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Project Overview

* Goal: raise situational awareness in first responder operations by introducing timely
localization and deployment capabilities

e Challenges:
— infeasibility of optical localization techniques
— unattainability of environment knowledge

— inaccessibility of certain regions for asset deployment

* Objectives:

— robust localization: develop algorithms to localize responders, their assets, and victims
accurately and timely using different radio technologies

— resource management and asset deployment: design context-aware optimization and
control strategies for efficient use of resources and assets




Network-Enabled Technologies

» Utilize different radio technologies, including ultra-wideband (UWB) and end-user

communication devices (ECDs)

* Exploit reflections from the environment to improve accuracy and robustness

* Perform efficient resource management and asset deployment

Communication with UWB
Communication with ECD

Victim

Responder

Static Asset

Reflection from the Environment

Mobile Asset




Robust Localization

* Research objective: develop algorithms to localize responders, their assets, and victims
accurately and timely using different radio technologies

* Methodologies:

— exploit measurements obtained from devices with different hardware capabilities

— develop Bayesian inference algorithms based on message passing (MP)




Asset Management and Deployment

* Research objective: design context-aware optimization and control strategies for

efficient use of resources and assets

* Methodologies:

— adopt concepts from information
theory for asset management and
deployment design

— develop information-seeking control
strategies for efficient resource
utilization and asset deployment
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Timeline and Milestones

Today

Tasks

Year 1

Year 2

Year 3

Robust Localization
Multipath-aided localization
ECD localization
Lightweight SLAM algorithm

Resource Management and Asset Deployment
Optimal resource management
Asset deployment
Control strategies for mobile assets

Proof-of-Concept
UWB localization
ECD localization
Indoor SLAM




Localization with ECDs

* Goal: achieve accurate ranging and localization with ECDs (e.g., devices employing
OFDM waveforms)

* Localization with ECDs is challenging due to
— processing impairments
— insufficient bandwidth

— inaccessibility of physical layer information

* Localization with ECDs requires
— band stitching techniques to increase effective bandwidth for accurate ranging

— ranging algorithms with processing impairment mitigation capability based on channel
state information (CSI)

— localization methods that can provide accurate position information in the presence of
multipath

.




Localization with ECDs

* Accomplishments:

— established the theoretical foundation for OFDM ranging systems using the framework of
equivalent Fisher information matrix (EFIM)

— designed fast channel switching protocol in the WiFi driver, enabling CSI measurements
for all 37 channels within the channel coherence time

— modelled CSI processing impairments and implemented impairment mitigation strategies
— introduced an algorithm to estimate channel impulse response (CIR) based on CSI

— developed a localization algorithm to infer the positions of ECDs based on CIRs




Channel State Information

* Transmission model in the frequency domain (channel 2)
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CSl Processing Impairments Mitigation

* CSI measured by WiFi cards is affected by processing impairments

CSl Extraction

Down Converter ADC CP RemovaIChanneI Estlmatlon]—v

Carrier frequency offset (CFO) Symbol tlmlng offset (STO)
PLL phase offset

Amplitude uncertainty Sampling frequency offset (SFO)

* Impairments are challenging to compensate since they are time-varying and different
across WiFi channels
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CSl Processing Impairments Mitigation

* Mitigate channel impairments based on transmission of several packets for each

channel
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* Develop fast channel switching, enabling CSI measurements for all 37 channels within

the channel coherence time
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CIR Estimation Based on Mitigated CSI

Detect the number of multipath L, and estimate the associated «; and 7; of each path

based on CSI measurements

CSl after impairments mitigation:

L

h:l = E e I2mhim g,

CSl after error l + ¢
1

mitigation [=

Challenge:

— the number of multipath 7, is unknown

Solution:
—replace L by constant D which is larger than the maximum possible L
— introduce auxiliary variable s that determines whether each path exists
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The Factor Graph Representation

* The relations between the random variables can be represented by a factor graph
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* For d € {1,2,..., D}, the Bernoulli variable s; determines whether o is zero or not
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MP Algorithm

* We run an MP algorithm on the factor graph to obtain the distribution of unknown
variables

» The MP algorithm aims to find the distribution ¢* which minimizes the Kullback-Leibler
(KL)-divergence between ¢ and the desired distribution p from a given family Q

* - q
q* = arg min Dk, (q||p), Dk1.(qllp) = / Ing(z)——=dx
geQ X p(z)
* Different choice of family Q results in a different MP algorithm
— Bethe free energy (BFE) approximation: BFE-based MP algorithm
— Unstructured mean field (UMF) approximation: UMF-based MP algorithm
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Proposed MP Algorithm

* Exact messages are intractable to calculate in general

* We obtain closed-form expressions of messages by partitioning the graph to BFE and
UMF parts

BFE : UMEF
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Evaluation of the Proposed MP Algorithm

» Advantages of the proposed MP algorithm

— no parameter tuning is required

— it is completely gridless, i.e., there is no spatial discretization
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Position Inference Based on CIR Estimates

Consider a network of 1 agent and NV}, anchors

Each anchor k has the estimates of delays Ty = [Tx1, Tko, - - - 7%kf,k]T

Goal: infer the position p of the agent from delays T, kK =1,2,..., N}

Consider the posterior distribution of the agent position

Ny,
f(plF1, 72, 7)< f(p) || f(Felp)
k=1

Use ideas from probabilistic data association (DA) to model likelihood f (7 |p)

18




.

