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A polarized-beam data point is a collection of counts taken with specified
flipper-states, and with all other experimental parameters equal. The analyst
must have discretion over what equal means by setting the tolerances for equal-
ity testing, to satisfy the competing needs of increased couting statistics and
coordinate definition to determine the neutron-polarization dependence of a
scattering cross-section. For example, if the data are collected as a function
of Q(wavevector transfer) and E(energy transfer), those values must be equal
for all of the counts grouped into a polarized-beam data point. Similarly, the
sample temperature and sample magnetic field, including horizontal or verti-
cal guide field direction at the sample, must be the same for all the grouped
counts. Once a group of counts is identified to make up a polarized-beam data
point, the counts must be scaled so that all counting times are equal (if count-
ing against time) or all monitor counts are equal (if counting against monitor).
In addition to scaling, any fast-neutron background determined for the fixed
counting time or monitor counts, should be subtracted, since that background is
independent of the cross-sections of interest and does not depend on the flipper-
state-settings. If the counts were obtained by counting against a monitor, there
is an additional correction to be made, because a beam-monitor counts higher
order neutrons in the beam as well. This correction will increase the count-rate
as the monitor was counting too fast by including the higher orders. The frac-
tion of higher-order neutrons in the beam is wavelength dependent, so that this
correction is very importatnt for inelastic data. It is important to note whether
the monitor is before or after the He-3 polarizer, since this will determine the
higher-order neutron flux on the monitor. After these corrections the polarized
beam data point is ready to be corrected for the He-3 transmissions, polarized
beam transport loss and flipping efficiency. These corrections all together pro-
duce values for the flipper-state dependent scattering functions Sy, Sqd, Sau
and S, 4 for the given experimental parameters. Note that these scattering func-
tions will include all scattering that is not fast-background. The possible flipper
states (FS) are,uu,dd,du and ud, where wu(UP-UP) is for both flippers OFF
anddu(DOWN-UP) is for the front flipper ON. These results can be further an-
alyzed to obtain, for example, information about the moment directions in the
sample or the fraction of the scattering cross-section that is magnetic in origin,
based on the selection rules which produce non-spin-flip magnetic scattering
when the neutron polarization is parallel to the sample magnetic moment and



spin-flip magnetic scattering when the neutron polarization is perpendicular to
the sample magnetic moment, and only the sample magnetic moment compo-
nents perpendicular to the scattering vector produce magnetic scattering. This
analysis depends on the type of magnetic system. For example, if the magnetic
structure is co-linear and the moment direction is effectively isotropic as in para-
magnets and some antiferromagnets, Suu = Saq = Snsy and Squ = Suq = Ssy.
If the neutron polarization is parallel to the scattering vector, @,
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Snsf,Q = gosi + on.

If the neutron polarization is perpendicular to the scattering vector, @,
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Snsf,J_ = iamag + gasi + on.

Here, 0,q4is from the magnetic scattering, o; is from the nuclear-spin-incoherent
scattering, and o,is from the nuclear coherent and nuclear-isotopic-incoherent
scattering.

When He-3 is used for the creation and detection of polarized neutron beams,
the time at which data is taken must be recorded. Since the He-3 polarization
is time dependent with a decay time on the order of 100 hours, and counting
times are on the order of 1-10 minutes, recording a start, stop or average time
for the measurement should be sufficient. In order to correct the data for the
transmission of He-3 cells the wavelength(energy) of the neutrons traversing the
cells must also be known. Thus the information required to correct polarized
beam data for a given experiment setting must include the following

[ AjorE; | AporEy | measured-count-rate,time-stamp,FS,He-3cells | ... |

For each count-rate measurement the incoming and outgoing wavelength, Ay
and A, (or energy) will be the same, and the time-stamp, ¢, flipper state (FS),
and polarized-beam transmission information will be recorded. The column
marked ... indicates that any number of count-rates can be recorded at the
same A; and Ap, provided the time-stamp, flipper-state and polarized-beam
transmission information are also recorded, and all other experiment settings are
the same. Typically, at least one count-rate is measured for each polarized-beam
cross-section (uw,dd,du or ud) of interest. This group of polarized-beam cross-
section count-rate measurements at a fixed experiment setting is referred to as
a polarized-beam data point for the given experimental setting, or D;(N, M),
where j indexes the experiment setting (including A; and Ar and other settings
such as @, sample guide-field and sample temperature), and N is the total
number of count-rates collected for M unknown polarized-beam cross-sections.



