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1 Introduction

This is a summary and recapitulation in terms of transfer matrices of some of
the information in "Polarized 3He in Neutron Scattering" by T.R. Gentile, and
other texts on polarized-neutron beams.

2 Setup

A general polarized beam setup for neutron-scattering spectrometers using He-
3 polarization cells, P1 (polarizer) and P2 (analyzer), is represented in the
following diagram. Our convention is that + represents the neutron spin-state
when the front �ipper is OFF.

Typically the incoming beam is unpolarized so that N+ = N− = 1
2N , where

N is the total number of neutrons incident on P1. The detector, D, does not
discriminate polarization states, and so counts n = n+ +n−. The detection sys-
tem, D, may include energy analysis of the scattered neutrons. Here we assume
that such energy analysis would have equal e�ciencies for the two neutron spin
states. In the above diagram, f1 and f2 are higher order wavelength �lters, m1a,
m1b, m2a and m2b are low e�ciency beam intensity monitors with e�ciency
proportional to wavelength, and F1 and F2 are spin �ippers.

3 Transfer Matrices

The detected counts can be calculated using transfer matrices for each device
along the beam path that a�ects the neutron spin, so that(

n+

n−

)
= T

(
N+

N−

)
= T

(
1
1

)
N

2
. (1)

where the transfer matrix for the total beam path is the product of the transfer
matrices for each beam component. The detector will count n+ + n−.
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Figure 1: polarized beam triple-axis setup

T = AFABAS BPFPP (2)

and where A and P are the transfer matrices for the He-3 analyzer and polarizer,
FA and FP are the transfer matrices for the �ipper on the analyzer and polarizer
sides of the sample, BA and BP are the transfer matrices for beam transport
e�ciency on the analyzer and polarizer sides of the sample, and S is the transfer
matrix for the sample. It will be shown that the �ipper and transport e�ciency
matrices commute so that the transport loss before the sample can occur any-
where between the polarizer and sample, and the analogous condition applies to
the transport loss after the sample. Often the sample transfer matrix, S, also
commutes (is symmetric) with the �ipper and transport loss matrices, in which
case the location of transport loss cannot be determined by neutron intensity
measurements any better than to have occured somewhere between the He3
polarizer and analyzer.

Note that in some of what follows we neglect time and spectrometer setting
variations of the parameters that determine the transfer matrix. In particular
we assume that a set of polarized beam cross-sections is measured in a short
enough time to neglect the time dependence of the He-3 transmissions. When
doing complete polarized beam data corrections this will often not be the case.

3.1 He-3 polarizer/analyzer

The transmission of the He-3 polarizer is characterized by the two di�erent
absorption cross-sections: the neutron interacts with a polarized He-3 atom with
its spin (or magnetic moment) z-component aligned with that of the He-3, or the
neutron interacts with a polarized He-3 atom with its spin (or magnetic moment)
z-component anti-aligned with that of the He-3. The total cross-sections for
these two processes are σ+ = σ ↑↑∼= 0, and σ− = σ ↑↓= 10666 barns λ

1.78Å
.
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Also σ0 = 1
2 (σ+ + σ−) ∼= 1

2σ−. The e�ective absorption coe�cients (inverse
of the absorption length) for each process are α ↑↑= σ+nf ∼= 0, and α ↑↓=
σ−n(1− f), where n is the number density of He-3 atoms in the polarizing cell
and f measures the fraction of He-3 atoms that have their angular momentum
polarized along the neutron spin direction.

The standard preparation of He-3 cells at the NCNR produces polarized
neutrons that are in the lowest energy Zeeman state. This is the same for
supermirror-transmission or Heusler polarizing devices (This is shown in another
document). This means that the He-3 magnetic moment is also prepared in the
lower energy Zeeman state (parallel to the holding guide �eld direction). In
order to symmetrize these expressions, de�ne the He-3 polarization (a number
in the inclusive range -1 to 1) as

PHe3 =
nHe3 ↑ −nHe3 ↓
nHe3 ↑ +nHe3 ↓

(3)

where nHe3 ↑is the number density of He-3 magnetic moments aligned with the
He3 guide-�eld quantization axis. With this convention the standard setup will
take the He-3 polarization to have PHe3 > 0. This means

nHe3 ↑, ↓=
1

2
(1± PHe3)n

where n = nHe3 ↑ +nHe3 ↓ is the He-3 number density.
Then if a neutron attempts to transit the He-3 polarizer with its spin ↓(magnetic

moment ↑aligned with the cell guide-�eld), it is only abosrbed by He-3 atoms
with magnetic-moments anti-aligned with the cell guide-�eld, so that the ef-
fective absorption coe�cient for this +state neutron is α+ = σ−nHe3 ↓=
nσ0(1−PHe3). On the other hand, if a neutron attempts to transit the He-3 po-
larizer with its spin ↑(magnetic moment ↓anti-aligned with the cell guide-�eld),
it is only abosrbed by He-3 atoms with magnetic-moments aligned with the
cell guide-�eld, so the e�ective absorption coe�cient for this − state neutron is
α− = σ−nHe3 ↑= nσ0(1 + PHe3).

The ideal gas calculation of nσ0 yields 0.07404 cm-1x cell-pressure(bars at
293K) x neutron-wavelength in Angstroms. Then the transmission of the two
neutron spin states is

t± = tE exp (−α±L) = tE exp (−τ0[1∓ PHe3]) (4)

where L is the path length through the He-3 gas in the cell, tE is the transmission
of an empty cell, and

τ0 = nσ0L. (5)

The wavelength dependence of the absorption coe�cient is linear to a very good
approximation so that

τ = nσ0(λ0)L
λ

λ0
= τ0

λ

λ0
= τ0λ̃ = nσ0Lλ̃,
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where as above we take λ0 = 1Angstrom and

t± = tE exp (−τ [1∓ PHe3]) (6)

τ± = τ (1∓ PHe3) .

A typical cell is roughly 10 cm in length so a typical value for τ−M at PHe3 = 0.75
is τ−M ∼= 1.295∗bars∗λ (Angstroms), while τ+M ∼= 0.185∗bars∗λ (Angstroms).

The above analysis remains valid if the He-3 polarization is made negative
(which is functionally equivalent but not necessarily numerically equivalent to
�ipping the neutron spin-state if the �ipping e�ciency is not unity).

3.1.1 Wavelength and pathlength variation

There are wavelength and pathlength variations for the neutrons traversing
the He-3 spin-�lter. A zero order approximation to the averaged transmission
over all neutrons is just the transmission evaluated at the average values for
the pathlength and wavelength. Striclty, we should average the product of
pathlength and wavelength, but here we assume that the two are statistically
independent.

< t± >0
∼= t±0 = tE exp (−〈τ〉 (1∓ PHe3)) = tE exp (−τ̃±)

〈τ〉 = nσ0 〈L〉
〈
λ̃
〉

Now if we include the variations of wavelength and pathlength about the
averages, we can improve out estimation of the averaged transmission by per-
forming a Gaussian average for the transmission. First write the varying τ
as

τ = 〈τ〉+ ετ = nσ0 〈L〉
(
1 + ε〈L〉

) 〈
λ̃
〉 (

1 + ελ̃
)
.

Note that ε〈L〉 = εL/ 〈L〉 is dimensionless, as is ελ̃ = ελ/λ0. We drop the mod-
i�ers that indicate dimensionless quantities in the following. Now the varying
transmission is

t±(ε〈L〉, ελ̃) = tE exp
(
−
(
1 + ε〈L〉

) (
1 + ελ̃

)
τ̃±
)

and its Gaussian average is

< t± >=
t±0

2πσλσL

∫
exp−1

2

[(
ελ
σλ

)2

+

(
εL
σL

)2

+ 2τ̃± (ελ + εL + ελεL)

]
dελdεL

where σλ and σL are the standard deviations for the Gaussian distributions for
normalized wavelength and pathlength, and we use
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∫
exp

(
−1

2

[
Xt •A •X + Bt •X

])
dXn =

(2π)
n/2 |A|−1/2

exp

(
1

8
Bt •A−1 •B

)
.

The Gaussian approximation numerically works provided dλL = 1−σ2
λσ

2
Lτ̃

2
± > 0.

If both σλ and σL reach 0.15 the Gaussian distribution works up to τ̃± ∼= 44
which (using the example above) corresponds to a wavelength of 15Angstroms
for τ̃−. Then

< t± >= C±t±0

C± = d
−1/2
λL exp

1

2

σ2
λ + σ2

L − 2σ2
λσ

2
Lτ̃±

dλL
τ̃2
±

Typically at least one of the distribution widths is small enough that dλL ∼= 1
and

C± ∼= exp
1

2

(
σ2
λ + σ2

L

)
τ̃2
±.

We will use this last approximation to C± for correcting the derivatives with
respect to He-3 parameters, for example,

d < t± >

dτ̃±

1

< t± >

dτ̃±
dPHe3

∼=
[(
σ2
λ + σ2

L

)
τ̃± − 1

] dτ̃±
dPHe3

.

The averaging brackets are removed in the notation that follows. We point
out that strictly speaking the wavelength and pathlength variations may not
be independently distributed. For example, when neutrons are scattered from a
crystal, the scattering angle and wavelength are correlated by Bragg's law. That
is σ2

λwill depend on the crystal setting angle. However, crystals are typically
used with Soller collimators that will wash out this e�ect on the pathlength,
when averaged over the He3 cell.

3.1.2 Time dependence

Once a He-3 cell is polarized and removed from the optical pumping system
that produced the polarization, that polarization begins to decay exponentially
with a characteristic time constant, tC , that depends on the homogeneity of the
magnetic-�eld on the cell (among other things). Thus

PHe3(t) = PHe3(t = 0) exp (−t/tC) = P0 exp (−t/tC) ,

with
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σ̃2
PHe3(t) = σ̃2

P0
+

(
t

tC

)2

σ̃2
tC .

If only the initial and �nal He-3 polarization measurements are available, then
the proper parameterization is

PHe3(t) = P0 exp (− ln (P0/Pf ) [t/tf ]) ,

with

tC = tf/ ln (P0/Pf ) .

Then

σ̃2
PHe3(t) = σ̃2

P0

(
1− t

tf

)2

+

(
t

tf

)2

σ̃2
Pf
. (7)

This time dependence is an important consideration when checking trans-
port e�ciencies and performing data analysis so that it is necessary that it is
measured. This is accomplished by measuring the total transmission of an un-
polarized neutron beam through the He3 cell, both when it is polarized and
unpolarized. It is important that these measurements are performed without
higher order wavelength contamination present in the neutron beam (correcting
for the higher order contamination is di�cult and introduces additional uncer-
tainty).

The total transmission for an incident unpolarized neutron beam will be

t0(PHe3) =
CH
C0

=
1

2
tE

[
C̃+ exp (−τ̃+) + C̃− exp (−τ̃−)

]
. (8)

where CH is the observed count rate with the He-3 cell in the beam, and C0 is
the count rate without the cell. As mentioned previously, we can arrange that
τ̃± = 〈τ〉 (1∓ PHe3). Then,

t0(PHe3) = tE exp (−〈τ〉) [< C > cosh(〈τ〉PHe3) + ∆ sinh(〈τ〉PHe3)] ,

where < C >= (C̃+ + C̃−)/2 ∼= 1 and ∆ = (C̃+ − C̃−)/2 with |∆| � 1. If the
He-3 cell is unpolarized

t0(0) = t00 =
Cu
C0

=< C > tE exp (−τ̃)

where Cu is the count rate with the unpolarized He-3 cell in the beam. τ̃ can
be determined as

τ̃ = 〈τ〉 = ln

(
< C > tE

t00

)
= ln

(
tE
t00

)
+ ln (< C >) ,
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with the squared relative uncertainty given as

σ2
τ̃ = σ̃2

tE + σ̃2
Cu + σ̃2

C0
.

In general the squared relative uncertainty for any measured variable is

σ̃2
V =

σ2
V

V 2
.

Once τ̃ is determined, the ratio, r, of the polarized cell transmission to the
unpolarized cell transmission can be used to determine the He-3 polarization,
PHe3, with ∆/ < C >∼= ∆̂

r(PHe3) =
t0(PHe3)

t00
=
CH
Cu

= cosh(〈τ〉PHe3) + ∆̂ sinh(〈τ〉PHe3). (9)

This can be inverted to give

〈τ〉PHe3 = ln

[(
r +

√
r2 −

(
1 + ∆̂

)(
1− ∆̂

))
/
(

1 + ∆̂
)]

.

Error analysis on the determination of the He3 polarization gives

σ̃2
PHe3 = σ̃2

τ̃ + (τ̃PHe3)
−2 r2

r2 − 1
σ̃2
r ,

where

σ̃2
r =

σ2
r

r2
= σ̃2

CH + σ̃2
Cu ,

More often, one measures the polarized-cell transmission and uses knowledge
of 〈τ〉, 〈C〉 and ∆ (which depend on the measurement conditions, beam size etc.)
to determine PHe3. Then

cosh(〈τ〉PHe3) ∼=
t0(PHe3)

< C > tE exp (−〈τ〉)

(
1− ∆

< C >

)
= r̃

τ̃PHe3 = ln
(
r̃ +

√
r̃2 − 1

)
.

Once the He-3 polarization is measured, its uncertainty increases with time
because the polarization decays with time, so that (compare with 7)

σ̃2
PHe3(t) = σ̃2

PHe3 +

(
t

tC

)2

σ̃2
tC .

Care must be taken when measuring transmissions with a detector where the
e�ciency is wavelength dependent and higher order wavelength contamination
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is present. A typical beam monitor is a �ssion detector where the e�ciency
is proportional to wavlength, ε = ε0λ. Then, neglecting beam pathlength and
wavelength variation corrections, the measured transmission is

t0(PHe3) = tE
∑
n=1

an
1

n
exp

(
− 1

n
〈τ〉
)

cosh

(
1

n
〈τ〉PHe3

)
/
∑
n=1

an
1

n

t00 = tE
∑
n=1

an
1

n
exp

(
− 1

n
〈τ〉
)
/
∑
n=1

an
1

n
,

where an are the wavelength order fractions. It is obvious that wavelength
contamination is problematic for using transmission measurements to determine
the He-3 cell properties, especially if using a wavelength dependent detector.

The outgoing neutron polarization, −1 ≤ Pn ≤ 1, after an incident unpolar-
ized beam passes through a polarized He3 cell is

Pneutron =
n+ − n−
n+ + n−

= tanh (〈τ〉PHe3) +
∆

cosh2(〈τ〉PHe3)
. (10)

The time dependent transfer matrices for polarizer or analyzer are

P,A = tE

[
C̃+ exp (−τ̃+) 0

0 C̃− exp (−τ̃−)

]
=

[
t+P,A 0

0 t−P,A

]
. (11)

C̃± = Ĉ±

{
1 +

∑
n=2

anK±n

}

〈C〉 =
1

2

(
C̃+ + C̃−

)

∆ =
1

2

(
C̃+ − C̃−

)

Ĉ± = 1 +
1

2

(
τ̃±

σλ
λM

)2

− 1

2
τ̃±P

(
σ2
γ + σ2

δ

)

P = 1− L

2R

(
1−

〈
ρ2
〉

LR

)

K±n = exp

[(
1− 1

n

)
τ̃±

]
− 1

8



τ̃± = τ±

(
1−

〈
ρ2
〉

LR

)

τ± = τ (1∓ PHe3(t))

τ = nσ0(λ0)L
λ

λ0
= τ0

λ

λ0

τ̃ = τ

(
1−

〈
ρ2
〉

LR

)

See the section on wavelength and pathlength corrections for de�nitions of the
symbols in these expressions. When convenient the correction factors, C̃±, can
be approximated as unity.

Transmission measurements are used to extract the PHe3 , and a general
expression for transmission of an incident unpolarized beam of neutrons is

tup =
∑
n=1

an

[
1

n

]
1

2
(t+n + t−n) /

∑
n=1

an

[
1

n

]
where the

[
1
n

]
is inserted when using a monitor with order contamination, and

t±n = C±n (τ̃±n) tE exp (−τ̃±n) .

n just divides the wavelength.

τ̃±n =
1

n
〈τ〉 (1∓ PHe3)

with 〈τ〉 evaluated at the primary wavelength.
The measured transmission will have a counting statistics uncertainty that

will lead to the corresponding uncertainty in the solution for PHe3. That is the
slope of the transmission as a function of PHe3 at the solution will be σts/σPs,
where σts is the uncertainty in the transmission due to counting statistics, and
σPs is the corresponding uncertainty in the polarization solution. If only relative
changes in transmission are important (as when determining the polarization
lifetime), the counting statistics uncertainty is appropriate. However, when
absolute polarization is required, one should include the e�ect of the absolute
uncertainty in the transmission. This absolute uncertainty derives from uncer-
tainties in the glass transmission, σtE , and the value of 〈τ〉 as στ .
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3.2 spin-rotation �ipper

Excluding transport losses, the transfer matrix for a spin-rotation �ipper when
that �ipper is ON, can be written in terms of the �ipping e�ciency, eF (a
number in the inclusive range 0 to 1), as

FP,A =

[
1− eF eF
eF 1− eF

]
P,A

(12)

Of course when the �ipper is OFF this transfer matrix is the identity matrix
which can be fudged by an e�ective �ipping e�ciency of eF = 0. So the �ipper-
state dependent transfer matrix can be written

Fα=±
P,A =

[
1− eαF eαF
eαF 1− eαF

]
P,A

(13)

With α = −1 indicating the �ipper-ON state (many use the opposite conven-
tion),

eαF = δα,−1eF =
1

2
(1− α) eF .

