (FingerJetFX_MinutiaeCount, FingerJetFX_MinCount_COMMinRect300x200, FingerJetFX_MinCount_COMMinCircle200, FingerJetFX_ROIBlockArea): 25.113 ms
 - FJFX minutiae quality features (FJFXPos_Mu_MinutiaeQuality_*): 0.381 ms
 - FJFX minutiae quality features (FJFXPos_COMMin_MMB_224): 0.090 ms
 - FJFX minutiae quality features (FJFXPos_OCL_MinutiaeQuality_*): 0.597 ms
 - OCL features (OCL): 1.568 ms
 - OCL features (OCL_CD): 10.233 ms
 - ROI features (ImgProcROIPixelAbs, ImgProcROIPixelArea, ImgProcROIArea_Mean): 12.259 ms
 - Quality map features (OrientationMap_ROIFilter_CoherenceSum, OrientationMap_ROIFilter_CoherenceRel): 2.737 ms
 - Quality map features (LowFlowMap16_ROIArea_HighFlowBlocks): 26.711 ms
 - RVU features (RVU_P): 12.518 ms
 - RVU features (RVU_NP): 12.247 ms
 - RPS features (RPS_ROIArea): 86.592 ms
 - LCS features (LCS): 16.166 ms
 - OF features (OF): 13.611 ms
Summary

- Development kit
 - Provides flexible integration and development for future versions and improvements
 - Design of dedicated versions possible (e.g. NFIQ 2.0 lite)
 - Large collection of quality features

- Operational software
 - Optimization done for use in applications
 - Unnecessary data and code removed

- Both will be distributed as open source!
Contact

secunet Security Networks AG
Michael Schwaiger
michael.schwaiger@secunet.com

NIST
Elham Tabassi
elham.tabassi@nist.gov