The time stamps are in the UTC UNIX-time form which is integer seconds
since January 1, 1970. Also some method must be provided for determining
count-rate statistical errors.

Solving for the Underlying Cross-Section Count
Rates

The model for the ith measurement count-rate in a polarized-beam datapoint,
C(gmi’Xi), (where the data-point dependent flipper state index m,; corresponds
to one of wu,dd,du,ud and X; represents the scattering independent variable
coordinates, and the only direct change given 7 is the measurement time, ¢; and
coordinate X;) as a function of M unknown polarized-beam scattering cross-
section count-rates, S™ (X;), (where the cross-section polarization state index,
n, ranges in the set uu, dd, du, ud) is given by the linear equation

M
Ch=Cym XD = 3" TmIn (A Ap, Pus Xi) 8™ (X;) = Tmmgm,

n=1

Co=T79

The transmission coefficients, 70" are functions of P, which are the pa-
rameters of the polarizing and transport devices, as well as functions of time, ¢;,
and neutron incident and scattered wavelengths, A\; and A\p, and also possibly
the scattering coordinate, X;. The simplest case is to solve for S™ with X fixed.
We shall look at the more complicated case later. If the data collection produces
an exactly-determined system of linear equations, with the number of indepen-
dent equations equal to the number of unknowns (for example, the counts are
measured once for each unknown polarization state index n = 1, M), then the
predicted counts are replaced by the measured counts in the above equation,
and the T™™matrix can be inverted to obtain the solution for underlying cross-
section count rates.
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Note that S are the counts observed for a perfect instrument with an identity
transmission matrix.

If this system of linear equations is over-determined, with the number of
independent measurements greater than the number of unknowns, M, then
the solution is generated by standard linear least-squares techniques. Handling
the over-detrmined case is important because repeat measurements of polarized
beam data using He-3 cannot be directly averaged due to the time dependence.



If there are constraints on the S™, they should be put into the model equation
before any least squares calculations are done.

Least-Squares Case

In the least-squares case, if C* is the ith measured count-rate (where we drop
the associated polarization state m), then the solution for the underlying cross-
sections, S™is obtained by minimizing y2given by

N
=D wi (C1-Cy)’,
=1

where N is the number of measurements contributing to the polarized-beam data
point, and where the weight, w; = 1/0?and o? = 02,. For Poisson counting
statistics we have 0%, = C" so that w;C* = 1. The normal equations for the

solution of S™ are
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To compute the uncertainty in the solution,S%, due to statistical fluctuation of
the measured counts, C*, we can write
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This is the standard least-squares result that the statistical errors in the solution
are equal to the diagonal elements of the so-called error matrix,

o2, = (A_l)““,
In this problem, the parameters, P,, that determine the transmission coef-
ficients, T°™, also have uncertainties. Thus we need
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To do this analysis, we require the partial derivative of an inverse matrix ele-
ment with respect to its un-inverted matrix elements. This has been treated
for example in Nuclear Instruments and Methods in Physics Research A 451
(2000) 520-528, Propagation of errors for matrix inversion, by M. Lefebvre,
R.K. Keeler, R. Sobie and J. White. The result is
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In the lease-squares case the matrix, A, and vector, B are themselves functions
of the transmission coefficients, and we have
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Putting this all together

2
0s\? (& _, 9A% pmee OT™
(55) = (S oSt s oy s u e

m=1 a



N

in M m 2
( anz%zwwuw or )+2Am§:wﬁT ) |

m

The full covariance matrix will look like
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since we expect that the parameter errors should be uncorrelated so that

cov(Pa, Pg) = 0050y

The parameter error for S#* comes from the diagonal part of the covariance,
cov(S*, S"). Generating the terms of the covariance, using
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Note that T /0P, = 0 unless the parameter, P,, belongs to the He-3 cell
(or other device) associated with data-point i. The final result for the error
analysis is
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Exact Case