The e�ciency of a standard spin-rotation (Mezei) �ipper depends on the
exact angle of the neutron spin as it exits the precession coil. It is assumed
that the guide �eld outside the precession coil is precisely in the z-direction,
and the neutron spin enters the precession coil with its spin precisely along this
z-direction which is parallel to the wires carrying the precession coil current. It
is also assumed that that current has been set so that neutrons with wavelength,
λM , will precess by exactly π radians as it crosses the �ipper on a path that is
in the x-direction perpendicular to the precession coil wire surface. Variations
in λ or the path direction will result in variations in the precession angle as the
neutron leaves the precession coil. In the �sudden� approximation the probabil-
ity that the neutron spin has �ipped is just the modulus of the overlap of the
exit spinor with the z-direction state. The rotation axis of the neutron spin is
the +y-axis, so that if θ is the rotation angle of the neutron spin after it crosses
the precession coil, then the exit spinor in the z-up coordinate system is

χexit =

(
cos( θ2 )
sin( θ2 )

)
.

The probability that this spinor state will be spin-down (�ipped) is then just
sin2( θ2 ). The actual precession angle of any given neutron just depends on the
time, t, it spends inside the precession coil, since the precession rate is �xed by
the uniform magnetic �eld inside the coil. Thus, if tM is the optimum time in the
coil that produces a π �ip, and LM is the corresponding minimum pathlength,
the precession angle for a neutron with actual time in the coil, t, over pathlength,
L, can be written as

θ =
t

tM
π =

Lλ

LMλM
π = (1 +

1

2
γ2 +

1

2
δ2)(1 + x)π = π + ε,
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where the actual pathlength as a function of horizontal and vertical deviation
angles from the optimum perpendicular to coil direction is

L = LM (1 +
1

2
γ2 +

1

2
δ2),

and λ/λM = 1 + x, so that ε =
(
x+ 1

2γ
2 + 1

2δ
2
)
π to second order in the

deviations. Then the �ipper e�ciency is

eF = sin2(
π + ε

2
) ∼= 1− 1

4
ε2 ∼= 1− π2

4

[
x2 + x(γ2 + δ2) +

1

4
(γ4 + 2γ2δ2 + δ4)

]
.

Averaging over independent Gaussian probability distributions for the angle and
wavelength deviations yields

eF ∼= 1− π2

4

{(
σλ
λM

)2

+
3

4

(
σ4
γ + σ4

δ

)
+

1

2
σ2
γσ

2
δ

}
.

Note that the angle deviations contibute to fourth order while the relative wave-
length deviation contributes to second order. If σλ/λM = 0.02 the �ipper e�-
ciency is about 0.999.

3.3 transport losses

In order to account for transport losses in terms of a transport e�ciency, et, use
the matrix

BP,A =
1

2

[
1 + etP,A 1− etP,A
1− etP,A 1 + etP,A

]
(14)

If transport loss, εt = 1− et, is used as the parameter, then the matrix is

BP,A =

[
1− 1

2εt
1
2εt

1
2εt 1− 1

2εt

]
Transport losses are assumed to produce neutrons that have equal proba-

bility of being spin-up or spin-down (depolarized), although more complicated
cases can occur. Note that multiplying two transport loss matrices results in a
transport loss matrix where the transport e�ciency is just the product of the
two separate e�ciencies. Also the product of a spin-�ip matrix and a beam
transport loss matrix is

FαB =
1

2

[
1− et(2eαF − 1) 1 + et(2e

α
F − 1)

1 + et(2e
α
F − 1) 1− et(2eαF − 1)

]
(15)

The symmetric matrices for the spin-�ipper and transport losses commute. This
means that without loss of generality we can combine the transport loss matrices
with the corresponding polarizer and analyzer matrices. Thus
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BPP

(
1
1

)
N

2
=

[
1− 1

2εtP
1
2εtP

1
2εtP 1− 1

2εtP

] [
t+P 0

0 t−P

](
1
1

)
N

2
=[

t+P − 1
2 (t+P − t−P ) εtP 0

0 t−P + 1
2 (t+P − t−P ) εtP

](
1
1

)
N

2
,

so that the beam transport loss on the polarizer side can be e�ectively absorbed
into the polarizer matrix. For the scattered beam, suppose that nf± are the
number of scattered neutrons in the ± neutron spin channels after the analyzer
�ipper. Then the detected neutrons are

(
n+

n−

)
= ABA

(
nf+

nf−

)
=

[
t+A 0

0 t−A

] [
1− 1

2εtA
1
2εtA

1
2εtA 1− 1

2εtA

](
nf+

nf−

)
=[

t+A
(
1− 1

2εtA
)

t+A
1
2εtA

t−A
1
2εtA t−A

(
1− 1

2εtA
) ]( nf+

nf−

)
=[

t+A − 1
2 (t+A − t−A) εtA 0

0 t−A + 1
2 (t+A − t−A) εtA

](
nf+

nf−

)
,

where the last line is valid since the detector measures n+ + n−. Thus we can
include the transport loss on the analyzer side of the spectrometer into the
analyzer matrix. This simpli�es the total transport matrix to

T = AtFAS FPPt, (16)

where the subscript t indicates that beam transport loss has been included.
How does adiabatic transport loss occur? Consider a neutron travelling in

a guide magnetic �eld along the z-direction that encounters a magnetic �eld
perturbation. Take the magnetic �eld to vary in the reference frame of the
neutron as

−→
B (t) = Bz ẑ +BxG(t)x̂

so that the time dependence is in the magnetic �eld component along the x̂
direction. Take, for example, a Gaussian time perturbation of Bx,

G(t) = exp

[
−1

2

(
t− t0
τ

)2
]
.

If Bxis su�ciently small, a time-dependent perturbation solution based on an
expansion in terms of the eigenstates when Bx is zero can be used. Such an
expansion is

−→χ (t) = c+(t) exp(iωzt)

[
1
0

]
+ c−(t) exp(−iωzt)

[
0
1

]
where ωz = γ̃nBz (γ̃n = 0.916x108s−1T−1is half the neutron gyromagnetic
ratio). Substituting this solution into the spinor Schroedinger equation yields
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ċ+ = iωxG(t)c− exp(−2iωzt)

ċ− = iωxG(t)c+ exp(+2iωzt)

where ωx = γ̃nBx. Satisfying the initial condition that −→χ (0) =

[
1
0

]
, means

that c+(0) = 1 and c−(0) = 0. Then the approximation is that c+remains near
1 and c−remains near zero during the perturbation, so solve only

ċ− = iωxG(t) exp(+2iωzt).

Thus

c−(T ) = iωx

∫ T

0

exp

[
−1

2

(
t− t0
τ

)2
]

exp(+2iωzt) dt.

or

c−(∞) = i
√

2πωxτ exp
[
−2(ωzτ)2 + 2iωzt0

]
.

Then the probability that the neutron ends up in the

[
0
1

]
state is

|c−(∞)|2 = 2π (ωxτ)
2

exp
[
−4(ωzτ)2

]
.

This result shows that spin transport loss increases as the square of the magnetic
�eld perturbation, and decreases exponentially with the square of the number
of Larmor precessions the neutron makes during the time of the perturbation
(i.e. large guide �eld magnitude is better for this term). This indicates why
spin transport may be problematic, since the magnitude of �eld perturbations
may be proportional to the magnitude of the guide �eld. The conclusion is that
to keep the depolarization minimal we have the competing conditions, ωzτ � 1
and |Bx/Bz| � 1 .

3.4 sample transfer matrix

The transfer matrix for the sample is

S =

[
S++ S+−

S−+ S−−

]
(17)

where S++refers to the cross-section for scattering a neutron from a spin-up
state to a spin-up state, and S+−refers to the cross-section for scattering a
neutron from a spin-up state to a spin-down state (spin-�ip scattering). It is
important to note that in general S++ 6= S−−and S+− 6= S−+, so that the sam-
ple transfer matrix does not commute with the spin-�ipper and transport loss
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matrices (which do commute with one another). This creates a real problem for
computation if there is depolarization in the sample where it can't be determined
if the depolarization occurs before the scattering event or after the scattering
event (or if there may be multiple scattering and depolarization events). The
e�ective sample transfer matrix for depolarization before the scattering event is[
S++ S+−

S−+ S−−

] [
1− 1

2εt
1
2εt

1
2εt 1− 1

2εt

]
=

[ (
1− 1

2εt
)
S++ + 1

2εtS
+− (

1− 1
2εt
)
S+− + 1

2εtS
++(

1− 1
2εt
)
S−+ + 1

2εtS
−− (

1− 1
2εt
)
S−− + 1

2εtS
−+

]
On the other hand if the depolarization occurs after the scattering event the
sample transfer is[

1− 1
2εt

1
2εt

1
2εt 1− 1

2εt

] [
S++ S+−

S−+ S−−

]
=

[ (
1− 1

2εt
)
S++ + 1

2εtS
−+

(
1− 1

2εt
)
S+− + 1

2εtS
−−(

1− 1
2εt
)
S−+ + 1

2εtS
++

(
1− 1

2εt
)
S−− + 1

2εtS
+−

]
One can sensibly assume that the depolarization occurs with equal probability
before or after the scattering event, so that one can use the everage of these two
results as〈[

S++ S+−

S−+ S−−

]〉
=

(
1− 1

2
εt

)[
S++ S+−

S−+ S−−

]
+

1

4
εt

[
S+− + S−+ S++ + S−−

S++ + S−− S+− + S−+

]
.

Thus if the scattering matrix has been solved without assuming any sample
depolarization and with matrix elements[

Ŝ++ Ŝ+−

Ŝ−+ Ŝ−−

]
then with the postulation of a sample depolarization probability of εt < 1 and
from the combinations

S̃++ = Ŝ++ −
1
4εt

1− 1
2εt

(
Ŝ−+ − Ŝ+−

)

S̃+− = Ŝ+− −
1
4εt

1− 1
2εt

(
Ŝ−− − Ŝ++

)
one can extract the cross-sections corrected for sample depolarization as(

S++

S+−

)
=

1

1− εt

[
1− 1

2εt − 1
2εt

− 1
2εt 1− 1

2εt

](
S̃++

S̃+−

)
and

S−+ = S+− +
1

1− 1
2εt

(
Ŝ−− − Ŝ++

)

S−− = S++ +
1

1− 1
2εt

(
Ŝ−+ − Ŝ+−

)
There are cases where the depolarization is itself caused by a scattering

event, for example when spin-incoherent scattering from hydrogen is the culprit.
Then the simple minded procedure above is invalid. There are also models for
depolarization due to ferromagnetic domains.
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3.5 total transfer matrix

Combining all of the above transfer matrices, the time dependent detected
counts for the up and down spin channels, which depend on the �ipper states,
α and β can be written,

[
n+(t)
n−(t)

]αβ
= A(t)F βABASBPF

α
P P (t)

[
N/2
N/2

]
= Tαβ(t)

[
N/2
N/2

]
(18)

where Tαβ(t) is a 2x2 matrix. Recall that the product of �ip and transport
e�ciency matrices can be written

(FαB,)P,A =
1

2

[
1− et(2eαF − 1) 1 + et(2e

α
F − 1)

1 + et(2e
α
F − 1) 1− et(2eαF − 1)

]
P,A

=
1

2

[
1 1
1 1

]
− 1

2
eαP,A

[
+1 −1
−1 +1

]
where eαP,A = {et(2eαF − 1)}P,A. The following matrix products are then re-
quired

[
t+A 0

0 t−A

] [
1 1
1 1

]
S

[
1 1
1 1

] [
t+P 0

0 t−P

]
=

σ++++

[
t+At+P t+At−P
t−At+P t−At−P

]
[
t+A 0

0 t−A

] [
+1 −1
−1 +1

]
S

[
+1 −1
−1 +1

] [
t+P 0

0 t−P

]
=

σ+−−+

[
t+At+P −t+At−P
−t−At+P t−At−P

]
[
t+A 0

0 t−A

] [
1 1
1 1

]
S

[
+1 −1
−1 +1

] [
t+P 0

0 t−P

]
=

σ+−+−

[
t+At+P −t+At−P
t−At+P −t−At−P

]
[
t+A 0

0 t−A

] [
+1 −1
−1 +1

]
S

[
1 1
1 1

] [
t+P 0

0 t−P

]
=

σ++−−

[
t+At+P t+At−P
−t−At+P −t−At−P

]
.

Here σ±±±± refers to a sum of the four cross-sections, S±±, with the sign of
each term given by the corresponding ± index of σ. For example, σ++++ =
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S++ + S+− + S−+ + S−−. The four elements (µ = ±1, ν = ±1) of the �ipper-
state-dependent total transfer matrix then follow as

Tαβµν (t) = Eαβµν t
αβ
µAt

αβ
νP ,

where

Eαβµν =
1

4
Σµ′ν′S

µ′ν′ (1− µ′µeαA)
(

1− ν′νeβP
)
.

The αβ indices are added to the He-3 transmission factors to indicate that they
must be evaluated at the time that the αβ count-rate is measured. The total
detected counts for each combination of polarizer and analyzer �ipper states,
α = 1 for analyzer �ipper OFF, α = −1 for analyzer �ipper ON, β = 1 for
polarizer �ipper OFF and β = −1 for polarizer �ipper ON, are

Countsαβ = Cαβ = nαβ+ + nαβ− =
N

2
ΣµνT

αβ
µν =

N

2
ΣµνE

αβ
µν t

αβ
µAt

αβ
νP .

Recall that t±A,P = C̃±A,P tE exp (−τ̃±A,P ) are the transmission factors from
the He-3 analyzer and polarizer. Now the expected count rates can be written
as a linear function of the four polarized beam cross-sections

Cαβ =
N

2
Σµνc

αβ
µνS

µν

where the 4x4 matrix of coe�cients is

cαβµν =
1

4

∑
µ′

(1− µ′µeαA) tαβµ′A
∑
ν′

(
1− ν′νeβP

)
tαβν′P . (19)

so that each matrix element is the product of factors from before and after the
sample. Recall that the e�ciency coe�cients, eαA,P , are given by,

eαA,P = etA,P (2eαFA,P − 1)

which is a product involving the transport and spin-�ip e�ciencies. P refers to
before the sample and A refers to after the sample.

In order to understand the matrix of coe�cients, examine the simplest case.
Assume that the transport and �ipping e�ciencies are unity so that eαA,P = −α
(since eαF = 1

2 (1− α) eF ). Then

cαβµν =
1

4

∑
µ′

(1 + µ′µα) tαβµ′A
∑
ν′

(1 + ν′νβ) tαβν′P .

Now ∑
µ′

(1 + µ′µα) tµ′A = t+A + t−A + µα (t+A − t−A) = 2t(µα)A.
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so that the matrix elements have simpli�ed to

cαβµν = t(µα)At(νβ)P .

For example, if both �ippers are o�, c++
µν = tµAtνP and the total detected counts

are

BothF lippersOFFCounts = C++ =(
S++t+At+P + S+−t+At−P + S−+t−At+P + S−−t−At−P

) N
2
.

The He-3 transmission factors for the perferred spin-states, t+Aand t+P are typ-
ically much larger than the transmission factors for the non-preferred states, so
one approximately measures S++.

C++ ∼=
(
S++t+At+P

) N
2
.

Now, turning on the polarizer �ipper gives c+−µν = tµAt−νP , and

PolarizerF lipperONCounts = C+− =(
S++t+At−P + S+−t+At+P + S−+t−At−P + S−−t−At+P

) N
2
.

S+−is multiplied by the largest transmission factors so that

C+− ∼=
(
S+−t+At+P

) N
2
.

Similarly

AnalyzerF lipperONCounts = C−+ ∼=
(
S−+t+At+P

) N
2
,

and

BothF lippersONCounts = C−− ∼=
(
S−−t+At+P

) N
2
.

These expressions have to be corrected since the transmission factors for the
non-preferred states, t−Aand t−P are likely not zero.

Once more, it must be emphasized that the separate count-rates for the
di�erent cross-sections are measured at di�erent times, so that the He-3 trans-
mission coe�cients must be evaluated for each di�erent count-rate.
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4 correcting polarized beam data

Since neutron polarizing, �ipping and transport devices may not be perfectly
e�cient, it is necessary to examine the corrections that need to be made to
raw polarized beam data in order to extract the the cross-sections that produce
observed count rates. In this section it is assumed that the e�ciencies of the
polarized beam transport have already been determined (that determination
is discussed in section 6). Recall from the section that derived the transfer
matrix, that the expected count rates can be written as a linear function of the
cross-sections

Cαβ =
N

2
Σµνc

αβ
µνS

µν

where the elements of the matrix of coe�cients are

cαβµν =
1

4

∑
µ′

(1− µ′µeαA) tαβµ′A
∑
ν′

(
1− ν′νeβP

)
tαβν′P .

To be precise, each row (αβ) can be associated with a time at which the count-

rate, Cαβ , is measured, so that the transmission coe�cients, tαβµ′A and tαβν′P ,
are labelled with the row index, αβ. Otherwise we are assuming that all of
the count-rates are measured near enough to each other in time to avoid the
necessity for this lablelling. Do the sums on µ′ and ν′ by de�ning∑

µ′

tµ′X = t+X + t−X = tsX

∑
µ′

µ′tµ′X = t+X − t−X = taX .

From the expressions for the transmission coe�cients, tsX and taX can be ex-
panded to

tsX = 2tEXCsX exp (−τ̃X) cosh (τ̃XPHe3X)

taX = 2tEXCaX exp (−τ̃X) sinh (τ̃XPHe3X)

where

CsX = 〈CX〉
{

1 +
∆X

〈CX〉
tanh (τ̃XPHe3X)

}

CaX = 〈CX〉
{

1 +
∆X

〈CX〉
coth (τ̃XPHe3X)

}
.
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See the section on correcting the transmission for wavelength and pathlength
deviations, 7, for the de�nitions of 〈CX〉 ∼= 1 and ∆X � 1. Then the matrix
elements are

cαβµν =
1

4

(
tsA − µeαAt

αβ
aA

)(
tsP − νeβP t

αβ
aP

)
.

