AN INVESTIGATION OF PROMPT GAMMA ACTIVATION ANALYSIS AND COMPTON IMAGING

Ben Riley
Mentor: Heather Chen-Mayer
Overview

- Prompt Gamma Activation Analysis
 - What is Prompt Gamma Activation?
 - Composition Analysis
 - 3D Filament Composition

- Compton Imaging
 - Compton Scattering and Compton Camera
 - Geant4 Simulation
 - Image Reconstruction
Prompt Gamma Activation

- Incident neutrons: pass through, scatter, or capture
- Capture events excite elemental nucleus
- Characteristic gammas emitted at de-excitation.
- Emission spectra characterize sample
Motivation

- PGAA and Compton Imaging
 - Bulk Composition Analysis
 - Non-destructive technique
 - Potential to detect impurities and corrosion: need spatial resolution
PGAA Beam Line

- Located on NG-D
- Polychromatic beam: average at 6 Å; Flux: 5E9 n/cm²-s

Credit: Danyal Turkoglu
Prompt Gamma Activation Analysis

- Compare spectral intensities
- Calculate mass ratios

\[
\frac{m_H}{m_X} = \frac{A_H/\varepsilon_H \sigma_{\gamma,H}/M_X}{A_X/\varepsilon_X \sigma_{\gamma,X}/M_X}
\]

- \(A_X\) is the net peak area, \(\varepsilon_X\) is the detector efficiency at the peak energy, \(\sigma_{\gamma,X}\) is the gamma production cross section, and \(M_X\) is the atomic mass.
3D Printing Filament Analysis

- Three common filaments were examined: PLA, ABS, and Nylon

- Four disks for each plastic:
 - 2cm diameter
 - 0.5mm-2mm thickness in 0.5mm increments
Filament Properties

- PLA
 - Bioplastic: $C_3H_4O_2$
- Nylon
 - Overall class of polymers with different stoichiometry
- ABS (Acrylonitrile Butadiene Styrene)
 - Three part composition: $(C_8H_8)_x(C_4H_6)_y(C_3H_3N)_z$
Comparison

- Prompt gamma yield: Depth Dependent; Atom ratio: constant
- Linear behavior with increased thickness: No self-shielding effects
- Slope: Stoichiometric ratios
- ABS: x:y:z => 2:2:3
- Nylon: Blended Filament; primarily nylon 6,6

Atom Ratios of Various Materials Determined From PGAA
PGAA and Compton Imaging

■ Current PGAA
 - *Bulk analysis only*
 - *Limited spatial resolution*

■ Proposed For PGAA
 - *Use Prompt Gammas to image sample*
 - *Utilize Compton imaging techniques*
 - *Give spatial resolution*
Compton Scattering

- Intermediate-High Energy Regime
- Photon scatters off electron
- Angle determined by

\[
\frac{1}{E'} - \frac{1}{E} = \frac{1 - \cos(\theta)}{m_e c^2}
\]
Compton Camera

- Multistage pixelated detector
 - Scatters in first stage
 - Absorbed in second stage
 - Pixilation gives positional data
- Generates Compton cones
 - Energy deposited gives angle
 \[
 \frac{1}{E'} - \frac{1}{E} = \frac{1 - \cos(\theta)}{m_e c^2}
 \]
 - Positional data gives placement and orientation
- Volumetric reconstruction from single scan
Simulation

- Geant4: Monte-Carlo simulation for radiation transport
- Models 5 meV neutron beam interacting with sample
- Detectors output spectra and Compton events

Nylon Spectra

![Graph showing simulated and real nylon spectra with energy on the x-axis and counts on the y-axis.](image)
Geant4 Information

<table>
<thead>
<tr>
<th>Step#</th>
<th>X(mm)</th>
<th>Y(mm)</th>
<th>Z(mm)</th>
<th>KinE(MeV)</th>
<th>dE(MeV)</th>
<th>StepLeng</th>
<th>TrackLeng</th>
<th>NextVolume</th>
<th>ProcName</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16.6</td>
<td>-7.87</td>
<td>-100</td>
<td>2.5e-09</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>World</td>
<td>initStep</td>
</tr>
<tr>
<td>1</td>
<td>16.6</td>
<td>-7.87</td>
<td>-20</td>
<td>2.5e-09</td>
<td>0</td>
<td>0</td>
<td>80</td>
<td>Sample</td>
<td>Transportation</td>
</tr>
<tr>
<td>2</td>
<td>16.6</td>
<td>-7.87</td>
<td>-19.8</td>
<td>4.89e-10</td>
<td>2.01e-09</td>
<td>0.222</td>
<td>80.2</td>
<td>Sample</td>
<td>hadElastic</td>
</tr>
<tr>
<td>3</td>
<td>16.1</td>
<td>-8.22</td>
<td>-19.5</td>
<td>0</td>
<td>0.786</td>
<td>80.9</td>
<td>Sample nCapture</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