In the exactly determined case
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Here the full covariance is
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Comparing the Error Analysis for the Two Cases

We would like to make a connection between the error analysis for the two
cases we are considering. To that end, consider a simple example, where the
constraints are S% = §u% and S%? = Sd“ Suppose we measure C"*/ and C*f
each N times, the transmission coefficients are time-independent and each time
we get exactly the same counts . Then

A — ansznsf,nTnsf,m+Nwszsj',nTsf',m — NwlTlnT1m+Nw2T2nT2m,



B™ = Nw, ;T""C™F 4 Nwg T O = Nuy T C™ + Nwo T2 C*.

where m and n only have the values uu and du (n = nonspin flip or s = spinflip
in the recast notation). Then rewriting

Wy, (Tnn)2 + wy (Tsn)2 wnTnnTns 4 wsTsnTss B Ann Ans
,wnTnnTns + wSTsnTss wy, (Tns)2 + ws (Tss)Q - As™ ASS
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Now we can calculate the determinant of A, using ||T'|| = D = T™"T5% —T"sT""

|A|l = N2w,w,D?

and we know the inverse of the two-by-two matrix is

B ASS _ A
A= | e T .

statistical error comparison

Using the preceeding example, find that the least-squares statistical errors are
given by

— 1 ns SS
Odnsp = Al = ND2Z {(T )2 Jws + (T%%)° /wn}

_ 1
oher = AR = 55 { (T J0s + (T w0, ).

In the exact case of measuring S% = S"* and S“¢ = S% each once, the
statistical errors would be

U%'nsf = (Tﬁl)QU%nsf + (Tlal)QU%'sf

2 —1\2 2 —1\2 2
Usz = (T2 ) UCnsf + (T22 ) UCsf'
Since the exact-case matrix is

T:[T T ]
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the inverse is
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Substituting, find the exact case statistical errors

—_ 2 — 2 1 SS ns
Ug'nsf = (Tlll) O—%’nsf + (T121) U?]sf D2 {(T ) Cnsf + (T ) UCsf}

J?sz = (T211) o%'nsf + (T221) O%‘sf D2 {(T ) Cnsf + (T ) o%‘sf} .

We see that the statistical errors in the two cases, are matched when N = 1
(both cross-sections are measured once), although the least-squares problem
becomes singular for N = 1. This just shows that the square of the statistical
uncertainty in the results is reduced by 1/N.

parameter error comparison

For simplicity, assume that there is a single parameter, but that each of the
four transmission coefficients depends on it. We need to take the least-squares
expression for the parameter error and modify it for the preceeding example.
We had
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First modfiy the sums over data-points for our example
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We also need the expressions for A~ matrix elements which can be tabulated
from the preceeding, using ||T|| = D = T™"T55 — T™T*",
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We have already written down B for this example
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wnTnn cn + Wi TsnC's

B=N w, TC™ + w T55C*

so we can now solve for S™ and S°.
Sn — (Tsscn _ Tnscs) /D

S = (=T"C™ +T""C*) /D.

We see that we get exactly the same solution as in the exact case (as we must
since all the counts are the same). Now plugging in the solutions for S and A~!
and the data-point sums we have
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Define the sum terms,
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Then write out the terms for 5™ /0P,
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Note that for S°/0P, the only change is in the first index of A~!. These
expressions can be simplified using D = 9T /0P,
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In the exact case this error due to a parameter was

. L oT™n

and the inverse of the transmission coefficient matrix was
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Plugging in for S™ and T~! we find

asm o 18TS” L oT"s L OTs

1 SSs IN ns s —1 aTnn aTsn 1 sn n nn s —1 orne —1 orss
75(T cr =T C){ nn 8P ne OP } 5 =Ir°ret+T C){ nn - Hp +,Tns OP
1 o5 ns s Tss oTmnn Tmns TSH 1 an s Tss gTns Tns 9755
__D(TO_TC){D P D } —rete T O){D 8P_D8P}
0s* L orm™ aTm ns o oTss
=81 ! Tt
8P# { sn 8P + g } ss oP }