Likelihood Model Inspired by DA

* The DA problem:
— each anchor receives several measurements from the agent
— at most one measurement is the true measurement; others are false alarms

—there is a chance that no true measurement is made

* Analogy to our problem:
— each anchor estimates a CIR that consists of several delays w.r.t. the agent
— at most one such delay represents the LOS path; others are NLOS paths
— there is a chance that there is no LOS path in the CIR

* Inspired by probabilistic DA, the likelihood function f(74|p) isasum of L, terms,

where theterm [ € {1,2,..., f)k} represents the hypothesis that T; is the LOS delay
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The Integrated Factor Graph

--------------------------------------------------------
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Simulation Settings

* Perform simulation in indoor environment

* Consider 4 anchors (red) and 1 agent (blue)

* Generate the channels using QuaDRiGa
according to
— WINNER Il indoor channel model
— 3 LOS links (A1, A2, A4) and 1 NLOS link (A3)
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Case Study (Indoor Simulation
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Experiment Settings

* Perform the experiment in outdoor environment

* Consider 3 anchors (red) and 1 agent (blue)

e All the 3 channels are LOS channels
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Case Study (Outdoor Experiment)
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Multipath-Aided Localization

* Multipath propagation degrades the performance of conventional

techniques based on UWB radio signals

localization

* We aim to exploit multipaths of the received UWB signals to increase robustness and

localization accuracy

15F 7
* Developed an MP algorithm for simultaneous localization and
mapping (SLAM) that can 10!

— determine the positions of virtual sources (VSs) “generated” by 51
specular reflections at flat surfaces

y [m]

— associate range measurements related to multipath delays
with VSs

— localize a mobile agent accurately and reliably




Multipath-Aided Localization

e Convergence demonstration of SLAM algorithm using simulated measurement

— particles represent the posterior pdfs of the mobile agent position and of the detected VSs
positions
— black crosses represent the estimated positions of the detected VSs

* Despite range-only measurements, the mobile agent can be accurately and reliably
tracked and VSs can be detected and localized
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Experimental Results

* We evaluated the proposed SLAM algorithm using UWB measurements collected in a
seminar room

&

* The proposed algorithm is able to exploit multipath o+ P b T

i+
components for localization 12| % ‘Q
* The mobile agent can be accurately and reliably E 8 L Ble %‘+
tracked and VSs can be detected and localized ” | + To : |

* Estimated VS positions can be associated 0 ]—"—‘[
with geometrically expected VS positions 40
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Experimental Results — All VSs at Final Position
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Experimental Results — 15t Order VSs at Final Position
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Experimental Results — 2" Order VS at Final Position
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Experimental Results — 3@ Order VS at Final Position
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Multipath-Aided Localization Experiment

* Localization and mapping results of developed SLAM algorithm using real measurements

. oy &
* Accurate and robust indoor localization performance 16 - _ 1
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E. Leitinger, F. Meyer, F. Hlawatsch, K. Witrisal, F. Tufvesson, and M. Z. Win, “A belief propagation algorithm for multipath-based
SLAM,” IEEE Trans. Wireless Commun., 2019, submitted.
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Millimeter Wave Massive MIMO SLAM

* Millimeter wave massive MIMO systems have excellent localization capabilities due to

—the large number of antennas that can be packed on a small area due to short
wavelengths; and

— the large bandwidth that is available in millimeter wave frequency bands

* Multipath components can be accurately and reliably resolved due to high spatial-
temporal resolution

* As a result, a single anchor is sufficient for agent localization and no motion is needed
to map VS positions
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Millimeter Wave Massive MIMO SLAM
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Millimeter wave massive MIMO systems enable accurate
¢t AOA aRX,n: AOD ETX,n, and delay 7,, measuments of all paths

e These measurements can be used to obtain position p,,,

(1)
o Pvan orientation a,,, clock offset €, and map p&gn estimates
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Conclusion

e Localization with ECDs

— designed an MP algorithm to estimate channel impulse response from CSI extracted from
the WiFi driver of an ECD

— developed an MP algorithm for inferring the positions of ECDs

— demonstrated that ranging is possible with ubiquitous wireless communication
technology (this will enable localization of victims in public safety emergencies)

* Multipath-aided localization and mapping

— evaluated the localization performance of the developed range-only SLAM method (both
by simulations and experimentation) in indoor environments

— extended the system model of multipath-aided SLAM to account for angle-of-arrival and
angle-of-departure measurements

— showed that reflections from the environment can increase localization capabilities (in
contrast to conventional belief that it degrades localization performance)

y
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Way Forward

* Localization with ECDs
— deploy the system and collect CSI from the network of ECDs
— improve and evaluate indoor localization performance

* Multipath-aided localization and mapping for massive MIMO

— develop an inference algorithm for SLAM in millimeter wave systems provided by future
5G massive MIMO communication systems

e Resource management and asset deployment

— design context-aware optimization and control strategies for efficient resource utilization
and deployment of mobile assets
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