Corrosion-induced AC Impedance Elevation in Crystalline Silicon Photovoltaic Cells/Modules

Tadanori Tanahashi (RCPV, AIST)
December 13, 2019
Gaithersburg, Maryland, USA

Contributors
Norihiko Sakamoto (NMIJ, AIST)
Hajime Shibata (RCPV, AIST)
Atsushi Masuda (RCPV, AIST)

This work was supported by the New Energy and Industrial Technology Development Organization (NEDO), Japan.
Final Destination: Service Lifetime Prediction

PV Modules exposed for 21 years in Cfa climate (JP)

Warranty = 25 - 30 years

Fig. 3.1: Three typical failure scenarios for wafer-based crystalline photovoltaic modules are shown. Definition of the used abbreviations: LID – light-induced degradation, PID – potential induced degradation, EVA – ethylene vinyl acetate, j-box – junction box.

Different EL appearances

There is no evidence that the failure mode observed after extended 85/85 exposure ever occurs in fielded modules.

Exposure Conditions

Exposed in a Field for ca. 30 Years

under DH Stress Conditions

However, we found “DH-induced Degradation”-like EL appearance in some PV modules exposed in fields.

Question?

These different EL appearances are induced by a common corrosion mechanism or not?
We have 3 Experimental Procedures on Corrosion (HAc = Acetic Acid)

HAc-Vapor Exposure of Bare PV Cells

- a) Experimental Setup
 - Thick Glass Chamber
 - Saturated KCl aq. soln. +/- HAc (3%)
 - b) Hung PV cells
 - c) Setups in Oven

at 85°C / 80% rh

DH Stress Test of PV Modules

- Glass
- Encapsulant (EVA)
- Cell
- Encapsulant (EVA)
- Backsheet (PVF / PET / PVF)

PV Mini-Module
(Visual Image / Configuration)

at 85°C / 85% rh

Outdoor Exposure

Ex. Outdoor Exposed PV Module from 1994 in Cfa Climate

Silver Contact Formation during “Fire-Through” Process

Proposed Current Transport Mechanisms in Silver Contact

Field Emission (FE)
\[N_D \geq 10^{20} \text{ cm}^{-3} \]

Thermionic Field Emission (TFE)
\[10^{17} \text{ cm}^{-3} < N_D < 10^{20} \text{ cm}^{-3} \]

Electron Tunneling
through glass layer
(directly or via nano-Ag colloids)

Dissolution of Glass-Silver Boundary Layer by Acetic Acid

Evolution of Gap at Ag-Si Interface (HAc-Vapor Exposure)

(a) Control without HAc

(b) 85 / 80, 48 h without HAc

(c) 85 / 80, 48 h [Pb] without HAc

(d) 85 / 80, + HAc, 12 h with HAc

(e) 85 / 80, + HAc, 48 h with HAc

(f) 85 / 80, + HAc, 48 h [Pb] with HAc
Detection of Corrosion-induced AC Impedance Elevation
DH Stress Test of PV Modules

Module with Cell A

Evolution of EL Image

Module with Cell B
DH Stress Test of PV Modules

Emergent Incidence & Evolution of Z_3

Module with Cell A

Z_3

Module with Cell B

Z_3

Z' (Ω)

Z'' (Ω)

0 h

2 750 h

4 000 h

15 000 h

10 kHz

(10 ~ 100 kHz)

0 h

8 000 h

12 000 h

15 000 h

10 kHz

(10 ~ 100 kHz)
DH Stress Test of PV Modules

Evolution of Elec. Parameters

Module with Cell A

Synchronized Changes
- FF / P_m: Reduction
- R_1 / R_3: Elevation
- C_3: Emergent Expression / Decay

Constant
- C_2

AC Equivalent Circuit

Normalized PV Parameters

Duration of DH Stress Test (h)
DH Stress Test of PV Modules

Evolution of Elec. Parameters

Module with Cell B

Synchronized Changes
- FF / Pm: Reduction
- R1 / R3: Elevation
- C3: Emergent Expression / Decay

Constant
- C2

AC Equivalent Circuit

Normalized PV Parameters

Duration of DH Stress Test (h)

R1, R3 (Ω)

Z2

Z3

R2

R3

C2

C3

Voc

Isc

FF

Pm
DH Stress Test

Module with Cell A
Module with Cell B

Complete Differences in Degradation Kinetics

AC Equivalent Circuit

Normalized P_m

Normalized FF

Normalized I_{sc}

Duration of DH Stress Test (h)

R_1 (Ω)

R_3 (Ω)

C_2 (F)

C_3 (F)
DH Stress Test of PV Modules

Correlation of C_3 with FF-Loss

In both PV modules, FF-loss depends on C_3 intensity

Capacitor Formation / Evolution ≈ Gap / Dielectric Formation in Si-Metallization Interface

$log (C_3) = 15.3 \text{ (nFF)} - 14.2$

$R^2 = 0.903$
Mott-Schottky Plot

The inset shows the variation of the minority carrier lifetime as a function of the applied bias.