12



1 o1 or" 1
— (TSSO — TS (8 T—l T—l (=T TS T—l
preen -~ (T S s T S L rnen ey {1

oTns o7
T—l
op s ap}

1 os " ns s TSn aTnTL T’Iln 6T57l 1 on " o o TSTL 6T’I’Lé T’I’Ln aTSS]
-—pIe TC){pap*p 8P}D(TC+T C>{ D op "D P |
2 aSn n SS SS nn ns sn sNn ns sNn ns Ss
Db = O™ {T* (=T D" - T D*" + T*"D") = T*"T"* D"}
”w

+CS {TnS (TSSDTITL _ T’VISDSTL + Tn’ﬂDSS) _ TnnTSSDnS}

05
P,

D2 — C’ﬂ {T«S’ﬂ (TSSD’I’L’R _ TSnDTLS + T’I’LTLDSS) _ TSSTTLnDSn}
+CS {T’n’n (T’nsDSn _|_ TSTLDnS _ TnnDSS) _ TnSTSnDnn}

the exact same expression as in the least-squares case. Note that the errors due
to parameter uncertainty cannot be decreased with better counting statistics.

Matrix Inversion and Constraints

There are a number of techniques to perform the necessary matrix inversion.
For example, determinants can be used to solve the equations, where the inverse
is

T~' =adjT/det T,
(adj T)"™ = U™ = (=1)™*"det T (m|n),
T|=detT =Y T"U™.

Also det T(m|n) is the determinant of 7' with the mth row and nth column
excluded. This leads to a recursive algorithm for obtaining the inverse 7~ 1.
Note also that because the cofactor of a matrix element does not depend on
that matrix element,

0 |T| _ Uab

8Tab
This means that the uncertainty in the determinant is given by

13



a|2T| = Z UU“cov(T®, T°).
abed

Alternatively, a numerical matrix inversion algorithm could be used (e.g.
LU, QR or SVD decomposition) but for matrices limited to 4x4 the algebraic
inversion is accurate and efficient. The determinant and SVD methods have
specific ways to determine if a solution cannot be found, which means that the
matrix to be inverted is rank-deficient or not invertible to some degree of ac-
curacy. For example, the determinant method produces the cofactors necessary
for calculating the uncertainty in the determinant (relevant for determining how
close the uncertainties bring the matrix to singularity).

Now the uncertainties in the solution must be addressed. First of all, using
known constraints on the scattering cross-sections can reduce the uncertainties
in their solution. For example, as is often the case, S = S"?, Thus, the data
analysis may add linear constraints of the form

SF=0+ Y arS™
n=free
This reduces the number of unknowns by the number of constraint equations
and changes the effective coefficients, so that

Co= > <T”’+ > a;mTik> St= Y TS

n=free k=cnst n=free

The resulting constrained coefficients, 7%", are just linear combinations of the
original coefficients at the same measurement point index, . Thus when there

are constraints, 7" — T . These become the coefficients used in the least-
squares treatment.

The uncertainties in the count-rates, CI" + o2, and possible uncertainties in
the transmission coefficient parameters, P + op, must be taken into account to
determine the uncertainty in the result, S™ &+ ogn.

cov(CH,C") = 6" a2,

This error propagation correctly handles the correlations between elements
of the inverse matrix through their dependence on the original matrix elements.
If the functional parameters of the transmission coefficients can be assumed to
be independent then

L(a,c

) ab cd
T 0T
COU(Tab,TCd) — 8 8 2

— Dabcd
oP, op, P ’

where L(a,c) is the number of independent parameters describing the coeffi-
cients 7% and T°?. L depends only on a and c since every coeficient in a given
row of T depends on the same set of parameters. Recall that when there are
constraints

14
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All of these coefficients are in the same row and so depend on the same set of
parameters P, .