In general the matrix of these coe�cients will require numerical inversion to
solve for the cross-sections corresponding to observed count rates. In order to
determine the uncertainty in the coe�cients, it is reasonable to assume that the
uncertainty in the transmission factors, t±M = C̃±M tEM exp (−τ̃±M ), is due
to the uncertainty in τ̃±M . This works because the empty cell transmissions,
tEM , occur in all of the the coe�cients, so that the uncertainty in tEM can be
considered to just a�ect the uncertainty in an overall scale factor when solving
for the underlying cross-sections Sµν . Also, the uncertainty in the correction
coe�cient, C̃±M , arises primarily from the uncertainty in τ̃±M , as can be seen
by looking at a typical formula for C̃±M and realizing that the instrumental
factors are typically on the order of 0.01. Thus it is easy to show that

σC̃±M =

∣∣∣∣∣∂C̃±M∂τ̃±M

∣∣∣∣∣στ̃±M ,
but the partial derivative coe�cient is much less than one, and σC̃±M can be

neglected compared to στ̃±M . Thus we can write to a good approximation that

σt±M
∼= t±Mστ̃±M .

From the de�nition of τ̃±M it follows that

σ2
τ̃±M = τ̃2

Mσ
2
PHe3,M + σ2

τ̃M .

This means that the relative uncertainty in the transmission coe�cient, σ̃t±M =
σt±M /t±M = στ̃±M , is independent of the spin state. The computation of
σ2
PHe3,M and σ2

τ̃M
is described in the previous section 3.1. Trivially we also

have

σ2
tsM = σ2

taM = σ2
t+M + σ2

t−M .

The partial derivatives of the coe�cients, cαβµν , with respect to the transmission
factors, tsM and taM are

∂cαβµν
∂tsA

=
1

4

(
tsP − νeβP taP

)

∂cαβµν
∂tsP

=
1

4
(tsA − µeαAtaA)
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∂cαβµν
∂taA

= −1

4
µeαA

(
tsP − νeβP taP

)

∂cαβµν
∂taP

= −1

4
νeβP (tsA − µeαAtaA) .

The partial derivatives of the coe�cients, cαβµν , with respect to the transport
e�ciencies, etM , and �ipper e�ciencies, eFM , are

∂cαβµν
∂etA

= −1

4
µtaA

(
tsP − νeβP taP

)
(2eαFA − 1)

∂cαβµν
∂etP

= −1

4
νtaP (tsA − µeαAtaA)

(
2eβFP − 1

)

∂cαβµν
∂eFA

= −1

4
µtaA

(
tsP − νeβP taP

)
(1− α) etA

∂cαβµν
∂eFP

= −1

4
νtaP (tsA − µeαAtaA) (1− β) etP .

Combining all the terms for the uncertainty in cαβµν results in contributions from
both the analyzer and polarizer groups,

σ2
cαβµν

= σ2
A + σ2

P ,

where

σ2
A =

1

16

(
tsP − νeβP taP

)2

f(A,α)

σ2
P =

1

16
(tsA − µeαAtaA)

2
f(P, β),

and where

f(M,γ) =
[
1 + (eγM )

2
] [
σ2
t+M + σ2

t−M
]
+[taM ]

2
[
(2eγFM − 1)

2
σ2
etM + (1− γ)

2
e2
tMσ

2
eFM

]
.

Given the coe�cients, cαβµν , and their uncertainties, σ2
cαβµν

, it is then possible

to solve for the underlying cross-sections, Sµν , and propagate the errors to
σSµν . Methods for doing the inversion and propagating errors are discussed in
another document, PBcorrect. Sometimes in polarized beam experiments the
number of unknown cross-sections to be determined is reduced by contraints, for
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example when S+− = S−+and/or S++ = S−−. One must be able to put these
constraints into the master equation and there should also be a method to reduce
the number of equations if more of the count rates, Cαβ , have been measured
than there are independent equations. One can, of course, discard equations,
or combine by adding or subtracting equations. For example, if S+− = S−+,
then one simple way to bring the number of equations down if both C+−and
C−+ were measured, is to add the two equations for C+−and C−+taking care to
propagate the errors. A discussion of the overdetermined problem where there
are constraints so that there are more equations than unknowns will require
additional discussion in terms of the Totla Least Squares problem.

4.1 determining count rates

Note that the formulae for the observed count rates depend linearly on the
neutron �ux into the He-3 polarizer. If this neutron �ux is time indepedent,
then the count rates can be used directly in the correction formulae. If the
neutron �ux varies with time, which or course happens if the incident neutron
energy is varied, then a low e�ciency beam monitor before the polarizer could
be used to determine relative changes in the incident neutron �ux. This is
usually accomplished by counting until a �xed number of beam monitor counts
is recorded and correcting for the higher-order wavelength contamination (Ei
dependent) counted by the beam monitor. The correction factor that multiplies
the counts, in terms of the wavelength order fractions, an, (where

∑
n an = 1)

is

correctionFactor =
monitorRateAllOrders

monitorRatePrimary
=

(∑
n

an
n

)
/a1.

This correction to the count rate is greater than unity when the incident beam
is contaminated by higher orders since the monitor counts the higher orders as
well as the primary measuring wavelength.

A more involved correction is required if the incident �ux has to be tracked
using a beam-monitor placed after the polarizer. Now the time and wavelength
dependence of the polarizer transmission has to be taken into account to de-
termine relative �uxes of the primary and higher order wavelength neutrons.
In this case with the beam-monitor after the polarizer, the correction factor is
given by

correctionFactor =

(∑
n

an
n

(t±n + t−n)

)
/(a1(t+1 + t−1)).

Here t±n are the transmission factors for the preferred and nonpre�ered spins
states for the nth order wavelength.

4.2 spin-�ip and non-spin-�ip cross-sections only

One important special case is when the cross-sections have the often occurring
symmetry that S++ = S−− = Snsf , and S+− = S−+ = Ssf . In this case the
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master equation for the expected count rates reduces to

Cαβ/
N

2
=
(
cαβ++ + cαβ−−

)
Snsf +

(
cαβ+− + cαβ−+

)
Ssf .

Cross terms cancel when the coe�cients are added in this way (in the equal
time approximation for the He-3 transmission factors), so that

Cαβ/
N

2
=

1

2

(
t+ + eαAe

β
P t−

)
Snsf +

1

2

(
t+ − eαAe

β
P t−

)
Ssf ,

where

t+ = tsAtsP = t+At+P + t−At−P + t+At−P + t−At+P

t− = taAtaP = t+At+P + t−At−P − t+At−P − t−At+P .

The expansions of t+ and t− follow simply from the expansions of tsX and taX .
These equations can easily be inverted to obtain the cross-sections as a function
of the count-rates. This is typically accomplished by measuring the non-spin-�ip
counts as C++ = Cnsf , and using one �ipper to measure either C+− or C−+

as the spin-�ip count rate, CsfX , where X indicates which �ipper is used. This
system of equations is(

C++

CsfX

)
=
N

2

1

2

(
t+ + etAt− t+ − etAt−
t+ − etBt− t+ + etBt−

)(
Snsf

Ssf

)
where et = etAetP is the aggregate beam transport e�ciency, A = 1, B =
2eFX − 1, and X = P,A depending on which �ipper is used. In the case
that these equations are used to solve for count rates when the beam is λ/2, a
current-�ipper set to �ip λ will depolarize the beam when activated. This can
be handled by setting B = 0, or eFX = 1/2. The determinant of the matrix is
4eteFXt+t− so that matrix inversion gives the result

N

2

(
Snsf

Ssf

)
=

1

2eteFX

(
a+B −a−A
−a−B a+A

)(
C++

CsfX

)
where the elements of the inverted matrix are found from

a±A =
t+ ± etAt−

t+t−

a±B =
t+ ± etBt−

t+t−
.

In order to do the error analysis on this solution, write

SnsfeteFXN =

(
etB

t+
+

1

t−

)
C++ +

(
etA

t+
− 1

t−

)
CsfX
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SsfeteFXN =

(
etB

t+
− 1

t−

)
C++ +

(
etA

t+
+

1

t−

)
CsfX

which is

NSnsf = K++C++ +K+−CsfX

NSsf = K−+C++ +K−−CsfX

where

Kαβ = Aαβ +Bαβ + Cαβ

and

Aαβ =
αβ

eteFX

1

t−

Bαβ =
2δβ+

t+

Cαβ =
−β
eFX

1

t+
.

The partial derivatives of t+ and t− are

∂t±
∂τ̃P,A

= t±

[
PHe3P,A tanh±1 (τ̃PHe3)P,A − 1

]

∂t±
∂PHe3P,A

= t±

[
τ̃P,A tanh±1 (τ̃PHe3)P,A

]
.

Then the error propagation for the coe�cients is

σ2
Kαβ =

(
Aαβ

)2
σ̃2
et +

(
Aαβ + Cαβ

)2
σ̃2
eFX +

∑
X=τ̃Aτ̃PPAPP

(
Wαβ
X

)2

σ2
X

where

Wαβ
X = Aαβ [x̄ coth (xx)− δxτ ] +

(
Bαβ + Cαβ

)
[x̄ tanh (xx)− δxτ ]

and x̄ is the partner variable for x in the pairs τ̃APHe3A and τ̃PPHe3P . The
error propagation for the X variables τ̃ and P is in section 3.1. Also, in general

σ̃2
X =

σ2
X

X2
.
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The �nal error propagation to the cross-sections is

σ2
NSnsf =

(
C++σK++

)2
+
(
CsfXσK+−

)2
+
(
K++σC++

)2
+
(
K+−σCsfX

)2
σ2
NSsf =

(
C++σK−+

)2
+
(
CsfXσK−−

)2
+
(
K−+σC++

)2
+
(
K−−σCsfX

)2
If count rates are measured for all four cross-sections then the counts in the

spin-�ip and non-spin �ip channels can be added so that

1

2

(
C++ + C−−

C+− + C−+

)
=
N

2

1

2

(
t+ + etAt− t+ − etAt−
t+ − etBt− t+ + etBt−

)(
Snsf

Ssf

)
where

A =
1

2
[1 + (2eFA − 1) (2eFP − 1)]

B =
1

2
[(2eFA − 1) + (2eFP − 1)]

The determinant of this matrix is 4eteFAeFP t+t− so that the inversion becomes

N

2

(
Snsf

Ssf

)
=

1

2eteFAeFP

(
a+B −a−A
−a−B a+A

)( 〈
Cnsf

〉〈
Csf

〉 )
where

a±A =
t+ ± etAt−

t+t−

a±B =
t+ ± etBt−

t+t−
.

The error analysis proceeds as before by separating the solution coe�cients
into terms that depend on transport and �ipper e�ciencies,

SnsfeteFAeFPN =

(
etB

t+
+

1

t−

)〈
Cnsf

〉
+

(
etA

t+
− 1

t−

)〈
Csf

〉

SsfeteFAeFPN =

(
etB

t+
− 1

t−

)〈
Cnsf

〉
+

(
etA

t+
+

1

t−

)〈
Csf

〉
,

which as before is

NSnsf = K++C++ +K+−CsfX

NSsf = K−+C++ +K−−CsfX
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where

Kαβ = Aαβ +Bαβ + Cαβ +Dαβ + Eαβ

and

Aαβ =
αβ

eteFAeFP

1

t−

Bαβ =
2δβ−
t+

Cαβ =
β

eFA

1

t+

Dαβ =
β

eFP

1

t+

Eαβ = − β

eFAeFP

1

t+
.

Then the error propagation for the coe�cients is

σ2
Kαβ =

(
Aαβ

)2
σ̃2
et +

(
Wαβ
eFA

)2
σ̃2
eFA +

(
Wαβ
eFP

)2
σ̃2
eFP +

∑
X=τ̃Aτ̃PPAPP

(
Wαβ
X

)2

σ2
X

where

Wαβ
eFA = Aαβ + Cαβ + Eαβ

Wαβ
eFP = Aαβ +Dαβ + Eαβ

Wαβ
X = Aαβ [x̄ coth (xx)− δxτ ]+

(
Bαβ + Cαβ +Dαβ + Eαβ

)
[x̄ tanh (xx)− δxτ ]

The �nal error propagation to the cross-sections is

σ2
NSnsf =

(〈
Cnsf

〉
σK++

)2
+
(〈
Csf

〉
σK+−

)2
+
(
K++σ〈Cnsf 〉

)2
+
(
K+−σ〈Csf 〉

)2
σ2
NSsf =

(〈
Cnsf

〉
σK−+

)2
+
(〈
Csf

〉
σK−−

)2
+
(
K−+σ〈Cnsf 〉

)2
+
(
K−−σ〈Csf 〉

)2
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4.2.1 simpli�cation using a �ipping ratio measurement

Returning to the solution for the cross-sections, this is a good approach if the
ratio Ssf/Snsf (or its inverse) is of interest, since this ratio depends only on the
measured counts, the measured �ipping ratio and a small correction for �ipping
e�ciency. However, in the following it will be shown that the formula and error
analysis is even simpler in terms of the cross-section asymmetry and count-rate
asymmetry. Using these results, the solution for the ratio Snsf/Ssf is (assuming
that Ssf > 0),

snsf =
Snsf

Ssf
=
Cnsf − 1

Rn
Csf − ε

(
Cnsf − Csf

)
Csf − 1

Rn
Cnsf

with squared relative error

σ̃2
snsf

= W 2
Rσ̃

2
R +W 2

eF σ̃
2
eF +W 2

C

(
σ̃2
Cnsf + σ̃2

Csf

)
where

WR = Rn

(
Cnsf

)2 − (Csf)2
(RnCnsf − Csf ) (RnCsf − Cnsf )

WeF =
Cnsf − Csf

RnCnsf − Csf
Rn − 1

eF

WC =
CnsfCsf

(
R2
n − 1

)
(RnCnsf − Csf ) (RnCsf − Cnsf )

.

If the ratio Ssf/Snsf is of interest, simply invert the formula above and in-
terchange Cnsf and Csf in the error analysis. σ̃2

R is de�ned in the section on
�ipping ratios 6.

Now the remaining time dependence is in Ke which is

Ke =
eteF t−

1 + ett−/t+
(20)

Making the same replacement for t−/t+ in terms of R, Kecan be rewritten as

Ke =
1

2
et

(
2eF − 1 +

1

Rn

)
t−

where recall that t−is

t− = 4tEAtEPC∆− exp (−τ̃A) exp (−τ̃P ) sinh (τ̃APHe3A) sinh (τ̃PPHe3P ) .

Be aware that the transport e�ciency may be angle dependent. To be pre-
cise, the transport and �ipping e�ciencies should be measured at the same
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spectrometer settings and guide �eld settings used to measure Cnsf and Csf

and those e�ciencies should then be used to make the corrections to obtain
Snsf and Ssf . A classic case is the use of the neutron polarization direction
to vary the amount of magnetic scattering that contributes to the spin-�ip and
non-spin-�ip channels. This dependence arises from the fact that spin-�ip mag-
netic scattering is due to the neutron scattering from sample magnetic moment
components that are perpendicular to the neutron polarization direction, and
conversely the non-spin-�ip magnetic scattering is due to the neutron scatter-
ing from sample magnetic moment components that are parallel to the neutron
polarization direction. This dependence is utilised experimentally by control-
ling the neutron polarization direction at the sample with either a vertical (to
scattering plane) or horizontal guide �eld. If the horizontal sample guide �eld
is aligned along the scattering vector, Q, then all magnetic scattering must be
in the spin-�ip channel, since the neutron spin scatters only from sample mag-
netic moment components that are perpendicular to Q, and these same sample
magnetic moments are also perpendicular to the neutron spin. Since there are
other possible contributions to the scattering in the spin-�ip channel, the usual
procedure is to subtract o� the spin-�ip scattering observed when the sample
guide �eld is vertical. This vertical �eld spin-�ip scattering will have a di�erent
amount of magnetic scattering but all the other scattering processes will be the
same as in the horizontal �eld case. Since the transport e�ciencies may be
di�erent between the vertical and horizontal �eld cases it is important to cor-
rect the observed counts (using the e�ciencies) to obtain the true cross-sections
before making such a subtraction.

Now �nally we return to consider the contamination of a �ipping ratio mea-
surement by spin-�ip scattering. We want to use information about the con-
tamination obtained from a background measurement to calculate the correction
necessary to give the true non-spin-�ip �ipping ratio. Using the formula for the
spin-�ip scattering measured in the background (after fast-background subtrac-
tion)

SsfbgNKe = Csfbg −
1

Rn
Cnsfbg

Measuring at the Bragg peak, we assume that the spin-�ip cross-section from
the background, Ssfbg , is the only source of spin-�ip scattering at the Bragg peak.
Then

SsfbgNKe = CsfBragg −
1

Rn
CnsfBragg

and then

Rn =
(
CnsfBragg − C

nsf
bg

)
/
(
CsfBragg − C

sf
bg

)
4.2.2 cross-section asymmetry solution

When the ratio of cross-sections is the quantity of interest, the ideal analysis is
in terms of the cross-section asymmetry, −1 ≤ s ≤ 1, de�ned as
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s =
Snsf − Ssf

Snsf + Ssf

and the count-rate asymmetry, −1 ≤ c ≤ 1, de�ned as

c =
Cnsf − Csf

Cnsf + Csf
,

(1− c)Cnsf = (1 + c)Csf .

