CLASSIFYING CRYSTAL STRUCTURES

BY CYNTHIA LIU
MENTOR: WILLIAM RATCLIFF III
THE PROBLEM

• How could we use machine learning algorithms to identify an unknown crystal structure based on its existing planes (found with neutron scattering)?

• Modern methods require human intervention

• Focus on lattice type – unit cell
BACKGROUND - CRYSTALLOGRAPHY

Primitive, Body Centred, Face Centred, C Face Centred, Rhombohedral

http://www.doteoms.ac.uk/tipsb/crystallography/unit_cell.php
BACKGROUND - CRYSTALLOGRAPHY

- Analyze crystal structure with diffraction
- Results in Intensity vs. 2θ graph
- Observe systematic absences
- Derive conditions for reflection existence for a lattice type

http://img.chem.ucl.ac.uk/www/reports/famc/famc.htm
BACKGROUND – CRYSTALLOGRAPHY

- h, k, l Miller indices of crystal lattice planes

I: $h + k + l = 2n$

$F: h + k = 2n, k + l = 2n, h + l = 2n$

$A: k + l = 2n$

$B: h + l = 2n$

$C: h + k = 2n$

$R: -h + k + l = 3n$

$P: anything$
NEURAL NETWORKS

- Interconnected “neurons” in layers
- Input to next layer is linear combination of output from previous layer
- Neurons are “on” or “off”
- Activation function in each hidden layer
 - Used Maxout - $h_i(x) = \max_{j \in [1,k]} z_{ij}$
NEURAL NETWORK ALGORITHM

• Build the neural network
• Initialize all weights to small random values
• Train using backpropagation
 • Looks at prediction error with starting weights, move towards smaller error

RANDOM FORESTS

- Collection of randomly generated decision trees
 - Each trained on random subset of data
 - Splitting features a random subset of features
- Final result a vote among trees — bagging (model averaging)

METHOD – LATTICE TYPE

• First identify points
 - Input contains coordinates, coordinates’ parities, and coordinate values mod 3
• Problem: every possible \((h, k, l)\) fulfills at least 2 conditions
 - Primitive and one of A, B, C
• Cannot directly identify from individual points – groups of points
METHOD – LATTICE TYPE

• 2 classifiers
 • Individual points – neural net (10-10-10-1)
 • Groups of points – random forests
• Points themselves
• Presence arrays
• Frequency arrays

Points themselves:

Presence arrays:
(I, F, A, B, C, R, P)
[0, 1, 0, 0, 0, 1, 0]

Frequency arrays:
(I, F, A, B, C, R, P)
[2, 12, 0, 0, 0, 45, 1]
RESULTS – LATTICE TYPE

• Frequency groups yielded best
• Perfect for F, A, B, C
• Clear majorities for I, P, R
• Overall very good

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>F</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>R</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>86.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>14.0</td>
</tr>
<tr>
<td>F</td>
<td>0.0</td>
<td>100.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>A</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>B</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>C</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>R</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>97.0</td>
<td>2.0</td>
</tr>
<tr>
<td>P</td>
<td>11.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>88.0</td>
</tr>
</tbody>
</table>
RESULTS – LATTICE TYPE

- 50 points per group
- Simulated and database data, sample results to right
- Again good for F, A, B, C
- I, R, P, could be better, especially R

- Sp. Grp Fmmm: 3/3
- Sp. Grp Ccce (rotated for B): 3/3
- Sp. Grp P-421m: 2/3
- Sp. Grp Immm: 2/2
- Sp. Grp R-3m: 2/3
FUTURE WORK

• Fix I, R, P inconsistency
• Speed up program
• Space groups – Combination with other methods
SUMMARY

• Frequency groups is a decent solution
 • Inspired by probabilities arising from possibilities
 • More testing and adjustment needed

• Variant of method could potentially work for space groups
ACKNOWLEDGEMENTS

• Many thanks to:
 • Dr. Ratcliff
 • Mrs. Bosse
 • Mr. Kienzle
 • Dr. Borchers
 • Ms. Hernandez
 • And…

http://www.smallangles.net/canSA SV/canSASVReportFinal.html