Finally, the covariance for the constrained S is

cov(S*, SF) = Za Z a;mS"ag Z apnS"cov (S, §7).

n=free n_free

or

cov(S’C Sk Z a;ﬂak]cov(S SJ)
i,j=free

Invariably, there is only a single free S involved in a constraint, so take

cov( Sk Sk Z ak]ch]
j=free

In order to include the parameter errors in the calculation of the result
uncertainty, it is necessary to calculate D?*®. That is, given two measurement
indices, ¢ and j, which parameters, P,, do the transmission coefficients T; and
T; have in common? This depends on which He-3 cells were used in common.
Note that even when constraints on S are used, each row of T or A still depends
on the same He-3 cells. To handle this, the data analysis will determine which
He-3 cells were used for each measurement.

Generating the transmission coefficients, 7¢(™)" (¢, A1, \r, P,,), and their un-
certainties requires information about the He-3 cells and the polarlzed beam
transport. In order to make this information available for correcting polarized-
beam data, and to archive that information, an ASCII file containing one line
for each He-3 cell setup used during an experiment is prepared. The fields in
each line follow the format used in the He3logger spreadsheet application (Excel
or open-office) as follows:

’ name \PorA
’ Zinfandel \ P

iDate \ iTime
01/01/08 | 00:00

\ | iUNIXtime | E(meV) | lambda |
| |
T(hr) | Terr(hr) | A(cm) | nsL [ nsLerr |

1199163600 | 14.7 [ 2.359 |

’ 1Pol \ 1PolErr \

(075 ] o001 [ 120 | 5 [ 8 [302] 0 |
’ trans \ \ flip \ fErr \ tEmpty \ tE Slope ‘

(1 [ o [ 1] o [ o8 [ o0 |
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’ Pbar \ Lem \ Diacm \ rCRVem \ volce \ nsL0 \ nsLOerr

nsLE \ nsLFEerr ‘

|
|
resolName \ Hmos' \ Vmos' \ dspA \ Hcols' \ Hcol2' \ VeolsDeg \ Veol2Deg ‘

192 [ 89 | 116 | 25 [ 950 [ 128 ] 0 302 0 |
coarse | 40 | 40 [33542] 40 [ 40 | 2 | 2 \
omRad \ Hsig? \ Vsig? \ Xsig? \ curvCor \ angCor ‘
[ 0.3593 [ 0.0001 | 0.0006 | 0.0005 [ 1.0 [ 0.822 |

PorA indicates whether the cell was used as a polarizer or analyzer. iDate
and iTime are the cell installation date and time with iU NIXtime the equiv-
alent UNIX time in seconds. FE(meV) and lambda are the elastic condition
neutron energy and equivalent wavelength used for flipping ratios and trans-
mission measurements during the experiment and for the neutron measurement
of nsL. iPol is the initial installation He-3 polarization determined by trans-
mission and NMR measurements, along with its error iPolErr. T(hr) is the
beam line decay time constant and Terr(hr) its error. A(em?2) is the beam
cross-sectional area in the He-3 cell used to make small corrections to the ef-
fective nsL. nsL(dimensionless) is the beam-Area corrected nsLE which is the
wavelength corrected nsLO(dimensionless), which is the He-3 gas number den-
sity, times 1/2 the absorption cross-section for 1 Angstrom neutrons with spin
opposite to the He-3 spin, times the path length through the He-3 gas. Using
» = (1 = A/L/rCRV)(nsL0)A, the expression for the transmission of the two
spin states of the neutron through the He-3 cell is

ty = Citpexp (—7A[l F Pres)) (1)

(- refers to the preferred transmission state) where ¢ is the glass-only transmis-
sion, Ppy.s is the time dependent He-3 polarization, and C.is a small correction
coefficient depending on variation in path-length and wavelength. trans is the
transport efficiency associated with the pre-sample beam path (cell P) or post-
sample beam path (cell A) and with error tErr. flip is the flipper efficiency
associated with the same beam path segment and fErr is its error. tEmp is
the glass only transmission for neutrons at the lambda wavelength and tE Slope
gives the linear wavelength dependence of this transmission. Pbar is the cell
pressure in bars. Lcm is the maximal (straight through) gas thickness of the
cell. Diacm is the cell diameter which is the dimension perpendicular to the
beam (for informational purposes only). 7CRV¢m is the end window radius of
curvature. wvolcc is the cell gas volume in cm cubed. nsL0, nsLOerr, nsLE,
nsLEerr were previously defined.