The result for s in terms of c in the equal time approximation is

s =
t+
t−

c/et
eF − (1− eF )c

=
Rn (2eF − 1) + 1

Rn − 1

c

eF − (1− eF )c
∼=
Rn + 1

Rn − 1

c

eF
,

where the approximation is for eF near to unity. All of the time dependence and
beam transport e�ciency is now contained in the measured �ipping ratio, Rn.
This result becomes quite simple when the �ipper e�ciency can be assumed to
be unity. This can be combined with

Snsf + Ssf =
1

t+

(2eF − 1)Cnsf + Csf

eF
,

if it is necessary to extract the individual values Snsf and Ssf .
The error analysis on s produces

σ2
s = W 2

Rσ̃
2
R +W 2

eF σ̃
2
eF +W 2

C

(
σ̃2
Cnsf + σ̃2

Csf

)
where

WR = s
2eFRn

[Rn − 1] [Rn (2eF − 1) + 1]
∼= s

2eFRn
R2
n − 1

WeF = s
2eFRn

[Rn (2eF − 1) + 1]
− s eF (1 + c)

eF − (1− eF )c
∼= s

2eFRn
Rn + 1

− s (1 + c)

WC = 2s
eF

eF − (1− eF )c

CnsfCsf

(Cnsf )
2 − (Csf )

2
∼= 2

Rn + 1

Rn − 1

CnsfCsf

(Cnsf + Csf )
2 .

Note that σR is just the error for the �ipping ratio measurement, which simply
depends on the count rates measured in obtaining Rn as shown in a following
section.
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4.3 all four cross-sections with perfect �ippers

In the case that the spin �ipper e�ciencies are unity, the full transfer matrix
can be solved algebraically for all four cross-sections when we can approximate
that all count-rates are measured at the same time. Recall that the formula for
the transfer matrix coe�cients in

Cαβ =
N

2
Σµνc

αβ
µνS

µν

was

cαβµν =
1

4

(
tsA − µeαAt

αβ
aA

)(
tsP − νeβP t

αβ
aP

)
.

Also, eαP,A = {et(2eαF − 1)}P,A can be rewritten as

eαP,A = −α
(
1− εαP,A

)
where the small transport ine�ciency parameter, εαP,A, is

ε+ = 1− et

and

ε− = 1− etF = 1− et (2eF − 1)

If the spin-�ipper e�ciency is unity then ε+P,A = ε−P,A = εP,A = 1 − etA,P
is independent of α so that eαP,A = −α (1− εP,A) = −αetA,P . Then when
count-rates are measured at the same time so that the transmission factors are
independent of α and β,

4cαβµν = [tsA + µαetAtaA] [tsP + νβetP taP ] ,

so that µ and α appear only as their product, and the same for ν and β. This
means

cαβµν = cᾱβµ̄ν = cαβ̄µν̄ = cᾱβ̄µ̄ν̄

where ᾱ = −α, so that there are only four distinct elements in the matrix.
These four distinct elements can be generated by �xing µ = ν = +1, and they
are

4c++ = [tsA + etAtaA] [tsP + etP taP ] = t+ + etAetP t− + etAtA + etP tP

4c−− = [tsA − etAtaA] [tsP − etP taP ] = t+ + etAetP t− − etAtA − etP tP

4c+− = [tsA + etAtaA] [tsP − etP taP ] = t+ − etAetP t− + etAtA − etP tP
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4c−+ = [tsA − etAtaA] [tsP + etP taP ] = t+ − etAetP t− − etAtA + etP tP ,

where

tA = taAtsP = (t+A − t−A) (t+P + t−P )

tP = tsAtaP = (t+A + t−A) (t+P − t−P ) .

Now form the symmetric two by two matrices

cn =

(
c++ c−−

c−− c++

)
and

cf =

(
c+− c−+

c−+ c+−

)
,

with the corresponding two component vectors

Cn =

(
C++

C−−

)

Cf =

(
C+−

C−+

)

Sn =

(
S++

S−−

)

Sf =

(
S+−

S−+

)
and the system of equations can then be written(

Cn

Cf

)
=
N

2

(
cn cf
cf cn

)(
Sn
Sf

)
.

Because the matrices cn and cf are symmetric and thus commute with each
other, the inversion of this matrix problem is(

cn −cf
−cf cn

)(
Cn

Cf

)
=
N

2

(
c2
n − c2

f 0

0 c2
n − c2

f

)(
Sn
Sf

)
which can be checked by substituting the solution for (Cn,Cf ) from the previous
equation. Letting c2

n−c2
f = cd, which is another symmetric matrix, the solution

becomes
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(
sn sf
sf sn

)(
Cn

Cf

)
=

(
c−1
d cn −c−1

d cf
−c−1

d cf c−1
d cn

)(
Cn

Cf

)
=
N

2

(
Sn
Sf

)
.

With

cd =

(
e f
f e

)
,

e =
(
c++

)2
+
(
c−−

)2 − (c+−)2 − (c−+
)2

f = 2c++c−− − 2c+−c−+

c−1
d =

(
e2 − f2

)−1
(

e −f
−f e

)
then

c−1
d cn = sn =

(
e2 − f2

)−1
(
u v
v u

)
where

u = c++
[(
c++

)2 − (c−−)2 − (c+−)2 − (c−+
)2]

+ 2c−−c+−c−+

v = c−−
[(
c−−

)2 − (c++
)2 − (c+−)2 − (c−+

)2]
+ 2c++c+−c−+.

Similarly,

−c−1
d cf = sf =

(
e2 − f2

)−1
(
x y
y x

)
where

−x = c+−
[(
c++

)2
+
(
c−−

)2 − (c+−)2 +
(
c−+

)2]− 2c−+c++c−−

−y = c−+
[(
c++

)2
+
(
c−−

)2
+
(
c+−

)2 − (c−+
)2]− 2c+−c++c−−

Calculation shows that

e2 − f2 = e2
tAe

2
tP t+t−tAtP

4

et
u = (t+ + ett−) tAtP + t+t− (etAtA + etP tP )
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4

et
v = (t+ + ett−) tAtP − t+t− (etAtA + etP tP )

− 4

et
x = (t+ − ett−) tAtP + t+t− (etAtA − etP tP )

− 4

et
y = (t+ − ett−) tAtP − t+t− (etAtA − etP tP )

and as usual et = etAetP is the aggregate beam transport e�ciency. Thus the
sub-matrix solutions are

sn =
+1

4et

(
a+ + b+ a+ − b+
a+ − b+ a+ + b+

)

sf =
−1

4et

(
a− + b− a− − b−
a− − b− a− + b−

)
where

a± =
t+ ± ett−
t+t−

=
1

t−
± et
t+

b± =
etAtA ± etP tP

tAtP
=
etA
tP
± etP

tA
.

If at this point it is found that S++ = S−− = Snsf and S+− = S−+ = Ssf

then the pairs of equations in the solution can be added to reproduce the pre-
vious result in terms of average count-rates, but now with the �ipper e�ciency
set to unity,

N

2

(
Snsf

Ssf

)
=

1

2et

(
a+ −a−
−a− a+

)( 〈
Cnsf

〉〈
Csf

〉 )
.

The system of equations for the general solution with �ipper e�ciency unity
can now be written

NSαβ = Kαβ
µν C

µν ,

where

Kαβ
µν =

1

2et
νβ
(
µαa(µανβ) + b(µανβ)

)
.

The partial derivatives of t+ and t− are
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∂t±
∂τ̃P,A

= t±

[
PHe3P,A tanh±1 (τ̃PHe3)P,A − 1

]

∂t±
∂PHe3P,A

= t±

[
τ̃P,A tanh±1 (τ̃PHe3)P,A

]
.

The partial derivatives of tA and tP are

∂tX
∂τ̃Y

= tX

[
PHe3Y tanh−XY (τ̃PHe3)Y − 1

]

∂tX
∂PHe3Y

= tX

[
τ̃Y tanh−XY (τ̃PHe3)Y

]
,

where X = P,A and Y = P,A and A is equivalent to −1, while P is equivalent
to +1 for the purpose of calculating the tanh exponent. In order to do the error
propagation divide Kαβ

µν into the contributions from a and b to �nd

2Kαβ
µν =

1

t+
+

νβµα

etAetP t−
+

νβ

etP tP
+

µα

etAtA
.

As before this takes on only four distinct values that can be generated by choos-
ing µ = ν = +1, so that

Kαβ
µν = Kᾱβ

µ̄ν = Kαβ̄
µν̄ = Kᾱβ̄

µ̄ν̄

and

K(α)(β)
µν = K

(αµ)(βν)
++

can be used to generate all the other coe�cients. Then write

2Kαβ
++ = Aαβ +Bαβ + Cαβ +Dαβ ,

where

Aαβ =
1

t+

Bαβ =
βα

etAetP t−

Cαβ =
β

etP tP
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Dαβ =
α

etAtA
.

Then

4σ2
Kαβ

++

=
(
Bαβ +Dαβ

)2
σ̃2
etA +

(
Bαβ + Cαβ

)2
σ̃2
etP +

∑
Y=τ̃A,τ̃P ,PA,PP

W 2
Y σ

2
Y

where

WY =
∑

X=A,B,C,D

XαβV XY

and

V X=A,B
Y = Ȳ tanhX

(
Y Ȳ

)
− δY τ

V X=C,D
Y = Ȳ tanh−XY

(
Y Ȳ

)
− δY τ .

Ȳ is the partner variable of Y in the pairs τ̃PHe3. The A, B, C and D coef-
�cients (X) are equivalent to +1, −1, +1 and −1 respectively, and the A and
P subscripts (Y ) of τ̃ and PHe3 are equivalent to −1 and +1, for the purposes
of obtaining the exponent of tanh in these equations. From the equation for
NSαβ , the �nal error propagation is

σ2
NSαβ =

∑
µν

(Cµν)
2
σ2
Kαβ
µν

+
(
Kαβ
µν

)2
σ2
Cαβ .

4.4 single spin-�ip cross-section only

Suppose that only S+− 6= 0 or S−+ 6= 0, as might be the case for spin-wave
scattering. Then the equations for count-rates as a function of the single cross-
section S+− are

C++/
N

8
= (tsA + etAtaA) (tsP − etP taP )S+−

C−−/
N

8
= (tsA − etAAtaA) (tsP + etPPtaP )S+−

C+−/
N

8
= (tsA + etAtaA) (tsP + etPPtaP )S+−

C−+/
N

8
= (tsA − etAAtaA) (tsP − etP taP )S+−,
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where as usual A = 2eFA − 1 and P = 2eFP − 1. Then

r+
SW =

C+−

C++
=

1 + etPPtaP /tsP
1− etP taP /tsP

=
C−−

C−+
.

This could be used to extract the polarizer transmission factor ratio taP /tsP as

etP
taP
tsP

=
r+
SW − 1

r+
SW + P

,

where

taP
tsP

=
CaP
CsP

tanh (τ̃PPHe3P ) .

Once the tanh is calculated, then sinh and coshcan be separately extracted to
obtain the individual transmission factors taP and tsP ,

cosh (τ̃PPHe3P ) =
1√

1− tanh2 (τ̃PPHe3P )

sinh (τ̃PPHe3P ) =
tanh (τ̃PPHe3P )√

1− tanh2 (τ̃PPHe3P )

taP = 2tEPCaP exp (−τ̃P ) sinh (τ̃PPHe3P )

tsP = 2tEPCsP exp (−τ̃P ) cosh (τ̃PPHe3P ) .

Similarly, if S−+is the only non-zero cross-section contributing, then

r−SW =
C−+

C++
=

1 + etAAtaA/tsA
1− etAtaA/tsA

=
C−−

C+− .

This could be used to extract the analyzer transmission factor ratio taA/tsA as

etP
taA
tsA

=
r−SW − 1

r−SW +A
,

where

taA
tsA

=
CaA
CsA

tanh (τ̃APHe3A) .

It should be noted that if S+−and S−+are from inelastic cross-sections (spin-
waves) then the count rates may be too low to make this analysis possible. One
must then rely on separate transmission measurements of the He-3 cells along
with any correction for time dependence to obtain the individual transmission
factors necessary to extract the cross-sections from the count rates.
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4.5 both spin-�ip cross-sections contribute

Suppose that only S+− 6= 0 and S−+ 6= 0. Recall that the formula for the
transfer matrix coe�cients in

Cαβ =
N

2
Σµνc

αβ
µνS

µν

was in equal time approximation

cαβµν =
1

4
(tsA − µeαAtaA)

(
tsP − νeβP taP

)
,

where eαP,A = {et(2eαF − 1)}P,A. Then the equations for count-rates as a function
of the two cross-section S+− andS−+ are

C++/
N

8
= (tsA + etAtaA) (tsP − etP taP )S+−+(tsA − etAtaA) (tsP + etP taP )S−+

C−−/
N

8
= (tsA − etAAtaA) (tsP + etPPtaP )S+−+(tsA + etAAtaA) (tsP − etPPtaP )S−+

C+−/
N

8
= (tsA + etAtaA) (tsP + etPPtaP )S+−+(tsA − etAtaA) (tsP − etPPtaP )S−+

C−+/
N

8
= (tsA − etAAtaA) (tsP − etP taP )S+−+(tsA + etAAtaA) (tsP + etP taP )S−+,

where as usual A = 2eFA − 1 and P = 2eFP − 1. It is easy to invert a pair of
these equations to solve for S+− and S−+ in terms of the count rates.

Assume the common case that the �ippers are perfect. Then the coe�cients
have the symmetry cαβµν = cβανµ . Then in each pair of equations above there are
only two di�erent coe�cients. For the last pair of equations the two coe�cients
are

c−+
+− = c+−−+ =

1

4
(tsA − etAtaA)(tsP − etP taP )

c+−+− = c−+
−+ =

1

4
(tsA + etAtaA)(tsP + etP taP )

As in the case of sf and nsf scattering only, we can de�ne the cross-section
asymmetry, −1 ≤ s ≤ 1, as

s =
S+− − S−+

S+− + S−+

and the count-rate asymmetry, −1 ≤ c ≤ 1, as
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c =
C+− − C−+

C+− + C−+
,

(1− c)C+− = (1 + c)C−+,

(1− s)S+− = (1 + s)S−+.

Recall that in the case of sf and nsf scattering only the result for the cross-
section asymmetry, s, in terms of the count-rate asymmetry, c, for perfect �ipper
was

s =
R+ 1

R− 1
c,

where R was the pure Bragg peak nsf �ipping ratio, which again for perfect
�ipper is

R =
tsAtsP + ettaAtaP
tsAtsP − ettaAtaP

.

In the present case, using the equations for C+− and C−+ it can be shown that

s/c+ 1

s/c− 1
=
c+−+−

c−+
+−

=
(tsA + etAtaA)(tsP + etP taP )

(tsA − etAtaA)(tsP − etP taP )
=
tsAtsP + ettaAtaP + etAtaAtsP + etP tsAtaP
tsAtsP + ettaAtaP − etAtaAtsP − etP tsAtaP

.

This can be rewritten in a similar form as before,

s =
Rsf + 1

Rsf − 1
c

where

Rsf =
c+−+−

c−+
+−

.

Note that typically Rsf � R as can be seen by inspection of terms in the ratio
c+−+−/c

−+
+−. In terms of the He-3 parameters

Rsf ∼=
1 + etA tanh (τ̃APHe3A)

1− etA tanh (τ̃APHe3A)

1 + etP tanh (τ̃PPHe3P )

1− etP tanh (τ̃PPHe3P )
.

For comparison the equivalent expression for R (with et = etAetP ) is

R ∼=
1 + et tanh (τ̃APHe3A) tanh (τ̃PPHe3P )

1− et tanh (τ̃APHe3A) tanh (τ̃PPHe3P )
.

For example if etA tanh (τ̃APHe3A) = etP tanh (τ̃PPHe3P ) = 0.95 then R = 19.5
and Rsf = 1521. Or if the terms are 0.9 then R = 9.52 and Rsf = 361. Thus,
for sf only scattering s = c is typically a good approximation.
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4.6 saturated ferromagnet

The case of S+− = S−+ = 0 and S++ 6= S−− is treated in a following section

5 inelastic scattering

All of the analysis can be applied to inelastic scattering by simply scaling τ̃ by
λ/λ0, where λ is the actual nominal wavelength of the incoming or scattered
neutrons, and λ0is the wavelength at which τ̃ was originally calculated. τ̃ occurs
in all the He-3 transmission factors and also in the correction coe�cients for the
He-3 transmission.

6 �ipping ratios and e�ciency measurements

6.1 spin-�ip and non-spin-�ip cross-sections only

In order to examine the performance of a polarized beam setup, it is required
that the cross-sections be known and fairly simple. One useful case is where
S++ = S−− = Snsf and S+− = S−+ = Ssf , so that the cross-section asymme-
try can be de�ned as

s =
Snsf − Ssf

Snsf + Ssf
.

Note that in this case where the scattering matrix commutes with the transport
and �ipper matrices, eA and eP only appear as the product eAeP , and there is no
way to separate the e�ects of the transport e�ciency before the sample from the
transport e�ciency after the sample. To perform that separation would require
S++ 6= S−− or S+− 6= S−+. Examples of the Snsf , Ssf case are pure non-spin-
�ip scattering, s = 1, pure spin-�ip scattering, s = −1 and spin-incoherent scat-
tering, s = −1/3. These cross-sections should be free of multiple scattering and
produce count rates that are in the linear range of the detector electronics. Then
expressions for the �ipping ratios using the polarizer �ipper or analyzer �ipper
can be used to determine transport and �ipping e�ciencies. These �ipping ra-
tios are given by RP,A(s) = CountsF lipperOFF++/CountsF lipperON+−,−+.
Thus

RP,A(s) =
t+ + ets t−

t+ − et(2eFP,A − 1)s t−
=

1 + ets t−/t+
1− et(2eFP,A − 1)s t−/t+

Recalling the expressions for t+ and t−, the ratio t−/t+ is

t−
t+

= Pn =
C−∆

C+∆
tanh (τ̃PPHe3P ) tanh (τ̃APHe3A) =

R0,nsf − 1

R0,nsf + 1

(R0,nsf is de�ned in the following) is approximately the product of the neutron
polarizations produced by the two He3 cells. Here etF = et(2eF − 1) depends
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on the product of the transport and �ipper e�ciencies. If the transport and
�ipper e�ciencies are unity then the expected �ipping ratios are

R0(s = 1) = R0,nsf =
1 + t−/t+
1− t−/t+

=
t++

t+−
=
t+At+P + t−At−P
t+At−P + t−At+P

=
Ĉ+∆

Ĉ−∆

cosh (τ̃APHe3A + τ̃PPHe3P )

cosh (τ̃APHe3A − τ̃PPHe3P )

Ĉ±∆ = 1 +

(
∆A

〈CA〉
± ∆P

〈CP 〉

)
tanh (τ̃APHe3A ± τ̃PPHe3P )

R0(s = −1) = R0,sf =
1

R0(1)

R0(s = −1/3) = R0,inc =
R0(1) + 2

2R0(1) + 1
.