List of 2ndaries - #SpawnInStep= 2 (Rest= 0, Along= 0, Post= 2), #SpawnTotal= 2

- 16.1 -8.22 -19.5 2.22 gamma
- 16.1 -8.22 -19.5 0.00132 deuteron

EndOf2ndaries Info

* G4Track Information: Particle = deuteron, Track ID = 3, Parent ID = 1

<table>
<thead>
<tr>
<th>Step#</th>
<th>X(mm)</th>
<th>Y(mm)</th>
<th>Z(mm)</th>
<th>KinE(MeV)</th>
<th>dE(MeV)</th>
<th>StepLeng</th>
<th>TrackLeng</th>
<th>NextVolume</th>
<th>ProcName</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16.1</td>
<td>-8.22</td>
<td>-19.5</td>
<td>0.00132</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Sample</td>
<td>initStep</td>
</tr>
<tr>
<td>1</td>
<td>16.1</td>
<td>-8.22</td>
<td>-19.5</td>
<td>0</td>
<td>0.00132</td>
<td>0.000243</td>
<td>0.000243</td>
<td>Sample</td>
<td>hIoni</td>
</tr>
</tbody>
</table>

* G4Track Information: Particle = gamma, Track ID = 2, Parent ID = 1

<table>
<thead>
<tr>
<th>Step#</th>
<th>X(mm)</th>
<th>Y(mm)</th>
<th>Z(mm)</th>
<th>KinE(MeV)</th>
<th>dE(MeV)</th>
<th>StepLeng</th>
<th>TrackLeng</th>
<th>NextVolume</th>
<th>ProcName</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16.1</td>
<td>-8.22</td>
<td>-19.5</td>
<td>2.22</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Sample</td>
<td>initStep</td>
</tr>
<tr>
<td>1</td>
<td>17.2</td>
<td>-7.52</td>
<td>-18</td>
<td>2.22</td>
<td>0</td>
<td>1.98</td>
<td>1.98</td>
<td>World</td>
<td>Transportation</td>
</tr>
<tr>
<td>2</td>
<td>62.5</td>
<td>20.8</td>
<td>40.9</td>
<td>2.22</td>
<td>0</td>
<td>79.5</td>
<td>81.5</td>
<td>Detector1</td>
<td>Transportation</td>
</tr>
<tr>
<td>3</td>
<td>71.8</td>
<td>26.6</td>
<td>53</td>
<td>1.87</td>
<td>0</td>
<td>16.3</td>
<td>97.8</td>
<td>Detector1</td>
<td>compt</td>
</tr>
</tbody>
</table>

List of 2ndaries - #SpawnInStep= 1 (Rest= 0, Along= 0, Post= 1), #SpawnTotal= 1

- 71.8 26.6 53 0.353 e-

EndOf2ndaries Info
Event Tracking

- Geant4: Tracks particle events sequentially
- Events track parent and daughter particles
- Simulate ~1E10 Events, 3 hrs
- High event counts allow for image reconstruction
Back Projection Reconstruction

- Cones projected onto plane through sample
- Conic sections plotted
- Heat map generated
Statistical Reconstruction

- Alternative Reconstruction Method
- UMD School Of Medicine
- Computationally Faster
 - 4 min vs 3 hrs
- Smoother

Credit: Jerimy Polf
Simulation

- Material Filtering: Water vs Titanium
- Spatial Resolution and Composition

Disks: 0.5 mm depth
2.0 cm radius
Statistical Reconstruction

H

Ti

\[y = 0.0 \text{ mm} \]

\[z \text{ [mm]} \]

\[x \text{ [mm]} \]

Gamma Emission

\[z \text{ [mm]} \]

Gamma Emission

\[z \text{ [mm]} \]
Conclusion

- **PGAA**
 - Nondestructive
 - Accurately determine chemical composition
- **Compton Imaging**
 - Spatial Resolve Prompt Gamma emission
 - Distinguish based on element
- **Together**
 - Complimentary techniques
 - Composition and position
Special Thanks

- Heather Chen-Mayer, Mentor
- Danyal Turkoglu, NRC Postdoc
- Jeremy Polf and Haijian Chen, UMD Proton Therapy Center
- SURF Directors