The information after the resol Name field describes the angular divergences
of the spectrometer and is used to calculate the near unity correction coefficients
C4. In particular, Hmos' and Vmos' are the horizontal and vertical mosaics
in minutes of the spectrometer crystal associated with the P or A beam path,
dspA is the d-spacing in Angstroms of that crystal. Hcols' is the horizontal
collimation in minutes on the sample side of the He-3 cell and Hcol2' is the
horizontal collimation on the other side of the cell. VcolsDeg and V col2Deg are
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the corresponding vertical collimations in degrees. omRad is the spectrometer
crystal setting angle in radians satisfying Bragg’s law at the elastic condition
energy E(meV). Hsig?, Vsig? and Xsig?are calculated in the spreadsheet
from the spectrometer divergence angles and are then used in the calculation
of the correction coefficients C1.. curvCor is the correction to nsL due to cell
beam-Area. Note that the beam divergence parameters may be changed during
an experiment, which means an additional line in the He-3 cell log must be
prepared.

If you examine section 7 of the He3SpinTransport.pdf document, you will see
that the corrections for pathlength variation are different than for the triple-
axis case. We can use the same ascii configuration to handle the SANS case
by redefining the meaning of some of the parameters. Thus if dsp > 10 or
Hmos <= 0 a SANS correction will be performed instead of triple-axis. The
dsp value is now the distance from sample to He-3 cell center in cm. Hcols is
now the detector distance (in m or cm), and Hcol2 is the wavelength spread
AN/

Typically only the total transport efficiency along the beam path can be
measured, so that the individual transport efficiencies before and after the sam-
ple are estimated as the square-root of the total. The method for measur-
ing both transport and flipper efficiencies is described in a separate document,
He3SpinTransport. That document also contains the details of calculating the
transmission coefficients T} (¢, A1, Ar, P,) and their uncertainties. Note that
the efficiencies may vary during data collection so that in the future provisions
may be added to take this change into account.

The actual data correction procedure would begin by identifying the data
files for each measured count-rate (uu,dd, du,ud). This will allow the grouping
of all measured count-rates for a given experimental setting (including the sam-
ple guide field orientation). The data correction requires that all of the data are
normalized for the same incident flux via beam monitoring or equal counting
time for elastic data. Besides the cell information file, the only other informa-
tion required is whether the data are counted using a beam monitor before or
after the polarizer cell, or just using equal times. When using a beam monitor
the amount of higher order wavelength contamination in the incident beam is
required, and the correction software has several choices for this. Other data
correction options include constraints on the cross-sections (e.g. S = Sud).

What magnitude is expected for the extracted cross-section results? If the
He-3 cells are perfectly polarized with a large nsL so that the preferred spin
state has transmission unity and the non-preferred spin state has transmission
zero, and there are no transport losses, then the extracted cross-section results
will be exactly twice the input counts (with normalization against the unpo-
larized beam before the polarizer). The factor of two is due to the fact the
perfect polarizer perfectly transmits only the preferred spin-state. As the He-3
cell transmissions become less ideal the extracted cross-sections will increase in
magnitude compared to the measured counts.
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Correcting Polarized-Beam Using Known Correla-
tions

Often the X (scattering coordinate) dependence of the polarized-beam cross-
section is known from previous experiments. Including the X dependence in
the polarized-beam data analysis only makes sense if the X dependence of the
polarized-beam cross-sections can be parameterized in a relatively simple way.
Also we don’t want to add more free parameters than measurments. Consider
fitting polarized beam data at different values of X. Now the least squares
problem at first looks the same, where C¢ is the model value for datapoint
counts C?,

N
=3 wi (- ),
=1

except that now the independent parameters include those that describe the X
dependence of S™ (X). One could take, for example, single Gaussian functions
with flat background to describe the X dependence for the measured polarized-
beam cross-sections.