If the �ipping e�ciency is unity then the expected �ipping ratios are

R(eF = 1, s) =
1 + ets t−/t+
1− ets t−/t+

,

and in particular

R(eF = 1, s = 1) =
1 + ett−/t+
1− ett−/t+

=
R0,nsf + εt
εtR0,nsf + 1

where εt = (1− et) / (1 + et) is the transport loss. Thus, when the �ipping
e�ciency is assumed to be unity, then the transport e�ciency can be determined
as

et =
1

s

(
R(s)− 1

R(s) + 1

)
t+
t−

=
1

s

R0,nsf + 1

R0,nsf − 1

(
R(s)− 1

R(s) + 1

)
.

or for nsf scattering the transport loss is given by

εt =
R0,nsf −Rnsf
R0,nsfRnsf − 1

∼=
1

Rnsf
− 1

R0,nsf

If both transport and �ipping e�ciencies are unknown then they cannot be
determined separately by a single �ipping ratio measurement. One of the e�-
ciencies can be found in terms of the other for a single �ipping ratio measurement
as

et =
1

s

R(s)− 1

R(s) (2eFP,A − 1) + 1

t+
t−

(21)
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6.1.1 using two di�erent cross-section asymmetries to measure e�-

ciencies

One way to uniquely determine the e�ciencies is to make �ipping ratio mea-
surements for two di�erent types of cross-sections (di�erent known s values).
Then

et =
f(s1, s2)

s1s2 [R(s1)−R(s2)]

t+
t−

and

2eF − 1 =
s2R(s1)− s1R(s2) + (s1 − s2)

f(s1, s2)

where

f(s1, s2) = R(s1)R(s2)(s1 − s2) + s2R(s2)− s1R(s1).

Another measurement that can be made is the ratio of observed counts when
both �ippers are OFF to when both �ippers are ON. This yields

RP+A(s) =
t+ + ets t−

t+ + et(2eFA − 1)(2eFP − 1)s t−

If RP+A(s) ≡ 1, and it can be assumed that the transport is the same for either
�ipper state, then this is a good indication that the �ipper e�ciencies are unity
(Note that RP+A(s) ≡ 1 if the �ipper e�ciency is zero also). In general it is
expected that this �ipping ratio is near unity. By measuring both RP+A(s)
and RP,A(s) two equations are generated but the product of the two �ipper
e�ciencies appears in one of the equations. If it can be assumed that the �ipper
e�ciencies are equal (as might be suggested if RP (s) = RA(s)) then a quadratic
equation can be found for the �ipper e�ciency,(

1− 1

RP,A

)
X2 +

(
1− 1

RP+A

)
X −

(
1

RP+A
− 1

RP,A

)
= 0

where X = 2eF − 1. Because RP+A(s) is near unity and RP,Ais not, an approx-
imate solution is

X = 2eF − 1 ∼= 1− RP+A − 1

1− 1/RP,A

or

eF ∼= 1− 1

2
RP,A

RP+A − 1

RP,A − 1

This solution for the �ipper e�ciency can then be used to solve for the transport
e�ciency21.
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6.1.2 using polarizer and analyzer �ippers to measure e�ciencies

More commonly when both polarizer and analyzer spin �ippers are available,
the e�ciencies can be determined by measuring all four polarized beam cross-
sections and the He-3 cell transmissions. This is usually done with pure non-
spin-�ip scattering, although for any cross-section asymmetry, s, the observed
counts for the four cross-sections are in equal time approximation

C++ = K(1 + sett−/t+)

C+− = K(1− setPt−/t+)

C−+ = K(1− setAt−/t+)

C−− = K(1 + setAPt−/t+)

where K is some proportionality constant, et = etAetP is the total transport
e�ciency, P = 2eFP − 1 and A = 2eFA − 1. Note that if Ssf = Snsf , then the
counts for all four polarized beam cross-sections are identical and independent
of beam transport and �ipping e�ciencies. For s 6= 0 it is easy to show that

P = 2eFP − 1 =
C−− − C+−

C++ − C−+

A = 2eFA − 1 =
C−− − C−+

C++ − C+− .

The error propagation produces

σ̃2
P =

σ2
P

P 2
=

σ2
C++ + σ2

C−+

(C++ − C−+)
2 +

σ2
C−− + σ2

C+−

(C−− − C+−)
2

σ̃2
A =

σ2
A

A2
=

σ2
C++ + σ2

C+−

(C++ − C+−)
2 +

σ2
C−− + σ2

C−+

(C−− − C−+)
2 .

and where σeF = 1
2σP,A.

If one of the �ipper e�ciencies is known to much greater accuracy than the
other, then the unknown �ipper e�ciency can be found by measuring just 3
cross-sections. For example, suppose P 6= 0 is known to some accuracy σP .
Then

P
(
C++ − C−+

)
= C−− − C+−

C++ −
(
C−− − C+−) /P = C−+
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A = 2eFA − 1 =
C−− − C++ − (C−− − C+−) /P

C++ − C+− .

A =
C−− (1− 1/P )− C++ + C+−/P

C++ − C+− .

The transport e�ciency can also be obtained from

set
t−
t+

=
C++ − C+−

PC++ + C+− =
C++ − C−+

AC++ + C−+
=

(C++ − C+−) (C++ − C−+)

C++C−− − C+−C−+
,

which is symbolically

et =
1

sPn

N+−N−+

D
.

The transport e�ciency can only be obtained as a function of the cross-section
asymmetry and the He-3 transmission factor, t−/t+, where

Pn =
t−
t+

=
C−∆

C+∆
tanh (τ̃APHe3A) tanh (τ̃PPHe3P )

and the correction coe�cient is

C−∆

C+∆
= CR ∼= 1 +

∑
m=P,A

∆m

〈Cm〉
2

sinh (2τ̃mPHe3m)
.

The error propagation for the beam transport e�ciency measurement thus de-
pends on uncertainties in τ̃ and PHe3, in addition to the uncertainties in the
measured count-rates, and is then given by

σ̃2
et =

∑
αβ

W 2
αβσ

2
Cαβ +

∑
m=P,A

W 2
m

(
σ̃2
PHe + σ̃2

τ̃

)
m

where

W++ =
1

N+− +
1

N−+
− C−−

D

W−− =
−C++

D

W+− =
−1

N+− +
C−+

D

W−+ =
−1

N−+
+
C+−

D

Wm=P,A =

[
2τ̃PHe3

sinh (2τ̃PHe3)

]
m

.

See section 3.1 for an explanation of the calculation of the errors σ̃2
PHe

and σ̃2
τ̃ .
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6.1.3 checking He-3 cell polarization during an experiment

Up to this point it has been assumed that the full time dependence of the He-3
cell transmissions must be taken into account, especially in the error propaga-
tion. If a �ipping ratio measurement is available at the approximate time of
data collection, then the uncertainty produced by the time dependences can be
reduced. This procedure will work for elastic-scattering data, since the �ipping
ratio is measured under elastic scattering conditions (although, as shown later,
it is possible to apply this procedure to inelastic data by making a wavelength
dependence correction to the �ipping ratio). To this end, rewrite the correction
formulae in terms of the �ipping ratio measured at the same time as the data.
Here it is assumed that Cnsf = C++and the spin-�ip counts can be collected
with either �ipper. The expression for the non-spin-�ip �ipping ratio (there is
absolutely no spin-�ip scattering), that is Rnsf = C++/C+−, is

Rnsf =
t+ + ett−
t+ − etBt−

=
1 + ett−/t+

1− etBt−/t+
.

where B = 2eF − 1. Solving for t−/t+ in terms of Rnsf

t−
t+

=
1

et

Rnsf − 1

RnsfB + 1
.

If the time dependence of t−/t+ is known, then it can be checked against a
measurement of Rnsf . However, it may turn out that measurements of Rnsf
are not clean. That is there may be spin-�ip contributions to the cross-section.
This is often a background contamination from magnetic inhomogeneity or from
hydrogen spin-incoherent scattering. Then, by measuring the spin-�ip and non-
spin-�ip count rates in the background, one can make a reasonable correction
to the �ipping ratio as shown in the following.

Now the cross-section solutions for spin-�ip and non-spin-�ip can be written
in terms of Rnsf ,

SnsfNKe =

(
1 + etF t−/t+
1 + ett−/t+

)
Cnsf − 1

Rnsf

(
1− ett−/t+

1− etF t−/t+

)
Csf (22)

or

SnsfNKe =

[(
2− 1

eF

)
+

1

Rnsf

(
1

eF
− 1

)]
Cnsf−

[
1

Rnsf

1

eF
−
(

1

eF
− 1

)]
Csf .

Separate out the �ipper e�ciency dependence by using 1/eF = 1 + (1− eF )/eF ,
to �nd

SnsfNKe = Cnsf − 1

Rnsf
Csf − ε

(
Cnsf − Csf

)
,

where
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ε =

(
1− eF
eF

)(
Rnsf − 1

Rnsf

)
.

The formula for the spin-�ip cross-section in terms of the pure non-spin-�ip
�ipping ratio is

SsfNKe = Csf − 1

Rnsf
Cnsf , (23)

and the formula for Snsf takes this same simple form when the �ipping e�ciency
is unity.

If the �ipping-ratio is going to be used to track PHe3, the measurement is
simplest using a Bragg-peak with no spin-�ip scattering. If there is spin-�ip
scattering, a case that is straightforward to treat is that the spin-�ip scattering
appears as a �at background, as for spin-incoherent scattering (hydrogen) or
random magnetic impurities. Then one can measure a �ipping-ratio at the
Bragg-peak and o� the Bragg-peak far enough to be in the background. These
two measurements yield

SsfBraggNKe = CsfBragg −
1

Rnsf
CnsfBragg

SsfbgNKe = Csfbg −
1

Rnsf
Cnsfbg

Now if SsfBragg = Ssfbg (�at background) then we can extract the non-spin-�ip
�ipping-ratio as

Rnsf =
(
CnsfBragg − C

nsf
bg

)
/
(
CsfBragg − C

sf
bg

)
This formula corrects for any �at background including any fast neutron back-
ground, which clearly gets cancelled by the subtractions in the formula. Thus
it is often useful to make the �ipping ratio measurement on a Bragg peak and
in the background.

The formula for observed counts applies to the case that the neutron wave-
length is λ/2, with the caveat that if a current-�ipper is used it will depolarize
the beam (if it is set to �ip λ) so that eF = 1/2, B = 2eF − 1 = 0.(
Cnsf

Csf

)
=
N

2

1

2

(
t+ + ett− t+ − ett−
t+ − etBt− t+ + etBt−

)(
Snsf

Ssf

)
=
N

2

1

2
M

(
Snsf

Ssf

)
If the beam is mixed with λ fraction a1 and λ/2 fraction a2 reaching the

detector, and the cross-sections for λ and λ/2 are equal, then we can write
equations for the combined count-rate as(

Cnsf

Csf

)
=
N

2

1

2

(
a1Mλ + a2Mλ/2

)( Snsf

Ssf

)

44



In the case that a He3-�ipper is used, the combined matrices have the same
form as above, so that we can simply replace t+ and t− in the solution,

t+ → t̂+ = a1t+λ + a2t+λ/2

t− → t̂− = a1t−λ + a2t−λ/2

In the case that a current-�ipper is used, we must also replace B in the solution,

B → B̂ = Ba1t−λ/t̂−

Thus we have shown that �ipping ratio measurements can be used to track
the time-dependence of the He3-cell transmissions, even when there is back-
ground or λ/2 contamination. If the user is going to run the experiment with
λ/2 contamination, it helps to build con�dence if the relation between Rnsf
and the transmissions is checked by comparing the clean beam case to the λ/2
contamination case. This comparison can be used to make sure that a1 and a2

make sense.
The best way to keep track of the polarization of the He-3 cells is to use beam

monitors as shown in the diagram at the start of this document, and measure
the transmissions as a function of time. If this is not possible, measurements
of the non-spin-�ip �ipping ratio can be used to monitor the polarized beam
performance. Also, as will be shown in the following section, these �ipping ra-
tio measurements aid in correcting polarized beam data. Typically, previously
measured values of transport and �ipping e�ciencies are assumed to remain
in e�ect, and the �ipping ratio measurement is used to check on the expected
polarizing e�ciency of the He-3 cells. The solution for the polarizing e�ciency,
Pn, in terms of the measured non-spin-�ip �ipping ratio and the transport e�-
ciencies is

Pn =
t−
t+

=
1

et

Rnsf − 1

Rnsf (2eF − 1) + 1
.

The error propagation for measuring this polarizing e�ciency int terms of the
�ipping ratio is

σ̃2
Pn = σ̃2

et+

(
2eFRnsf

Rnsf (2eF − 1) + 1

)2

σ̃2
eF +

(
2eFR

2
nsf

[Rnsf − 1] [Rnsf (2eF − 1) + 1]

)2

σ̃2
Rnsf

where

σ̃2
Rnsf

= σ̃2
Cnsf + σ̃2

Csf ,

and Cnsf and Csf are the count rates that determine the �ipping ratio. Recall
that the expected value of Pn is

P̄n =
t−
t+

= CR tanh (τ̃APHe3A) tanh (τ̃PPHe3P ) ,

45



and the error propagation for this expected value was calculated previously as

σ̃2
P̄n

=
∑

m=P,A

[
2τ̃PHe3

sinh (2τ̃PHe3)

]2

m

(
σ̃2
PHe + σ̃2

τ̃

)
m
.

The values for σ̃2
PHe

(t) and σ̃2
τ̃ are given in section 3.1.

Of course if there is already con�dence in the expected value of P̄n, then the
�ipping ratio measurement can be used to check on the transport e�ciency.

A beam monitor after the He3 polarizer can be used to help track its polar-
ization. The monitor rate as a function of time, due to the decay of the He3
polarization can be written as,

m(E, s) = M(E)
∑
n

1

n
an(E)

1

2

[
tP+λ/n(s) + tP−λ/n(s)

]
/
∑
n

1

n
an(E)

Here s is the time in seconds, M(E) is the energy dependent monitor rate
with no cell in the beam, and tP±λ/n(s) are the transmissions of the He3 po-
larizer for preferred and non-preferred states at the given wavelength order and
time. Normally when cell transmissions are measured we calculatedM(E) based
on expected order fractions, and then compare with the measured M(E) with
the cell out of the beam. The He3 polarization is known at start time si, so
that when we measure a monitor-rate at later time, sf , then

m(E, sf )

M(E)
=
∑
n

1

n
an(E)

1

2

[
tP+λ/n(sf ) + tP−λ/n(sf )

]
/
∑
n

1

n
an(E)

This allows a calculation of the He3 polarization at time sf .

6.2 saturated ferromagnet

Another set of cross-sections that can be useful in characterizing a polarized
beam setup, has the conditions that S+− = S−+ = Ssf = 0 and S++ 6= S−−.
For example, these cross-sections apply to a saturated ferromagnet Bragg peak.
It is important that complete saturation is reached, otherwise there will be con-
tributions from spin-�ip scattering or beam depolarization from ferromagnetic
domains. In this case the cross terms in the expression for the transfer matrix
elements do not cancel. This cancellation had simpli�ed these matrix elements
in the case of spin-�ip and non-spin-�ip scattering symmetry, so that there was
no dependence on solely the pre-sample or post-sample side of the beam path
transport. Breaking this symmetry complicates the expressions, but does allow
extraction of the separate beam transport e�ciencies. The expressions for the
expected count-rates are

Cαβ/
N

2
= cαβ++S

++ + cαβ−−S
−−.

Explicitly writing these out
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C++/
N

8
= (tsA + etAtaA) (tsP + etP taP )S+++(tsA − etAtaA) (tsP − etP taP )S−−

C−−/
N

8
= (tsA − etAAtaA) (tsP − etPPtaP )S+++(tsA + etAAtaA) (tsP + etPPtaP )S−−

C+−/
N

8
= (tsA + etAtaA) (tsP − etPPtaP )S+++(tsA − etAtaA) (tsP + etPPtaP )S−−

C−+/
N

8
= (tsA − etAAtaA) (tsP + etP taP )S+++(tsA + etAAtaA) (tsP − etP taP )S−−,

where recall that A = 2eFA − 1 and P = 2eFP − 1. Now de�ne the following
combinations of count rates,

dP = C++ − C+−

dA = C−− − C−+

sP = PC++ + C+−

sA = C−− + PC−+,

and also the cross-section asymmetry,

s =

(
S++ − S−−

S++ + S−−

)
.

Then if P > 0 (else the expected count-rate di�erences dP and dAwould be
zero) and A > 0 (else dP + dA = 0) and etA > 0,

1

etA

tsA
taA

s =
AdP − dA
dP + dA

. (24)

However, even if P = 0 the following equation holds true provided A > 0 (else
sP = sA),

etA
taA
tsA

s =
sP − sA
AsP + sA

. (25)

Also if P > 0 and A > 0 there is the result

s2 =

(
AdP − dA
dP + dA

)(
sP − sA
AsP + sA

)
=
N1N2

D1D2
,
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which is independent of transport e�ciency (except that etA > 0) and indepen-
dent of the time dependence of the He-3 transmission. These formulae allow
determination of the beam transport e�ciency on the analyzer side, or a mea-
surement of the cross-section asymmetry, s, or a check on the He-3 transmission
factor taA/tsA. Note that the second equation, 25, that holds true even if P = 0
indicates that s can be measured even with an unpolarized incident beam pro-
vided that A > 0 (otherwise sP = sA) and etA > 0. This is due to the fact
that by the nature of the sample cross-sections, the scattered beam is polarized
(S++ 6= S−−). For the error propagation on the analyzer-side beam-transport-
e�ciency, etA, the transmission factor, taA/tsA, is required. Recall that this
is

taA
tsA

=
CaA
CsA

tanh (τ̃APHe3A)

where the ratio of correction coe�cients is

CaA
CsA

= 1 +
∆A

〈CA〉

[
2

sinh (2τ̃APHe3A)

]
.

