Python Scripting Feature for NICE Software

MAX POOLE
What’s the name of my project?

Integrating a Python Scripting Feature into NCNR Data Acquisition Software to allow Advanced/Customizable Experiments
What’s the name of my project?

Integrating a **Python** Scripting Feature into NCNR Data Acquisition Software to allow Advanced/Customizable Experiments

Programming language which scientists want to write in
What’s the name of my project?

Integrating a Python Scripting Feature into NCNR Data Acquisition Software to allow Advanced/Customizable Experiments

A small program
What’s the name of my project?

Integrating a Python Scripting Feature into NCNR Data Acquisition Software to allow Advanced/Customizable Experiments

The NICE Software
What is the NICE Software?

Data acquisition:
- Software scientists use to run experiments

Universal:
- NICE is planned to work on all instruments maintained by RFO
- Currently works full time with five instruments (6th in near future)
What was my project?
This is what it is

Add the ability for scientists to write scripts in python that can be run through the NICE software. These scripts allow the scientists to create Advance/Customizable experiments
How was it done?

Python Scripting Process
- Singleton that runs the setup code
- Setup codes sets up connection with server, namespace, etc.

ScriptApi
- List of commands that the scripting feature can take advantage of
User Writes Script -> Python Scripting Process reads Script -> Communicates with NICE -> NICE Sends commands to the instruments
Benefits From my Project

Scientists can create flexible scripts
- Dynamically react to conditions to what is measured
- Tailor-made solutions
- Can be made quickly (by one’s self)

Scientists can take advantage of NICE
- Many already written features
- Standardized across instruments
Dynamic Experiments

Scripts can react to data they measure and use this information to decide what to measure next.
Creating Dynamic Experiments
Example phase change

With python scripting process users can have their program read data based on some condition

Phase change: Read information rapidly only when the phase is changing
Closer look

LuFeO3 [101] order parameter

Rate (counts/minute) vs. Temperature (K)
Tailor-made scripts

Scripts can be tailor-made for a user’s specific problem

Scripts are created by the users themselves
You can do it all without asking the programmers

Make scripts quickly
 ◦ Useful for trying out new ideas
 ◦ Creating solutions for problems specific to only what you are doing right now
Integrated into the new and exciting software

NICE!
Advantages of using NICE

Scientists can take advantage of many features already written by the programmers

◦ Talking to motors
◦ Writing data in known formats
◦ And so much more!
1 script_api.move(["slitTrans1", "50"])

```java
@Override
public void validate()
{
    if ((args == null) || args.isEmpty())
    {
        // could happen if command is instantiated directly, not parsed with console parser
        String message = "Command has no arguments";
        CommandUtils.registerValidationException(this, Eventlevel.WARNING, message);
    }

    if ((args.size() % 2) != 0)
    {
        String message = "Uneven number of arguments.";
        CommandUtils.registerValidationException(this, Eventlevel.WARNING, message);
    }

    final Collection<String> nodeIds = new ArrayList<>();
    for (int i = 0; i < args.size(); ++i)
    {
        if ((i % 2) == 0)
        {
            nodeIds.add(args.get(i).toString());
        }
    }

    MoveCommand.validateNodeIds(this, nodeIds, status);
}

private ParseControlCommand parseArgumentsIntoCommand(Command sourceCommand, DeviceModelInterface deviceModel)
    throws MissingNodeException, StatusValueNotGoodException
{
    final Property<String> nodeToValueMap = new RepMap<>();
    Iterator<Object> iterator = args.iterator();
    while (iterator.hasNext())
    {
        final String key = (String) iterator.next();
        String value = iterator.next().toString();
        // If a relative move is resuming, we should convert it to absolute move instead of
        // re-submitting the relative move.
        // This is done so that we can avoid following bug:
        // Mover m is at 10.
        // Move m = r 5 (should set desired value of m to 15), while it is moving there, if a
        // pause is issued at 12 and later the user resumes it, the new desired value of m would
        // be 12 + 5 = 17.
        if (relative && isResuming())
        {
            NodeHandle node = deviceModel.getNode(key);
            Object internalValue = node.getDesiredValueStatusInput().getGoodValue();
            value = UnitConversion.convertToUserUnit(internalValue, node).toString();
        }

        nodeToValueMap.put(key, value);
    }

    // Now that we've converted the relative move to absolute move for resuming relative moves,
```
What can it do?

- Findpeak
- Count
- Read from instruments
- Move motors
- Start trajectories
- Monitor temperature
- Run sequences
- Get findpeak data
- Save namespaces
- Email members of experiment
- Start and Stop writers

And More
Expandable

Written as a part of NICE

- API can easily have new features added to it as NICE itself expands
A part of a whole

The Python Scripting feature can be used as a runscript command inside and alongside other commands
2015-08-03 14:33:29 > IMPORTANT: Now starting experiment "Blank initial experiment" (nonims0)
2015-08-03 14:33:34 > IMPORTANT: Server Started Successfully
2015-08-03 14:34:07 > add "fakeTemperature" -s true (not typed at console)
2015-08-03 14:34:07 > Queue id: e295789b-61e4-4947-8e48-1c1146a4b944, position: 0
2015-08-03 14:34:07 > Added simulated device "temp".
2015-08-03 14:34:10 > runScript tempmonitorexample.py
2015-08-03 14:34:10 > Queue id: 60fa58ac-0c0c-4ac1-849c-2777af5d4ac9, position: 1
2015-08-03 14:34:11 > Starting scan id: "Generic script name1".
2015-08-03 14:34:14 > Peak fit results
 Scanned node: slitTrans1.softPosition
 Domain node: slitTrans1.softPosition
 Data of interest node: counter.liveMonitor
 Fit type: GaussianPlusBackground
 derv: 172.269 mm
 background: 96.0376
 center: -0.499723 mm
 height: -0.037917
 FWHM: 405.659 mm
 Reduced chi squared: NaN
2015-08-03 14:34:14 > Moving slitTrans1.softPosition back to 0.0000 mm
2015-08-03 14:34:14 > Finished writing file "C:\workspace\nicelse\server_data\experiments\nonims0\data\Generic script name_001.cgd" for trajectory id
1 experiment "nonims0"
2015-08-03 14:34:14 > Finished writing file "C:\workspace\nicelse\server_data\experiments\nonims0\data\Generic script name1_nxx.cgd.zip" for
trajectory id 1 experiment "nonims0"
2015-08-03 14:34:15 > User ended findpeak command early
2015-08-03 14:34:17 > Starting scan id: "Generic script name2".
runScript "tempmonitorexample.py" (move "slitTrans1" "1")

- move "temp.timeout_1" "0.0"
- move "temp.timeout_2" "0.0"
- move "temp" "500.0K"
- findPeakMulti "slitTrans1" --filePrefix "Generic script name" -r ["1"] -s ["1"]
- move "slitTrans1" "1"

findPeakMulti "slitTrans1" --filePrefix "Generic script name" -r ["1"] -s ["1"]
Advantages of using NICE

Instrument usage is standardized

◦ One piece of software can be used on various instruments
Conclusion

My project allows scientists to create simple programs

- Can be whatever they want them to be
- Can be flexible, can respond to the instrument and control the instruments
End and everything

Mentor: Stephen Pheiffer
Team Member: Natasha Shmunis
Paul Kienzle
Questions?