S"(Xi) = G™ (X, Q") + Sy,

where the Gaussian has height, S™, position, @7, and standard deviation width,

Qs

1N - Q)
2 Q)

xro

G" (X;,Q") = S"exp ( ) =S5"f"(X;)

where

[ (Xi) =exp (;(XZ_nQ)%O)>

M
C(gmi’Xi') = Z T(mi)n(ti, A, Ap, Py X5) S™(X5) .
n=1
Note that without a parameterized background this model will force a partial
Gaussian peak shape to fit the data. The peak width parameter could be made
very large to approximate a flat background and the fitting with a peak or just
background could be compared through chi-squared. Look at the case with a

background parameter, where the positions and widths of the Gaussian functions
are all fixed, so that problem is still linear equations with the model function,

M
C§m XD = ST A, Ap, P Xo) [f7(X0) 8™+ Sp)

n=1
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N M 2
Y=Y u (C" = ST, A AR, P X) [ (X0) S+ SZ;]) :
i=1 n=1

In this expression, it is usefule to divide the sum over measurement points 7,
into a sum over polarized-beam cross-sections, m, and a sub-sum over the X;
values for the given m.

M Nx(m) M 2
X2 = Z w(Xi (m)) <C’L —ZT(m)n(ti,)\j,)\F,PM;Xi (m)) [fn (Xi (m))S”—Fng]) s
m=1 Xl(m) n=1

N
Iv? M Nx(m) . M )’ n o o
agn —0=%" w (X; (m) (€= ST (5 Mg, A, P X (1) [f (X; (m)) S +s,,g} (=)
m=1 X, (m) n’/=1
Ax? M Nx(m) M
_— = . i_ (TYL)TL/ . . . TLI . 'I’L/ n’ N\
5 0 ;X.(m)w(xl (m)) (c n/Z:lT (ti, A1, Ar, P; Xi (m)) [f (Xi(m)) S +Sbg}>( )’

Using the Gaussian weighted transmission

FU™ (X (m)) =TT (X (m) f* (X; (m))

for each m the sums over X;(m) in each term can be done to produce the
following coeficients,

Nx (m)
BER" = 37 w (X (m)) QOO OO (X ()
Xi(m)
, NX(”m)
AT = N w (X (m) FOO (X, (m)) UM (X (m))
Xi(m)
, Nx (m)
AT = N7 w (X (m) T (X (m) FOO™ (X (m)
Xi(m)
Nx (m)
B = 37w (X; (m)) O XTI (X, (1))
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Nx(m)

A = S (X (m) PO (X, (m) TOU™ (X, (m)) =

Nx (m)

(m)nn’
= ATF)

AT = 3T w (X (m) T (X, (m) TOV (X, (m))

Xi(m)
Then

M M ,

P 0= S S S A i
m=1 | p'=1 n'=1

P M M ) M )

S =0= 20§ 2 AR 3D Ay - B

g m=1 {n'=1 n' =1

and doing the sums over m cross-sections, and noting that w (m, X; (m))

1/ Xi(m) except when C==

M M Nx(m)
n__ (m)n _
Bip =Y Bip" =

m=1 m=1 Xq(m)

M Nx(m)

=2, 2w

le,l )

FF _ Z A(m)n n

M Nx(m)

=2 v

m=1 X,;(m)

M

m=1

M Nx(m)

2. D w

m=1 X,(m)

CT_ZBm)n

M Nx@m)

nn— Z A(m)"" _

m=1 m=1 X,;(m)

ZZme

ZZme
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M Nx(m)