Using the �rst equation, 24, to measure etA

etA = s
tsA
taA

dP + dA
AdP − dA

,

and the error propagation for etA is then

σ̃2
etA =

∑
αβ

W 2
αβσ

2
Cαβ +W 2

Aσ̃
2
A +W 2

t

(
σ̃2
PHe + σ̃2

τ̃

)
A

+ σ̃2
s ,

where

Wαβ =
αβ

dP + dA
− βAδα+

AdP − dA

WA =
AdP

AdP − dA

Wt =
2τ̃APHe3A

sinh (2τ̃APHe3A)
.

Using the �rst equation, 24, to measure s

s = etA
taA
tsA

AdP − dA
dP + dA

,

the same error propagation applies so that

σ̃2
s =

∑
αβ

W 2
αβσ

2
Cαβ +W 2

Aσ̃
2
A +W 2

t

(
σ̃2
PHe + σ̃2

τ̃

)
A

+ σ̃2
etA .

48



Similarly the error propagation for s2is given by

σ̃2
s2 =

∑
αβ

W 2
αβσ

2
Cαβ +

∑
X=A,P

W 2
Xσ

2
X ,

where

W++ =

(
A

N1
− 1

D1

)
+

(
1

N2
− A

D2

)
P

W−− =

(
1

N1
+

1

D1

)
+

(
1

N2
+

1

D2

)

W+− =

(
A

N1
− 1

D1

)
−
(

1

N2
− A

D2

)

W−+ =

(
1

N1
+

1

D1

)
−
(

1

N2
+

1

D2

)
P

WA =
dP
N1
− sP
D2

WP =
C++ − C−+

N2
− AC++ + C−+

D2
.

7 wavelength and path-length variation of He-3

transmission

In order to account for wavelength dependence in the He-3 transmission, take

τ = τ(λ) = nσ0(λ0)L0
λ

λ0
= τ0

λ

λ0
.

where λ0 serves as a reference wavelength for σ0. We have already shown that
the averaged transmission in the Gaussian approximation for the distributions
of wavelength and pathlength deviations from average, can be expressed as

< t± >= C±t±0

t±0 = tE exp (−〈τ〉 (1∓ PHe3)) = exp (−τ̃±)

C± = d
−1/2
λL exp

1

2

σ2
λ + σ2

L − 2σ2
λσ

2
Lτ̃±

dλL
τ̃2
±
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dλL = 1− σ2
λσ

2
Lτ̃

2
± > 0

〈τ〉 = nσ0 〈L〉
〈
λ̃
〉

tE is roughly wavelength independent, and is about 0.86 for the cells used at
the NCNR made of GE180 glass. L0is the path length along the center line of
the He-3 cell. Also recall that σλ is the dimensionless distribution standard-
deviation for λ/λ0, and σL is the dimensionless distribution standard-deviation
for L/ 〈L〉.

As a simple example, the neutron path-length through the He-3 may vary
due to beam divergence or variation in the separation of the cell walls. If the
beam divergence can be treated by assuming parallel cells walls so that the angle
dependence of the path length is

L(φ) = L0/ cos(φ) ∼= L0(1 +
1

2
γ2 +

1

2
δ2)

where L0 is the minimal He-3 thickness for a beam perpendicular to the cell �at
walls (this is the value of L that goes into τ±), φ is the neutron path divergence
angle with respect to the perpendicular to the cell walls, and γ and δ are the
corresponding divergence angles in the scattering plane and perpendicular to the
scattering plane respectively. Then using

〈
x4
〉

= 3σ4
x for Gaussian distributions,

we can compute the average pathlength and estimate its distribution width,

〈L/L0〉 = 1 +
1

2

(
σ2
γ + σ2

δ

)
〈

(L/L0)
2
〉

= 1 + σ2
γ + σ2

δ +
3

4

(
σ4
γ + σ4

δ

)
+

1

2
σ2
γσ

2
δ

〈
(L/L0)

2
〉
− 〈L/L0〉2 =

1

2

(
σ4
γ + σ4

δ

) ∼= σ2
L

7.1 Triple-Axis Case with �at end-windows

Consider the case that the incident neutrons have been scattered by a monochro-
mating crystal, so that the incident and outgoing deviation angles in the scat-
tering plane, γ0 and γ1, are correlated vai the wavelength according to Bragg's
law. The transmission probability function (TPF) depends on the crystal mo-
saics and collimations before and after the crystal. The scattering plane TPF
can be derived in terms of the deviation angles (measured positive with respect
to nominal in the clockwise from above direction), collimations before and after
the crystal, α0and α1, and crystal scattering-plane mosaic, ηH , as
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PH(γ0, γ1) = NH exp

{
−1

2

[(
γ0

α0

)2

+

(
γ0 + γ1

2ηH

)2

+

(
γ1

α1

)2
]}

dγ0dγ1.

The Bragg's law correlation gives

γ1 = γ0 + 2
∆λ

λ
tan(ωM )

where ωM is the Bragg angle of the crystal and ∆λ = λ − λM , with λM =
2dM sin(ωM ). Of course, dM is the crystal d-spacing for the re�ecting atomic
planes. Thus the in-plane TPF can be written in terms of γ1 and x = ∆λ

λ as

PH = NH exp

{
−1

2

[(
γ1 − 2x tan(ωM )

α0

)2

+

(
γ1 − x tan(ωM )

ηH

)2

+

(
γ1

α1

)2
]}

dγ1dx

or

PH(γ1, x) = NH exp

{
−1

2

[
Aγ2

1 − 2Bγ1x+ Cx2
]}

dγ1dx

where

NH =
1

2π

(
AC −B2

)1/2
=

1√
2π

√
α2

0 + α2
1 + 4η2

H

α0α1
tan(ωM )

1√
2π

1

ηH

A =
1

η2
H

α2
0α

2
1 +

(
α2

0 + α2
1

)
η2
H

α2
0α

2
1

B =
1

η2
H

α2
0 + 2η2

H

α2
0

tan(ωM )

C =
1

η2
H

α2
0 + 4η2

H

α2
0

tan2(ωM ).

If the crystal mosaic is zero, then∆λ and γ are perfectly correlated so that

PH0(γ1, x) = NH0δ(γ1 − x tan(ωM )) exp

{
−1

2
C0x

2

}
dγ1dx

where now

NH0 =
1√
2π

√
α2

0 + α2
1

α0α1
tan(ωM )

C0 =
α2

0 + α2
1

α2
0α

2
1

tan2(ωM ).
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If there is no crystal then just the collimation determines the angle spread which
is independent of the wavelength distribution.

PH00 =
1√

2πσγ
exp

{
−1

2
γ2

1/σ
2
γ

}
dγ1

1√
2πσx

exp

{
−1

2
x2/σ2

x

}
dx

σ2
γ =

α2
0α

2
1

α2
0 + α2

1

If we integrate over all the deviation angles we get the uncorrelated wavelength
distribution for the neutrons scattered from the crytstal, x = ∆λ

λ∫
PH(γ1, x)dγ1 =

1√
2πσx

exp

{
−1

2
x2/σ2

x

}
dx

σ2
x =

(
C −B2/A

)−1/2
= cot(ωM )

(
α2

0α
2
1 +

(
α2

0 + α2
1

)
η2
H

α2
0 + α2

1 + 4η2
H

)1/2

The TPF for deviation angles out of the scattering plane is

PV (δ0, δ1) = NV exp

{
−1

2

[(
δ0
β0

)2

+

(
δ1 − δ0

2ηV sin(ωM )

)2

+

(
δ1
β1

)2
]}

dδ0dδ1

where δ0 and δ1are the deviation angles before and after the crystal, β0 and β1

the corresponding vertical e�ective collimations and ηV the crystal mosaic in
the out of scattering-plane direction. Integrating over δ0 and normalizing gives

PV (δ1) =
1√

2πσδ
exp

{
−1

2
δ2
1/σ

2
δ

}
dδ1

where

σ2
δ =

β2
1

[
β2

0 + (2ηV sin(ωM ))
2
]

β2
1 +

[
β2

0 + (2ηV sin(ωM ))
2
]

To remove the crystal just set ηV sin(ωM ) = 0.
Now the average transmission can be calculated. For this calculation use

λ = λM (1 + x) in the expression for the transmission so that

t± = tE exp

(
−τ±M (1 + x)(1 +

1

2
γ2 +

1

2
δ2)

)
where τ±M = τ±0

λM
λ0

. λM is the average wavelength produced by the monochro-
mator and λ0is the reference wavelength at which the He-3 absorption cross-
section in τ±0 is evaluated. The expansion of the transmission up to second
order in the deviations is just
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t± = t±0ε

{
1− τ±M (x+

1

2
γ2 +

1

2
δ2) +

1

2
τ2
±Mx

2

}
where t±0ε = tE exp (−τ±M ) is the transmission for zero deviations. The average
transmission requires the integrals

< t± >= t±0ε

∫
PH(γ, x)PV (δ)

{
1− τ±M (x+

1

2
γ2 +

1

2
δ2) +

1

2
τ2
±Mx

2

}
dγdx dδ

The perfect crystal case with a delta function produces

< t± >= t±0ε

{
1− 1

2
τ±M

[(
tan2(ωM )− τ±M

)
σ2
γ + σ2

δ

]}
= Ĉ±0t±0,

where σ2
γ = 1/C0 and σ

2
δ = 1/AV . Note that the sign can change for the in-plane

part of the correction for τ+M and τ−M .
The more general case requires tedious integration. The δ2 integral term is

simply ∫
PH(γ, x)PV (δ)δ2dγdx dδ = σ2

δ .

The γ2term integrated over γ yields∫
PH(γ, x)PV (δ)γ2dγdx dδ = NH

√
2π

A

∫
dx exp

[
−1

2

(
C − B2

A

)
x2

][
1

A
+

(
B

A
x

)2
]

which is∫
PH(γ, x)PV (δ)γ2dγdx dδ =

C

AC −B2
=
α2

1

(
α2

0 + 4η2
H

)
α2

1 + α2
0 + 4η2

H

= σ2
γ .

To remove the crystal set ηH = 0.
The integral of the linear x term can be shown to be zero. The integral of

the x2 term is∫
PH(γ, x)PV (δ)x2 dγdx dδ =

A

AC −B2
=

(
α2

1 + α2
0

)
η2
H + α2

0α
2
1

α2
1 + α2

0 + 4η2
H

cot2(ωM ) = σ2
x =

(
σλ
λM

)2

.

To modify these expressions for an analyzer cell in 2-axis mode, fudge the cell
d-spacing to be that of the monochromator, as well as the horizontal collima-
tions, so that one gets roughly the wavelength spread due to the monochromator,
but set ηH = 0 and ηV = 0. The sum of all terms yields

< t± >= t±0ε

{
1− 1

2
τ±M

[
σ2
γ + σ2

δ

]
+

1

2
τ2
±Mσ

2
x

}
= Ĉ±t±0

This expression agrees roughly with the formalism layed out previously, as
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t±0ε exp

(
−1

2
τ±M

[
σ2
γ + σ2

δ

]
+

1

2
τ2
±Mσ

2
x

)
= t±0 exp

(
1

2
τ2
±Mσ

2
x

)
which is what we would calculate if the width of the pathlength distribution
is zero. For thermal triple-axis instruments τ±M is never very large, while the
angular divergences are relatively small.

Note that in this case of �at windows, the wavelength variation increases
the transmission while the angular distribution decreases the transmission. The
e�ects are largest for the non-preferred spin-state.

7.2 E�ect of cell geometry on the path length

7.2.1 end-window geometry

There is a correction to the transmission from the varying path lengths due to
the shape of the end windows. The end-window shape is characterized by its
radius of curvature, R (R → ∞ for �at windows). In order to calculate this,
take the coordinate system origin at the center of the He-3 cell with y-axis up
and the primary beam direction as the z-axis, so that in terms of the x(γ) and
y(δ) deviation angles the neutron direction is

n̂ = cos (δ) [cos (γ) ẑ + sin (γ) x̂] + sin (δ) ŷ.

In the z = 0 plane passing through the cell center, assume that the neutron
passes through the point P = (X,Y, 0). Then the neutron path is along the line

rn = [X + β cos (δ) sin (γ) , Y + β sin (δ) , β cos (δ) cos (γ)] .
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If the primary neutron beam is displaced along the Y-axis, the same co-
ordinate system can be used, but divergence angles will be associated with a
non-zero Y-value. The expression for beam direction remains the same. Find
the intersections of this line with the front and back spherical faces of the He-3
cell in order to calculate the path length. If R > L0 is the radius of curvature
for the spherical faces and L0 is the straight through diameter of the cell, then
points (xf , yf , zf ) on the front (beam entrance) face ( where zf < 0 ) satisfy[(

R− L0

2

)
− zf

]2

+ x2
f + y2

f = R2,

z2
f − 2

(
R− L0

2

)
zf +

(
R− L0

2

)2

+ x2
f + y2

f = R2

z2
f − 2

(
R− L0

2

)
zf + x2

f + y2
f +

1

4
L2

0 −RL0 = 0

zf =

(
R− L0

2

)
−

[(
R− L0

2

)2

+RL− x2
f − y2

f −
1

4
L2

0

]1/2

zf =

(
R− L0

2

)
−R

[
1−

(
x2
f + y2

f

)
/R2

]1/2

zf =

(
R− L0

2

)
−
(
R2 − x2

f − y2
f

)1/2

zf = −L0

2
+R

{
1−

[
1− (x2

f + y2
f )/R2

]1/2}
Similarly, the back (beam exit) points (xb, yb, zb) with zb > 0 satisfy[(

R− L0

2

)
+ zb

]2

+ x2
b + y2

b = R2

zb = −
(
R− L0

2

)
+
(
R2 − x2

b − y2
b

)1/2

zb = +
L0

2
−R

{
1−

[
1− (x2

b + y2
b )/R2

]1/2}
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and if it can be assumed that x2
f + y2

f � R2, an approximate expression for zf
is

zf = −L0

2
+

1

2

x2
f + y2

f

R
.

Now use the expression for the neutron path to �nd the intersection point

xf = X + βf cos (δ) sin (γ)

yf = Y + βf sin (δ)

zf = βf cos (δ) cos (γ) .

Exactly,[
βf cos (δ) cos (γ)−

(
R− L0

2

)]2

+[X + βf cos (δ) sin (γ)]
2
+[Y + βf sin (δ)]

2
= R2

[
βb cos (δ) cos (γ) +

(
R− L0

2

)]2

+[X + βb cos (δ) sin (γ)]
2
+[Y + βb sin (δ)]

2
= R2

Cancel out the R2 terms and �nd

β2
f + 2Bfeβf + Ce = 0

β2
b + 2Bbeβb + Ce = 0

Bfe = −
(
R− L0

2

)
cos (δ) cos (γ) +X cos (δ) sin (γ) + Y sin (δ)

Bbe = +

(
R− L0

2

)
cos (δ) cos (γ) +X cos (δ) sin (γ) + Y sin (δ)

Ce = −L0

(
R− L0

4

)
+
(
X2 + Y 2

)
The correct signs for the roots are determined by the known signs of βfe and
βbe,

βfe = −Bfe −
(
B2
fe − Ce

)1/2
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βbe = −Bbe +
(
B2
be − Ce

)1/2
so that

Le(γ, δ,X, Y ) = βbe−βfe = −2

(
R− L0

2

)
cos (δ) cos (γ)+

(
B2
be − Ce

)1/2
+
(
B2
fe − Ce

)1/2
Let K =

(
R− L0

2

)
cos (δ) cos (γ) and A = X cos (δ) sin (γ) + Y sin (δ). Then

Le(γ, δ,X, Y ) = −2K +K

[(
A

K
− 1

)2

− Ce
K2

]1/2

+K

[(
A

K
+ 1

)2

− Ce
K2

]1/2

This becomes an expansion in 1/R by using a Taylor's series for the square-root
terms.

Le(γ, δ,X, Y ) = −2K +K [1− ε1 + ε2]
1/2

+K [1 + ε1 + ε2]
1/2

where

ε1 =
2A

K

ε2 =
A2

K2
− Ce
K2

.

Now we can expand in terms of the small 1/R quantities ε1 and ε2.
Use

[1 + ε]
1/2

= 1 +
1

2
ε− 1

8
ε2 +

1

16
ε3 − 5

128
ε4...

First look at the solution for the case that δ = γ = 0

Bfe(δ = γ = 0) = −
(
R− L0

2

)

Bbe(δ = γ = 0) = +

(
R− L0

2

)

Ce(δ = γ = 0) = −L0

(
R− L0

4

)
+
(
X2 + Y 2

)

B2
fe − Ce = B2

be − Ce = R2 − (X2 + Y 2)
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(
B2
fe − Ce

)1/2
=
(
B2
be − Ce

)1/2
= R

[
1− (X2 + Y 2)/R2

]1/2
βfe = −Bfe −

(
B2
fe − Ce

)1/2
=

(
R− L0

2

)
−R

[
1− (X2 + Y 2)/R2

]1/2

βbe = −Bbe +
(
B2
be − Ce

)1/2
= −

(
R− L0

2

)
+R

[
1− (X2 + Y 2)/R2

]1/2
Approximating the square root

βfe(δ = γ = 0) = −L0

2
+

1

2
(X2 + Y 2)/R

βbe(δ = γ = 0) = +
L0

2
− 1

2
(X2 + Y 2)/R

Le(0, 0, X, Y ) = βbe − βfe = L0 − (X2 + Y 2)/R

Also look at the case that X = Y = 0.

