Visualizing Insulin Structure Under Shear Stress

Andre Chen
Mentor: Grethe Jensen
NIST Center for Neutron Research
Insulin is a hormone that regulates glucose intake by cells.

Patients with diabetes are insulin-deficient.

Diabetes is treated by injection of engineered insulin analogues.
INSULIN THERAPEUTICS

OBJECTIVE

Long-acting insulin drug for once-daily dosing

Hexamers

Rod-like Structures

Monohexamers

Dihexamers

Rods

Dimers

Monohexamers

Dissociation

Insulin injection

Subcutaneous Tissue

Monomers

Insulin in Bloodstream

Capillary Membrane
Next Step: Does Shear Change Insulin Structure?

Subcutaneous Injection
Shear rates on order of 10^5-10^6 s$^{-1}$

Blood Vessels
Shear stresses as high as 9.8 N/m2
Possible Outcomes

Rod Lengthening/Breaking

Alignment with Applied Shear

Interactions

Repulsion

Attraction
Project Overview

Objective: Determine if shear affects insulin self-assembly

- **Insulin samples prepared:**
 - Insulin concentrations (mM): 0.6 | 1.2 | 1.8
 - NaCl concentrations (mM): 30 | 150 | 450

- Samples sheared at different shear rates to probe their viscosity

- **Small-angle neutron scattering** applied during shear for structural data
Viewing Nanostructure With Small Angle Neutron Scattering

Scattering vector: $\mathbf{q} = \frac{4\pi \sin(\theta)}{\lambda}$

Diagram showing the paths of the incident, transmitted, and scattered beams with labels for the source, sample, detector, and beamstop. The scattering intensity is plotted against \mathbf{q} (in units of Å^{-1}) on a graph.
Why SANS?

Probes appropriate length scale to view:

- Structure
- Orientation of structures

![Diagram showing isotropic orientation and alignment in flow](http://cns.che.udel.edu/)
Rheology Measurements

Instrument: Anton Paar MCR 502 Rheometer

Shear Rates: 0-3500 s$^{-1}$

Images:
- Cup and Bob: ter-mcr-102-302-502/
SANS Measurement

Source \(k_i \) \(\rightarrow \) Incident beam

Sample under shear

Transmitted beam

Scattered beam \(k_s \)

Beamstop

Detector

Radial Measurements

Tangential Measurements

Sample under shear

2\(\theta \)
Sample Preparation

NaCl Concentrations

- 30 mM
- 150 mM
- 450 mM

Insulin Concentrations

- 0.6 mM
- 1.2 mM
- 1.8 mM

Components

- Insulin
- NaCl
- Zinc
- D₂O
- Phenol
- Phosphate Buffer
Rheology: Viscosity vs. Shear Stress

<table>
<thead>
<tr>
<th>Insulin Concentration</th>
<th>Volume Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6mM</td>
<td>0.44%</td>
</tr>
<tr>
<td>1.2mM</td>
<td>0.88%</td>
</tr>
<tr>
<td>1.8mM</td>
<td>1.32%</td>
</tr>
</tbody>
</table>

\[\sigma^* = 1.3 \text{ Pa} \] for 30mM NaCl

\[\sigma^* = 0.22 \text{ Pa} \] for 150mM NaCl

\[\sigma^* = 0.19 \text{ Pa} \] for 450mM NaCl
SANS Data: Increasing Salt Concentration

0.6mM Insulin

<table>
<thead>
<tr>
<th>mM NaCl</th>
<th>30</th>
<th>150</th>
<th>450</th>
</tr>
</thead>
</table>

-1 slope

Radial Configuration

Tangential Configuration

Isotropic Orientation
Higher Order Structures: SAXS Comparison

450mM NaCl

[SAXS Data] [SANS Data]

Quadratic ordering
Layering

I(Q) (1/cm)
Q (1/A)

1.00E-01 1.00E-02 1.00E-03 1.00E-04 1.00E-05

1.00E-01 1.00E-02 1.00E-03 1.00E-04 1.00E-05
Shear Thickening Dependence on Shape

- 30mM NaCl
- 150mM NaCl
- 450mM NaCl

0.6mM Insulin

- $|q| (1/\text{cm})$
- $q (1/\text{A})$

- -1 slope

35% change

Intracellular Stress Measure

100
10
1

30mM NaCl

150mM NaCl

450mM NaCl
SANS Data: Increasing Salt Concentration

Shear-induced reversible structural change at 150mM NaCl, 3500s⁻¹

- **0.6mM Insulin**
- **1.2mM Insulin**
- **1.8mM Insulin**

Fitted models

With structure factor

Without structure factor
Electrostatic Interactions?

30mM NaCl
- $\sigma^*=1.3$ Pa

150mM NaCl
- $\sigma^*=0.22$ Pa

450mM NaCl
- $\sigma^*=0.19$ Pa

Shear stress overcomes repulsion at σ^*

Electrostatic Repulsion

SHEAR THICKENING
Electrostatic Interactions?

30mM NaCl

$\sigma^* = 1.3 \text{ Pa}$

150mM NaCl

$\sigma^* = 0.22 \text{ Pa}$

450mM NaCl

$\sigma^* = 0.19 \text{ Pa}$

With NaCl Screening

Weaker Repulsion

Easier to overcome repulsion

Higher NaCl = Lower σ^*
Summary of Findings

Structure
Rods **form, lengthen, and order** with increasing NaCl and insulin concentrations
Very little shear dependence

Rheology
Shear-thinning → Shear-thickening
Critical shear stress (electrostatic barrier?)

Future Outlook
Tests with higher shear rates, lower q
More rheological studies
Acknowledgments

Center for High Resolution Neutron Scattering
Novo Nordisk
Grethe Vestergaard Jensen, PhD
 Mentor, NIST Center for Neutron Research
Joe Dura, PhD and Julie Borchers, PhD
 NCNR SURF Coordinators, NIST Center for Neutron Research
Brandi Toliver, PhD
 SURF Program Director, National Institute of Standards and Technology