= ZA(’”)"” > > w (m)) T (X, (m) T (X, (m)) = Ay

m=1 X )
8X2 o n n n’ n’ n
oo =0=19 > Ak +ZA #Sbg — Ber
n' =1 n' =1
axz M ’ ’ M / ’
A =0=13 D AFES + 3 ARRS) - B
bg n' =1 n' =1

In matrix notation, and using the transpose properties,

Arr  Arr S\ _( Ber
Arp  Arpr Sbg Ber
This can be solved by variable elimination. For example first solve for the
Sug as a function of S, using the bottom row,

Spy = —AppAreS + Az Ber

and substitute in the top row to solve for S,

AppS + Apr (—A;;ATFS + A;QI“BCT) = Bep
(App — Apr AL Arp) S = Bor — AppAzhBer

S = (Apr — AFTA%%ATF)_1 (Ber — AprAzpBer)

This is a complicated solution. If this model for S is used over the entire
data range, then the solution requires just two vectors, S™ and Sg’ginstead of
the per datapoint solution which solves for one vector at each datapoint. We
also don”t propagate errors from He3 parameters to individual datapoints (e.g.
He3 polarization).

The problem looks much simpler if we can assume that Sy, = 0, but then
the Gaussian endpoints must match any actual background value of S for the
solution to make sense. If Sp,is assumed zero then the solution comes from,

AppS = Ber

In the non-Gaussian least-squares case we had,
N
= i =
and
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N
_ Z wiTinci
i=1

In this expression, it is usefule to divide the sum over measurement points
i, into a sum over polarized-beam cross-sections, m, and a sub-sum over the X;
values for the given m.

M Nx(m) M 2
= Z Z ’U)(Xi (m)) <Cz —ZT(m)n(ti,)\],)\F,PM;Xi (m)) (Sl?g—f—fn (XZ' (m)) Sn)> ,
m=1 X (m)

n=1

M Nx(m) M , , , )
asn =0=3" > wXi(m) [ €' = YTV (ti Ar A B X (m)) (S, + 7 (X (m) S ) | (-
m=1 X,;(m) n' =1

The derivatives of x? are needed to solve these equations,

M Nx(m) M , , , '
_ Z ST w(X (m) [ €= 30 T (4, A Ae, P X, (m) (sgg+fn (X; (m))sn) ()
m=1X;(m)

n' =1

85”
Using the Gaussian weighted transmission

Fmm (X (m)) = TU™(X; (m)) £ (Xi (m))

for each m the sums over X; (m) in each term can be done to produce the
following coeficients,

Nx (m)
B = 37 w(X; (m)) O pOmn (X, (m))
, NX('m) ,

AT = 37w (X (m)) FOI™ (X (m) T (X (m)
NX(wn) ,
AT = N7 w (X (m) FU™ (X, (m) FO™ (X (m)

X;(m)
NX(7n)
B = 3w (X, (m)) COMXDTIn (X, (1m))
, NX(W‘L) ,
AFR™ = N7 w (X (m) TV (X (m) TOO™ (X (m))
Xi(m)
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Then

8X2 _0= % i (A(m)nn’sn' +A(m)nn'Sn/) o B(M)n
osn FT by FF CF

6 2 M m nn/ n/ m nn/ n/ m)n
3;(?9 =0= Z Z (A(TT) Sbg +A(TF) S ) *BéT)

m=1 { n/=1

followed by the sum over m for each coeficient,

8X2 M , ’ ’ ’
S = 0= (AR, + ARRS™ ) - Bip
n' =1
8X2 - ’I’L’n/ nl ’I’L’n/ nl n
a0 =0= Z ( 71 Sbg + ATES )_BCT
bg n'=1

produces a set of 2M linear equations in 2M variables, S™ and ngg. Note that
the X dependence must be described by a single variable, S™(in addition to
the background Sglg) for this linear equations solution to work. Adding more
complicated X dependence or asking for minimization of x2? in terms of cross-
section positions or widths leads to non-linear sets of equations.

O i Anmgm _ pn
asn = ’
where
N
AT = Z w; TT™ = A™"
i=1
and

N
B" = Z wiTinci
i=1

M
St=>" (A" B™.
m=1
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