Bfe(X = Y = 0) = −
(
R− L0

2

)
cos (δ) cos (γ)

Bbe(X = Y = 0) = +

(
R− L0

2

)
cos (δ) cos (γ)

Ce(X = Y = 0) = −L0

(
R− L0

4

)

(
B2
fe − Ce

)1/2
=
(
B2
be − Ce

)1/2
=

{(
R− L0

2

)2

cos2 (δ) cos2 (γ) + L0

(
R− L0

4

)}1/2

βfe(X = Y = 0) =

(
R− L0

2

)
cos (δ) cos (γ)−

{(
R− L0

2

)2

cos2 (δ) cos2 (γ) + L0

(
R− L0

4

)}1/2

βbe(X = Y = 0) = −
(
R− L0

2

)
cos (δ) cos (γ)+

{(
R− L0

2

)2

cos2 (δ) cos2 (γ) + L0

(
R− L0

4

)}1/2
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Le(γ, δ, 0, 0) = βbe−βfe = −2

(
R− L0

2

)
cos (δ) cos (γ)+2

{(
R− L0

2

)2

cos2 (δ) cos2 (γ) + L0

(
R− L0

4

)}1/2

Note that for R = L0/2 this correctly gives Le(γ, δ, 0, 0, R = L0/2) = L0. For
R→∞, approximate the square root,

Le(γ, δ, 0, 0) = βbe−βfe = −2

(
R− L0

2

)
cos (δ) cos (γ)

1−

{
1 + L0

(
R− L0

4

)
/

[(
R− L0

2

)2

cos2 (δ) cos2 (γ)

]}1/2


Le(γ, δ, 0, 0) = βbe − βfe = L0

(
R− L0

4

)
/

[(
R− L0

2

)
cos (δ) cos (γ)

]

Le(γ, δ, 0, 0, R→∞) = βbe − βfe = L0/ [cos (δ) cos (γ)]

The exact expression is unwieldy for doing averaging over divergence angles
and or beam coordinates. Practically, the small angle approximation for the
divergence angles can be used, and if we discard terms of order 3 or greater in
the angles,

Bf = −
(
R− L0

2

)[
1− 1

2

(
δ2 + γ2

)]
+Xγ + Y δ

Bb = +

(
R− L0

2

)[
1− 1

2

(
δ2 + γ2

)]
+Xγ + Y δ

C = −L0

(
R− L0

4

)
+
(
X2 + Y 2

)

B2
f =

(
R− L0

2

)2 [
1−

(
δ2 + γ2

)]
−2

(
R− L0

2

)
(Xγ + Y δ)+

(
R− L0

2

)(
δ2 + γ2

)
(Xγ + Y δ)+(Xγ + Y δ)

2

B2
b =

(
R− L0

2

)2 [
1−

(
δ2 + γ2

)]
+2

(
R− L0

2

)
(Xγ + Y δ)−

(
R− L0

2

)(
δ2 + γ2

)
(Xγ + Y δ)+(Xγ + Y δ)

2

Normally the last two terms should be smaller than the others and can be
omitted, as they are quartic in small quantities. Note that the terme1 =(
R− L0

2

) (
δ2 + γ2

)
(Xγ + Y δ) which is cubic in the small divergence angles

could be comparable to the last term, e2 = (Xγ + Y δ)
2
becaus of R.

Approximating the square root and omitting e1 and e2,
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(
B2
f − C

)1/2
= R

{
1− 1

2

(
1− L0

2R

)2 (
δ2 + γ2

)
−
(

1− L0

2R

)
(Xγ + Y δ) /R− 1

2

(
X2 + Y 2

)
/R2

}

(
B2
b − C

)1/2
= R

{
1− 1

2

(
1− L0

2R

)2 (
δ2 + γ2

)
+

(
1− L0

2R

)
(Xγ + Y δ) /R− 1

2

(
X2 + Y 2

)
/R2

}

βf =

(
R− L0

2

)[
1− 1

2

(
δ2 + γ2

)]
+Xγ + Y δ −

(
B2
f − C

)1/2

βb = −
(
R− L0

2

)[
1− 1

2

(
δ2 + γ2

)]
+Xγ + Y δ +

(
B2
b − C

)1/2

L(γ, δ,X, Y ) = βb−βf = −2

(
R− L0

2

)[
1− 1

2

(
δ2 + γ2

)]
+
(
B2
b − C

)1/2
+
(
B2
f − C

)1/2

L(γ, δ,X, Y ) = βb − βf = L0

[
1 +

1

2

(
δ2 + γ2

)(
1− L0

2R

)]
−
(
X2 + Y 2

)
/R

L(γ, δ,X, Y )/L0 =

[
1 +

1

2

(
δ2 + γ2

)(
1− L0

2R

)]
−
(
X2 + Y 2

)
/ (L0R)

Note that δ2+γ2 just gets multiplied by 1− L0

2R , so this is the curvature correction
factor that multiplies σ2

γ + σ2
δ in the expression for the averaged transmission.

Thus, curvature weakens the increase in pathlength due to angular divergence,
but also strengthens the decrease in pathlength due to beam cross-sectional
area. The general expression for the transmission becomes

t± = tE exp

(
−τ±0

λ

λ0

L

L0

)

= tE exp

(
−τ±M (1 + x)

[
1 +

1

2

(
γ2 + δ2

)(
1− L0

2R

)]
+ τ±M (1 + x)

(
X2 + Y 2

)
/ (L0R)

)

= tE exp

(
−τ±M

(
1− X2 + Y 2

L0R

)
− τ±M (1 + x)

[
1

2

(
γ2 + δ2

)(
1− L0

2R

)]
− τ±Mx

(
1− X2 + Y 2

L0R

))
.

Keeping only terms up to second order this can be approximated as

t± = tE exp

(
−τ±M

(
1− X2 + Y 2

L0R

)
− τ±M

[
1

2

(
γ2 + δ2

)(
1− L0

2R

)]
− τ±Mx

)
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= tE exp

[
−τ±M

(
1− X2 + Y 2

L0R

)]{
1− τ±M

[
1

2

(
γ2 + δ2

)(
1− L0

2R

)]
− τ±Mx+

1

2
τ2
±Mx

2

}
.

As before, the linear term in x will average to zero, so for the averaged trans-
mission

< t± >= tE exp

[
−τ±M

(
1−

〈
X2 + Y 2

〉
L0R

)]{
1− τ±M

[
1

2

〈
γ2 + δ2

〉(
1− L0

2R

)]
+

1

2
τ2
±M

〈
x2
〉}

,

and we have the previous expression for the average transmission, with now

σ2
γ + σ2

δ scaled by
(
1− L0

2R

)
and τ±M scaled by 1− 〈X

2+Y 2〉
L0R

.
Again this �ts into the formalism for averaging the transmission as

t±0 = tE exp

[
−τ±M

(
1−

〈
X2 + Y 2

〉
L0R

+
1

2

〈
γ2 + δ2

〉(
1− L0

2R

))]

C± = exp

(
1

2
τ2
±M

〈
x2
〉)

and the pathlength distribution width is assumed zero. A rough estimate for
the pathlength distribution width is

σ2
L
∼=

1

2

(
σ4
γ + σ4

δ

)
+ 2

(
σ4
X + σ4

Y

)
/(L0R)2

As promised, we have arranged the averaged transmission in the form

< t± >= C̃±tE exp (−τ̃±M )

with τ̃±M = τ̃M (1∓ PHe3) and C̃± ∼= 1.
To compute the unpolarized beam transmission requires 〈C〉 = (C++C−)/2.

(C+ + C−)/2 = 1− 1

2
〈εL〉 (τ+m + τ−m) +

1

4

(〈
ε2λ
〉

+
〈
ε2L
〉) (

τ2
+m + τ2

−m
)

〈C〉 = 1− τm 〈εL〉+
1

2
τ2
m

(〈
ε2λ
〉

+
〈
ε2L
〉) (

1 + P 2
He3

)
Soller type collimators with vertical blades, provide some degree of trans-

lational invariance across the beam in the scattering plane. This makes the
divergence angles for the most part uncorrelated with the neutron cell-crossing
point (X,Y, 0) and the averages can be performed separately. This is no longer
true when using radial collimators which are typically focussed to the sample
position. Then γ and X are correlated. If the sample is small enough then we
can correlate δ with Y as well. We can directly use the formulae in the following
section
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γ = (X − Sx)/ |Sz|

δ = (Y − Sy)/ |Sz|

where |Sz| is the distance from the sample to the analyzing He3 cell center, and
Sx, Sy locate the neutron at the sample.

7.2.2 SANS �at area detector with end-window geometry

In the case of small-angle scattering onto an area detector, wavelength and
pathlength deviations are uncorrelated, but the pathlength and deviation an-
gles are very correlated. The neutron coordinate at the detector is relatively
well de�ned, so that the best formulation is obtained by averaging over sam-
ple coordinates. Let Sz < 0 be the distance from the sample to the analyzing
He3 cell center, let D = Dz − Sz be the sample to detector distance (Dz is
the He3 cell center to detector distance). Then if Dx, Dy locate the neutron
on the area-detector, de�ne (D2

x + D2
y)/D2 = tan2θ, and let Sx, Sy locate the

neutron at the sample. That is, given the detector position, there are only two
degrees of freedom to average over, the sample coordinates, Sx and Sy. We can
use the following relations between the deviation angles and He3 cell midplane
coordinates of the neutron, X and Y ,

γ = (Sx −X)/Sz = (Dx − Sx)/D

δ = (Sy − Y )/Sz = (Dy − Sy)/D

X = Sx − Sz(Dx − Sx)/D

Y = Sy − Sz(Dy − Sy)/D

Then we can series expand the approximated expression for the path-length in
terms of the sample and detector coordinates.

Ls/L0 = L(Sx, Sy, Dx, Dy)/L0 = 1+

[
1

2

(
1− L0

2R

)
− S2

z

RL0

]
D2
x +D2

y

D2
+

[
1

2

(
1− L0

2R

)
− D2

z

RL0

]
S2
x + S2

y

D2

This expression assumes that the sample coordinates will be averaged and the
sample is symmetric about the origin so that cross terms in Sx and Sy will
average to zero. Otherwise add the cross term (from X2 + Y 2 and γ2 + δ2) so
that total L/L0 = Ls/L0 + Lxy/L0, with

Lxy(Sx, Sy, Dx, Dy)/L0 = −2

[
1

2

(
1− L0

2R

)
− SzDz

RL0

]
SxDx + SyDy

D2
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〈Lxy(Sx, Sy, Dx, Dy)/L0〉 = −2 (c− sdz) 〈Sx〉 〈Dx〉+ 〈Sy〉 〈Dy〉
D2

If this asymmetry is not needed,

Ls/L0 = L(Sx, Sy, Dx, Dy)/L0 = 1 + (c− sz)
D2
x +D2

y

D2
+ (c− dz)

S2
x + S2

y

D2

where c = 1
2

(
1− L0

2R

)
, sz =

S2
z

RL0
, dz =

D2
z

RL0
and sdz = SzDz

RL0
. In all cases our

approximation can be written as,

〈L/L0〉 = 1+(c− sz)
〈
D2
x

〉
+
〈
D2
y

〉
D2

+(c− dz)
〈
S2
x

〉
+
〈
S2
y

〉
D2

−2 (c− sdz) 〈Sx〉 〈Dx〉+ 〈Sy〉 〈Dy〉
D2

Similarly we can break the variance of the normalized pathlength into contri-
butions that apply when the sample (or detector) coordinates are zero, and
contributions that apply when this is not the case. Note, however, that Lxy has
a contribution to the variance in the zero-coordinate case.

σ2
Ls =

〈
(L/L0)

2
〉
s
−〈L/L0〉2s = (c−sz)2

σ2
Dx2 + σ2

Dy2

D4
+(c−dz)2

σ2
Sx2 + σ2

Sy2

D4
+4(c−sdz)2

σ2
SxDx + σ2

SyDy

D4

The part of the variance that will contribute only when averaged sample and
detector source and destination coordinates are non-zero is,

σ2
Lxy =

〈
(L/L0)

2
〉
xy
−〈L/L0〉2xy = −4(c−sz)(c−sdz)

〈Sx〉D321
x + 〈Sy〉D321

y

D4
+−4(c−dz)(c−sdz)

〈Dx〉S321
x + 〈Dy〉S321

y

D4

Here, D321
x =

〈
D3
x

〉
−
〈
D2
x

〉
〈Dx〉 and similarly for the other like terms. Note

also that σ2
Dx2 =

〈
D4
x

〉
−
〈
D2
x

〉2
and σ2

SxDx =
〈
S2
x

〉 〈
D2
x

〉
− 〈Sx〉2 〈Dx〉2.

These are easy to calculate for the case that source and destination coordi-
nates are uniformly distributed (rectangle distribution) with mean coordinate
symbolized by µ and object size (coordinate range) symbolized by ∆. Then
since the distributions for sample and detector are independent of one another,

〈Dx〉 = µDx

σ2
Dx = ∆2

Dx/12

σ2
Dx2 = ∆2

Dx

(
∆2
Dx/20 + µ2

Dx/3
)

σ2
SxDx = ∆2

Dx

(
∆2
Sx/24 + µ2

Sx

)
/12 + ∆2

Sx

(
∆2
Dx/24 + µ2

Dx

)
/12

D321
x = ∆Dxµ

2
Dx/3
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For SANS the detector coordinates are relatively well de�ned (no averaging
required), and we can average over the sample coordinates. A common case
is the disc approximation with the radius of the disc as Rs and the sample
cross-sectional area as As = πR2

s, so that the average SANS path-length in
terms of the scattering angle, θ, becomes, in the symmetric sample-at-He3-cell
XY-origin,

〈L(θ,As)〉 /L0 = 1+

[
1

2

(
1− L0

2R

)
− S2

z

RL0

]
tan2θ+

[
1

2

(
1− L0

2R

)
− D2

z

RL0

]
As

2πD2

Note that in the SANS case As/D
2/4π is typically much smaller than 1

2 tan
2θ

(Sr � Dr). Dropping this term leaves

〈L(θ,As)〉 /L0 = 1 +

[
1

2

(
1− L0

2R

)
− S2

z

RL0

]
tan2θ − D2

z

RL0

As
2πD2

so for the averaged transmission (with 1+Sz/D = Dz/D approximated as unity
for SANS case),

< t± >= exp

[
−τ±M

(
1−

〈
S2
x + S2

y

〉
RL0

)]{
1− τ±M

[(
1

2

(
1− L0

2R

)
− S2

z

RL0

)
tan2θ

]
+

1

2
τ2
±M

(
∆λ

λ

)2
}
.

This is di�erent than the triple-axis case as the coordinate average is now
over sample coordinates instead of the beam coordinates at the center of the
He3 cell, and the angular divergence term is di�erent.

Interestingly, it is possible in the approximation to cancel the tan2θ or As
dependence of the pathlength. For example, the tan2θ dependence vanishes by
choosing Sz such that

1

2
L0

(
R− L0

2

)
= S2

z

With L0 = 10cm and R = 40cm, Sz (sample to cell distance) would have to
be about 13cm which is pretty small. Typically Sz is larger than this number
so that the pathlength decreases with tan2θ. The averaged pathlength also
decreases with the sample-area. For example, if the sample is a 1 cm disc with
R = 40cm then the reduction in path-length due to the sample area is just 0.012
cm. Take the example where Sz = 50cm. Then the correction is approximately

L0

(
1− 5θ2

)
so that when θ reaches 5 degrees (0.1 radians) this becomes a 5% e�ect.

The dependence on sample cross-sectional area vanishes when

1

2
L0

(
R− L0

2

)
= D2

z

where D − |Sz| = Dz is the He3-cell to detector distance. Dz is much larger
than R or L0 so that this condition is never approached.
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Note that we have used σL = 0 in our formula, but τ±M can become quite
large for SANS experiments. We can estimate σ2

L just from the variance due
to sample size, as the angle variation for a given detector pixel is quite small.
Then

σ2
L = 2

[
1

2

(
1− L0

2R

)
− D2

z

RL0

]2 σ2
Sx2 + σ2

Sy2

D4
∼= 2

∆4
Sx + ∆4

Sy

20 (RL0)
2 u

(As/2π)
2

(RL0)
2

For a sample radius of 2cm , R = 25cm and L0 = 8cm �nd σ2
L = 0.0008.

For SANS τ−can reach 10-15 at long wavelengths so that this correction can
become important.

7.2.3 Non-SANS PSD radial collimator end-window geometry

In the general non-SANS radial collimator case we cannot drop any of the terms.
The radial collimator correlates pathlength with angular deviation just as in the
SANS case, and the wavelength angle correlation depends on whether a crystal
is used before the detector. One must calculate σx accordingly. In addition if
the PSD is one-dimensional in the scattering plane, we need to average over
the the detector Y direction in the pathlength expression. For example, take
the distribution for neutrons along Dy = Dβ as a Gaussian with some e�ective
detector vertical-divergence standard deviation angle, σβ (The δ averaging above
was with Dy �xed). We need to average (D2

x + D2
y)/D2 = tan2θ over this

distribution. 〈
tan2θ

〉
= Nβ

∫
((Dx/D)

2
+ β2) exp

(
−1

2
β2/σ2

β

)
dβ

γ = a4det− a4He3

〈
tan2θ

〉
=
〈

(Dx/D)
2
〉

+ σ2
β =

〈
tan2 (γ)

〉
+ σ2

β .

If there is only a single detector then Dx is averaged as well so that〈
tan2θ

〉
= σ2

β + σ2
α.