\[C^{-2} = \frac{2}{qA^2\varepsilon N_D} \quad (V + V_{bi}) \]

\[N_D = \frac{2}{q\varepsilon A^2 \left[\frac{dC^{-2}}{dV} \right]} \]

- **C**: Capacitance
- **V**: Applied DC Voltage
- **\varepsilon**: Permittivity
- **q**: Elementary Charge
- **N_D**: Doping Density
- **V_{bi}**: Build-in Potential
- **A**: Area
DH Stress Test of PV Modules

Mott-Schottky Plots \([C_2]\)

\[\text{Module with Cell A} \]

\[\text{Module with Cell B} \]

\(V_{bi}\):

- Cell A = 0.677 ± 0.005 V
- Cell B = 0.636 ± 0.021 V

\(N_D\):

- Cell A = \(1.33 \times 10^{16}\) cm\(^{-1}\) (1.32 – 1.35 \(\times 10^{16}\))
- Cell B = \(1.37 \times 10^{16}\) cm\(^{-1}\) (1.34 – 1.40 \(\times 10^{16}\))

Elec. Characteristics in p-n Junction: Const.
Mott-Schottky Plots \([C_3]\)

DH Stress Test of PV Modules

\(C_3: \text{non-Linear}\)

\[C_3^{-2} = \alpha \exp(-\beta V) + \gamma \]

- \(\alpha: \text{Reduction}\)
- \(\beta: \text{nearly Const.}\)
- \(\gamma: \text{Elevation}\)

\(V_{bi}\):

- Cell A = 1.233 ± 0.072 V
- Cell B = 1.010 ± 0.077 V
Degradation Mechanism / Model in Both Modules

\[\log (C_3) = p (nFF) - q \]

\[C_3^{-2} = \alpha \exp(-\beta V) + \gamma \]
DH Stress Test of PV Modules

Correlation of C_3 with P_m-Loss

$\log (C_3) = 8.24 \left(nP_m \right) - 8.47$

$R^2 = 0.881$
DH Stress Test of PV Modules

Correlation of Coeff. $\alpha \cdot \beta \cdot \gamma$ with P_m-Loss

$$\frac{C_3^{-2}}{2} = \alpha \exp(-\beta V) + \gamma$$

- Coefficient α
- Coefficient β
- Coefficient γ

Normalized P_m

Module with Cell A
Module with Cell B
DH Stress Test of PV Modules

Correlation of Coeff. $|\alpha| \cdot \gamma$ with P_m-Loss

Coefficient $|\alpha|$ $nP_m = 0.39 \exp[-1.30 \ (|\alpha|/10^{10})] + 0.19$ $R^2 = 0.934$

Coefficient γ $nP_m = 0.40 \exp[-0.79 \ (\gamma/10^{10})] + 0.18$ $R^2 = 0.973$

Normalized P_m

Module with Cell A
Module with Cell B
Common Degradation Mechanism / Model in Both Modules

These degradations are simultaneously occurring within a cell.

$P_m \leftrightarrow \log (C_3) = p (nFF) - q$

$P_m \leftrightarrow C_3^{-2} = \alpha \exp(-\beta V) + \gamma$

Effect of moisture penetration...?
\[\log(C_3) = p \, (nP_m) - q \]
\[\rightarrow nP_m = \left[\log(C_3) + q \right] / p \]

ca. 0.6 > nP_m > ca. 0.2:

\[C_3^{-2} = \alpha \times \exp(-\beta \times V) + \gamma \]
\[\rightarrow nP_m = r \exp(-s \cdot |\alpha|) + u \]
\[\rightarrow nP_m = v \exp(-w \cdot \gamma) + x \]

The parameters \((\alpha \cdot \beta \cdot \gamma)\) from both PV modules were completely overlaid each other, as a function of power-loss.

These observations indicate that a common corrosion-mechanism works in both PV modules, although the kinetics of corrosion occurring in the respective PV modules is extremely different.
Outdoor Exposure

K-64 PV Module (21 Years in Field)

Mott-Schottky Plots \([C_2 \cdot C_3]\)

\[
C^{-2} = \frac{2}{qA^2 \varepsilon N_D} (V + V_{bi})
\]

- **C**: Capacitance
- **V**: Applied DC Voltage
- **\varepsilon**: Permittivity
- **q**: Elementary Charge
- **N_D**: Doping Density
- **V_{bi}**: Build-in Potential
- **A**: Area

\(C_2 \): linear
\(C_3 \): non-linear

\(C_3^{-2} = \alpha \exp(-\beta V) + \gamma\)

Thank you for your attention!

Backup
Approach

HAc Vapor Exposure

HAc Vapor / High-T / High-H

Constant Stresses

Isotropic Degradation

Fundamental Reaction(s)

DH Stress

High-T / High-H

Constant Stresses

Anisotropic Deg.

Complex Reactions
(+ Moisture Ingress / HAc Production)

Outdoor Exposure

Fluctuating T / H / UV...

Fluctuating Stresses

Anisotropic Deg.

More Complex Reactions
(+ Variable T / H / Irradiation / …)
Corrosion mechanisms are quite similar, regardless of whether the PV modules are degraded under field conditions over many years or under accelerated artificial corrosive stress test conditions.