These are the replacements for tan2θ in 〈L(θ,As)〉 /L0. We also need to do
the average

〈
tan2 (γ)

〉
over detector acceptance angle.

〈
tan2 (γ)

〉
= N

∫
exp−1

2

(
x

σd

)2

tan2 (γ + x) dx.

〈
tan2 (γ)

〉 ∼= tan2 (γ) +
(
1 + 4tan2 (γ) + 3tan4 (γ)

)
σ2
d
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L(Sx, Sy, γ, β)/L0 = 1+

[
1

2

(
1− L0

2R

)
− S2

z

RL0

] (
tan2 (γ) + β2

)
+

[
1

2

(
1− L0

2R

)
− D2

z

RL0

]
S2
x + S2

y

D2

L(Sx, Sy, γ, β)/L0 = 1 + (c− sz)
(
tan2 (γ) + β2

)
+ (c− dz)

S2
x + S2

y

D2

〈L/L0〉 = 1+(c− sz)
[
tan2 (γ) +

(
1 + 4tan2 (γ)

)
σ2
d + σ2

β

]
+(c− dz)

σ2
Sx + σ2

Sy

D2

〈
(L/L0)

2
〉
−〈L/L0〉2 ∼= σ2

L = 2(c−sz)2
[
2tan2 (γ) sec4 (γ)σ2

d + σ4
β

]
+2(c−dz)2

σ4
Sx + σ4

Sy

D4

〈
(L/L0)

2
〉
− 〈L/L0〉2 ∼= σ2

L = 2(c− sz)2
[
σ4
γ + σ4

β

]
+ 2(c− dz)2

σ4
Sx + σ4

Sy

D4

7.2.4 cylinder geometry

In some cases He3-transmission �lters are used with the neutrons passing through
the cell cylinder walls instead of the end windows. The geometry is shown in the
following diagram where D is the cylinder diameter and R is the radius. Recall
that the primary beam direction is +z and +y is up out of the scattering plane.
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First look at the pathlength when the neutron is in a plane perpendicular to
the cylinder axis so that the x-coordinate is �xed for the entire neutron path.
Then the beam entrance and exit points satisfy

z2
f + y2

f = R2,

z2
b + y2

b = R2.

Now use the expression for the neutron path to �nd the intersection points. For
the front face

xf = X + βf cos (δ) sin (γ)

yf = Y + βf sin (δ)

zf = βf cos (δ) cos (γ) .

But we are �xing γ = 0 so

xf = X

yf = Y + βf sin (δ)

zf = βf cos (δ) .

The expressions for the intersection with the back wall are the same,

xb = X

yb = Y + βb sin (δ)

zb = βb cos (δ) .

Then

Y 2 + 2Y βf sin (δ) + β2
f = R2

Y 2 + 2Y βb sin (δ) + β2
b = R2

βf = −Y sin (δ)−
[
R2 − Y 2cos2 (δ)

]1/2
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βb = −Y sin (δ) +
[
R2 − Y 2cos2 (δ)

]1/2
and the pathlength is

L(Y, δ) = βb − βf = 2R
[
1− (Y/R)

2
cos2 (δ)

]1/2
.

These formula all can be obtained by setting γ = 0 , X = 0 and L0 = 2R in
the standard con�guration. Since there is no Soller collimation in the vertical
divergence, δ is correlated with with Y . Using Sz < 0 as the distance from cell
center to the sample, Sythe neutron height coordinate at the sample, Dz the
distance from the cell center to the detector, and D as the distance from sample
to detector (no longer the cell diameter).

δ = (Y −Sy)/ |Sz| = (R/ |Sz|)(Y/R)−Sy/ |Sz| = (Dy−Sy)/D = (Dy−Y )/Dz.

An expansion in terms of Sy and Dy as in the SANS case is what we want
to end up with since the two distribution functions should be approximately
independent. The expansion in terms of Y and Sy also reveals some of the
symmetry of the problem. Here, |Y/R| could easily reach values of 0.3 so we
make the expansion in terms of z = Y/R fourth-order. On the other hand
y = Sy/ |Sz| should be much less than 1 in magnitude and we should be able
to use a second order expansion. The resulting power series for the reduced
pathlength with (R/ |Sz|) = r is

L(z, y)/(2R) = 1− 1

2
z2 − 1

8
z4 +

1

2
r2z4 − rz3y +

(
1

2
z2 +

1

4
z4 − r2z4

)
y2.

L(z, y)/(2R) = 1− 1

2
z2 − 1

8

(
1− 4r2

)
z4 − rz3y +

[
1

2
z2 +

1

4

(
1− 4r2

)
z4

]
y2.

If |z| ≤ 0.5 this series approximation is good to about 0.0005 of the pathlength.
This is now easily averaged over a normalized height distribution in the He3
cell and the the distribution of neutrons from sample height. Using normal
distributions for both with

〈
z4
〉

= 3σ4
z

〈L(z, y)〉 /(2R) = 1− 1

2
σ2
z −

3

8

(
1− 4r2

)
σ4
z +

[
1

2
σ2
z +

3

4

(
1− 4r2

)
σ4
z

]
σ2
Sy

S2
z

.

Note that the fourth-order terms drop out when R/ |Sz| = 1/2. This is actu-
ally pretty close to the MACS conditions. This was the reason for doing the
expansion in terms of Y and Sy.

Now the expansion in terms of Sy and Dy can be done using

δ =
Dy

D
− Sy
D

= dy − sy
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Y

R
=
Dz

R

Sy
D

+
|Sz|
R

Dy

D
= dz ∗ sy + sz ∗ dy

At MACS 2 max(Dy)/D is approximately the vertical divergence angle which is
on the order of 10 degrees. Also at MACS the He3 cell placement is such that
|Sz| /R ∼= 2. The fourth order expansion, keeping only terms even in Sy and Dy

since their distributions will be even as well, is

L(sy, dy)/(2R) = 1−1

2
sz2dy2−1

2
dz2sy2+

(
1

2
dz2 +

1

2
sz2 − 2dz ∗ sz − 3

4
dz2sz2

)
dy2sy2.

For the MACS geometry using just the quadratic terms alone gets the path
correct to about 0.0001. Then

〈L(sz, dz)〉 /(2R) ∼= 1− 1

2
sz2σ2

dy −
1

2
dz2σ2

sy

σ2
L
∼=

1

2

(
sz4σ4

dy + dz4σ4
sy

)
MACS is a cold neutron triple-axis, so τ can be large enough that the σ2

L

correction can become signi�cant.
This result is indendent of X as long as the neutron stays away from the end

windows, and the γ dependence can be added easily by noting that for �xed δ
it is equivalent to the zero curvature end-window case. There the γ dependence
of the pathlength just multiplies by 1/cos (γ − γ0), where γ0 is any tilt angle of
the cylinder with respect to the perpendicular to the �duciary beam direction.
and in the small angle approximation we have

1

cos (γ − γ0)
= 1 + εLγ

γ = a4detector − a4He3Center

If we average the a4 detector angle over the detector acceptance using the
standard deviation angle for the detector collimation, σd,〈

1

cos (γ − γ0)

〉
=

1 +
[

1
2 + tan2 (γ − γ0)

]
σ2
d

cos (γ − γ0)

〈L(sz, dz, γ)〉 /(2R) ∼=
{

1− 1

2
sz2σ2

dy −
1

2
dz2σ2

sy

}{
1 +

[
1 +

[
1
2 + tan2 (γ − γ0)

]
σ2
d

cos (γ − γ0)
− 1

]}

〈εLγ〉 =

〈
1

cos (γ − γ0)
− 1

〉
=

1

cos (γ − γ0)
−1+

1

cos (γ − γ0)

[
1

2
+ tan2 (γ − γ0)

]
σ2
d.
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Making the small angle approximation for γ − γ0

`

〈εLγ〉 ∼=
1

2
(γ − γ0)

2
+

[
1 +

1

2
(γ − γ0)

2

] [
1

2
+ (γ − γ0)

2

]
σ2
d.

〈εLγ〉 ∼=
1

2
(γ − γ0)

2
+

[
1

2
+

5

4
(γ − γ0)

2

]
σ2
d
∼=

1

2
(γ − γ0)

2
+

1

2
σ2
d.

As usual, if we do the averages for Gaussian distributions just replace dy
and sy by their standard deviations σdy and σsy. Remembering that it is the
pathlength deviation average that goes into the transmission average, and using
just the second order terms from the above expression,

εL = −1

2

(
sz2dy2 + dz2sy2

)
+

1

cos (γ − γ0)
− 1

ε2L =
1

4

(
sz4dy4 + dz4sy4

)
+

[
1

cos (γ − γ0)
− 1

]2

−
[

1

cos (γ − γ0)
− 1

] (
sz2dy2 + dz2sy2

)

〈εL〉 = −1

2

(
sz2σ2

dy + dz2σ2
sy

)
+

〈
1

cos (γ − γ0)
− 1

〉

〈εL〉2 =
1

4

(
sz4σ4

dy + dz4σ4
sy + 2sz2dz2σ2

dyσ
2
sy

)
+

〈
1

cos (γ − γ0)
− 1

〉2

−
〈

1

cos (γ − γ0)
− 1

〉(
sz2σ2

dy + dz2σ2
sy

)

〈
ε2L
〉

=
3

4

(
sz4σ4

dy + dz4σ4
sy

)
+

1

2
dz2sz2σ2

dyσ
2
sy+

〈[
1

cos (γ − γ0)
− 1

]2
〉
−
〈

1

cos (γ − γ0)
− 1

〉(
sz2σ2

dy + dz2σ2
sy

)

〈
ε2L
〉
− 〈εL〉2 =

1

2

(
sz4σ4

dy + dz4σ4
sy

)
+

tan2 (γ − γ0)

cos2 (γ − γ0)
σ2
d
∼= σ2

εL

Currently this geometry is only being used with detectors along the x-
direction. We can replace 1 + 1

2γ
2 by its Gaussian average, or if there are

multiple detectors behind the He3 cell, use it to vary the pathlength for each
detector.

t± = tE exp

(
−τ±0

λ

λ0

L

L0

)
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7.2.5 alternative derivation for end window geometry

The following alternative derivation produces a slightly di�erent approximated
form. This was the �rst approximation I used, but it turns out the approx-
imation in a previous section is not only more accurate, it is also easier to
average. The inclusion here is somewhat historical. If instead we start with the
approximation

zf = −L0

2
+

1

2

x2
f + y2

f

R

the result of substitutions in the small angle approximation is a quadratic equa-
tion for the beam-path intersection length parameter, βf , (which must be neg-
ative for the front face)

Aβ2
f +Bfβf − C = 0,

where

A =
1

2R

[
cos2 (δ) sin2 (γ) + sin2 (δ)

]
Bf =

1

R
[X cos (δ) sin (γ) + Y sin (δ)]− cos (δ) cos (γ)

C =
L0

2
− X2 + Y 2

2R
.

For small beam divergence angles, γ and δ, B2
f
∼= 1 and |AC| � 1, so that the

solution for βf can be approximated as

βf = −C
{

1 +
X

R
γ +

Y

R
δ +

1

2

(
γ2 + δ2

)(
1− C

R

)}
.

The quadratic equation for βb, the beam exit intersection path length parameter,
has the same coe�cients A and C, but there is a sign change in Bb

Bb =
1

R
[X cos (δ) sin (γ) + Y sin (δ)] + cos (δ) cos (γ) ,

so that

βb = C

{
1− X

R
γ − Y

R
δ +

1

2

(
γ2 + δ2

)(
1− C

R

)}
.

The total path length is then

L(γ, δ,X, Y ) = βb − βf =

(
L0 −

X2 + Y 2

R

){
1 +

1

2

(
γ2 + δ2

)(
1− C

R

)}
.

Note that if R → ∞ the expression for the path length in the �at wall case
is recovered. The X2 + Y 2 dependence can be handled by assuming that the
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probability distribution for beam divergence angles is independent of X2 + Y 2

(which should be true for small enough X2 + Y 2), and then replacing X2 + Y 2

by its average over the e�ective beam cross sectional area in the x = 0 plane.
For example, if the e�ective beam cross sectional area is a disc of radius r then〈
X2 + Y 2

〉
=
〈
ρ2
〉

= 1
2r

2. The �nal result is that the previous expression for
the transmission as a function of deviation angles and wavelength deviation,
which was

t± = tE exp

(
−τ±M (1 + x)(1 +

1

2
γ2 +

1

2
δ2)

)
can be simply modi�ed by scaling down τ±M

τ̃±M = τ±M

(
1−

〈
ρ2
〉

L0R

)

where L is the straight through path length of the cell. Also, the 1
2 coe�cients

of γ2 and δ2are scaled down

1

2
→ 1

2

{
1− L0

2R

[
1−

〈
ρ2
〉

L0R

]}
=

1

2
P.

Note that for a completely spherical cell (R = L0/2) and a beam that must pass
through the cell center (

〈
ρ2
〉

= 0) the dependence on angular deviation becomes
zero, as it should. The scaling of γ2 and δ2translate directly into scaling of σ2

γ

and σ2
δ in the results for the averaged transmission. Disregarding angle and

wavelength deviations the basic transmission is modi�ed to

t̃±0 = tE exp

[
−

(
1−

〈
ρ2
〉

L0R

)
nσ0

λM
λ0

L0 (1∓ PHe)

]
= tE exp (−τ̃±M ) .

The general form for the averaged transmission for all corrections is

< t± >= t̃±0

{
1− 1

2
τ̃±MP

[
σ2
γ + σ2

δ

]
+

1

2
τ̃2
±Mσ

2
x

}
= Ĉ±t̃±0

Also consider the e�ect of higher order wavelength contamination of the
neutron beam. In this case the wavelength probability distribution is a sum of
probability distributions centered at each higher order wavelength, λn = λ1/n,
so that

P (λ) =
∑
n=1

anPn (λn) ,

where the sum of wavelength fractions is unity∑
n=1

an = 1.
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All the wavelength fractions are at the same settings for angles and angle dis-
tribution parameters so that the transmission correction factor, Ĉ±, should be
approximately wavelength order independent. The averaged transmission factor
is then

〈t±〉 = Ĉ±tE
∑
n=1

an exp (−τ±n) ,

where τ±n = τ±1λn/λ1 = τ±/n. Thus

〈t±〉 = Ĉ±tE
∑
n=1

an exp

(
− 1

n
τ±

)
= C̃±t±,

where the correction factor is now

C̃± = Ĉ±

{
1 +

∑
n=2

anK±n

}

and

K±n = exp

[(
1− 1

n

)
τ±

]
− 1

For example, take τm = 1.8662, PHe = 0.7 and the primary wavelength as
1.77 Angstroms. For the uncorrelated beam correction, using σλ

λm
= 0.05, σα =

0.01 and σβ = 0.04, C+ = 1.0001 and C− = 1.01. For the correlated beam
correction with cot(θm) = 1 and the same σα and σβ values, C+ = 0.9998 and
C− = 1.0017. The second order wavelength contamination factors (which still
have to be multiplied by an) are K+2 = 0.323 and K−2 = 3.885. This means
that the corrections to the transmission factors due to second order wavelength
contamination can be signi�cant (depending on the fraction a2).

8 monitoring He-3 polarization and neutron po-

larization

If the transmission, t00, through the unpolarized He-3 cell is measured (PHe =
0), then measurements of t0(PHe) can be used to monitor the He-3 polarization,
PHe, of the He-3 cell, assuming τ̃ has been determined by a transmission mea-
surement of the unpolarized cell. This is most conveniently done when there
are no higher order wavelength contaminations, so that

r(PHe) =
t0(PHe)

t00
= cosh(τ̃PHe) + ∆ sinh(τ̃PHe). (26)

Neglecting the correction term in ∆, the coshfunction can be inverted to give

τ̃PHe ∼= x0 = ln
(
r +

√
r2 − 1

)
.
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If the correction coe�cient is known then

τ̃PHe ∼= x0 −∆.

The outgoing neutron polarization, −1 ≤ Pn ≤ 1, after an incident unpolar-
ized beam passes through the cell is

Pn =
n+ − n−
n+ + n−

= tanh (τ̃MPHe) +
∆

cosh2(τ̃MPHe)
. (27)

As in the example above, using a 7 cm gas-thickness He-3 cell at 2 bars
has τM = 1.8662. With PHe = 0.7 He-3 polarization and tE = 0.86, the
cell transmits an uncorrected t0 = 0.2636 of an incident unpolarized beam at
1.77 Angstroms and produces an outgoing beam that is Pn = 0.8633 polarized
(n−/n+ = 0.0733). Making the corrections as in the example above, for the
uncorrelated beam case, t0 = 0.2638, and for the correlated beam case, t0 =
0.2637. The corrections to the polarization for these two cases yield Pn = 0.8621
and Pn = 0.8631.

The best way to keep track of the polarization of the He-3 cells is to use beam
monitors as shown in the diagram at the start of this document, and measure the
transmissions as a function of time. If this is not possible, the remaining handle
on the polarized beam performance is the �ipping ratio, preferably measured
with a non-spin-�ip cross section. Recall that this �ipping ratio is

Rnsf =
t+ + ett

t+ − etF t−

with etF = et(2eFP,A−1). Now it is assumed that the correction factors for the
He-3 transmission factors are unity. When the transport and �ipping e�ciencies
are unity this simpli�es to

R0,nsf =
cosh(τM1PHe1 + τM2PHe2)

cosh(τM1PHe1 − τM2PHe2)

and in terms of this ideal �ipping ratio

Rnsf = R0,nsf
1 + et

1 + etF
(1 + εt/R0,nsf − εtFR0,nsf )

where the transport loss is εt = (1 − et)/(1 + et) and transport-�ipper loss
is εtF = (1 − etF )/(1 + etF ). If the cell parameters τM1 and τM2are known,
as well as the cell He-3 polarizations (through transmission measurements and
known time dependences) and beam e�ciencies, then the calculated Rnsfcan
be compared to measured values.
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