Requirement Analysis and Participatory Design of Next Generation Public Safety User Interfaces

Regis Kopper, Ph.D. – Principal Investigator
Jerônimo G. Grandi, Ph.D. – Postdoctoral Associate
Mark Ogren – IT Analyst, Research Volunteer
This presentation was produced by guest speaker(s) and presented at the National Institute of Standards and Technology’s 2019 Public Safety Broadband Stakeholder Meeting. The contents of this presentation do not necessarily reflect the views or policies of the National Institute of Standards and Technology or the U.S. Government.

Posted with permission
About Us

Regis Kopper
• Project Principal Investigator
• Director of the DiVE Lab

Jeronimo G. Grandi
• Postdoctoral Associate – DiVE Lab
• Ph.D. in Computer Science

Mark Ogren
• IT Analyst at Duke
• User Services Specialist
• Volunteer
Project Motivation

- Project title: Design, Prototyping and Evaluation of Next Generation Public Safety User Interfaces

- The project addresses Goal 2 of the NIST Public Safety Innovation Accelerator Program – User Interface (PSIAP-UI): Research on the Effectiveness and Transferability of AR/VR Simulations.

- Enabled by FirstNet: new era of crisis management
 - Interoperable high-speed broadband LTE network
 - Handle critical situations that goes beyond a common voice communication channel

- First responders will have the opportunity to:
 - Learn the precise location of indoor and outdoor points of interest
 - Receive real-time data analytics that are relevant to the mission
 - Have assurances for clear and reliable mission critical voice communications
Project Motivation

• The reality of public safety involves complex scenarios with many factors at play
• PSOs equipment and interfaces are not currently designed to take advantage from the possibilities enabled by FirstNet
• Effective interactions need to be developed into novel systems operated by first responders
• These technologies need to help the first responders to solve their real problem and not add another layer of complexity in their workflow.
Project Goals

To design, prototype and evaluate user interfaces for the next generation public safety ecosystem and its first responders.

For three main disciplines

Emergency Medical Services

Law Enforcement

Fire Fighting
Project Goals

To design, prototype and evaluate user interfaces for the next generation public safety ecosystem and its first responders.

How?

User-centered approach that can make the deployment and adoption of next-generation user interfaces reflect the first responders requirements and contexts of use.
Project Goals

To design, prototype and evaluate user interfaces for the next generation public safety ecosystem and its first responders.

How?

• Partner with local PSOs in order to fully understand the needs and expectations of first responders
 • First responders contribute through their feedback and experience

• Immersive Virtual Reality (VR) as a simulation platform to evaluate UI designs.
 • Through VR, we can achieve high levels of realism with computer simulation.
 • There are no risks to the user
 • Simulations can be repeated and tweaked as many times as necessary with little effort
Projected Outcomes

The final outcome of the project will have a transformative impact on all public safety disciplines by offering a collection of user interfaces that have been demonstrated to be effective and efficient in the context of each PSO specific requirements.

When technology becomes available, the designed PSUls will be instrumental for the adoption of next generation user interfaces by the public safety community.
Project Overview

11/2018 - 05/2019
Requirement analysis

06/2019 - 12/2019
Prototyping and evaluation of interaction techniques for PSOs

01/2020 - 02/2021
Prototyping and evaluation of comprehensive PSUIs

03/2021 - 06/2021
Prototyping and evaluation of a cross-discipline PSUIs
Project Overview

Close **observation** and **documentation** of the culture at each of the PSOs

Participatory Design: meetings and interviews, training observation, shadow operations
Project Overview

11/2018 - 05/2019
Requirement analysis

06/2019 - 12/2019
Prototyping and evaluation of interaction techniques for PSOs

01/2020 - 02/2021
Prototyping and evaluation of comprehensive PSUIs

03/2021 - 06/2021
Prototyping and evaluation of a cross-discipline PSUIs

Travel, selection and manipulation tasks in VEs in the context of identified critical elements for each public safety disciplines

The main goal of this phase is to establish what techniques are most efficient
Project Overview

Combine most effective interaction techniques with cognitive aids for enhanced situational awareness and wayfinding
Leverage the interfaces designed in the previous phases into simulation of a critical situation that needs a response from Fire, EMS and Law Enforcement.
Requirement Analysis
Requirement Analysis

Methodology - PSOs

• Since each public safety discipline has unique requirements and protocols, we have partnered with three PSOs:

 Wake County EMS Hillsborough Police Department Durham Fire Department

• Through participatory design, these PSOs helped us understand their processes and find opportunities for the design of next generation user interfaces

• Formative feedback on initial UI prototypes.
Requirement Analysis

Methodology - Phases

<table>
<thead>
<tr>
<th>Information Gathering</th>
<th>Design and Prototyping of UIs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meetings</td>
<td>Data analysis</td>
</tr>
<tr>
<td>Interviews</td>
<td>Research team brainstorming</td>
</tr>
<tr>
<td>Training observation</td>
<td>User interface designs</td>
</tr>
<tr>
<td>Ride-alongs</td>
<td>Group discussions</td>
</tr>
<tr>
<td></td>
<td>Prototype refinement</td>
</tr>
</tbody>
</table>

Phases: Meetings, Interviews, Training observation, Ride-alongs

Design and Prototyping of UIs:
- Data analysis
- Research team brainstorming
- User interface designs
- Group discussions
- Prototype refinement
Requirement Analysis
Methodology - Phases

Information Gathering

<table>
<thead>
<tr>
<th>Meetings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interviews</td>
</tr>
<tr>
<td>Training observation</td>
</tr>
<tr>
<td>Ride-alongs</td>
</tr>
</tbody>
</table>

• Meeting with PSO Chiefs
 • Project presentation
 • Plan for interviews and training observations
 • Assignment of core group of first responders (4-6 people)

• Meeting with the core group
 • Project presentation
 • Approach to accomplish the objectives
 • First responders roles in the project
 • Q&A
Requirement Analysis
Methodology - Phases

Information Gathering

- Meetings
- Interviews
- Training observation
- Ride-alongs

- 1-1 Interviews with first responders of the core group.
- Demographic questionnaire
- Semi-structured interviews
- Interview questions based on the “Voice of First Responders” (Dawkins et al. 2018)
 - Emphasis on the technology that they think would be helpful in their context
- IRB protocol for interviews
Requirement Analysis
Methodology - Phases

Information Gathering

- Meetings
- Interviews
- Training observation
- Ride-alongs

Firefighters
Search and Rescue training in a burning building

EMS
Gunshot wound trauma

Law Enforcement
Search for suspicious subjects inside a house
Information Gathering

- Meetings
- Interviews
- Training observation
- Ride-alongs

- Capture first responders’ procedures and environmental conditions
- Equipment and devices used
- Difficulties with the use of current technology
Requirement Analysis
Methodology - Phases

Information Gathering

- Meetings
- Interviews
- Training observation
- Ride-alongs
Requirement Analysis
Methodology - Phases

Information Gathering

- Meetings
- Interviews
- Training observation
- Ride-alongs

Design and Prototyping of UIs

- Data analysis
- Research team brainstorming
- User interface designs
- Group discussions
- Prototype refinement
Requirement Analysis

Methodology - Phases

Design and Prototyping of UIs

<table>
<thead>
<tr>
<th>Data analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research team brainstorming</td>
</tr>
<tr>
<td>User interface designs</td>
</tr>
<tr>
<td>Group discussions</td>
</tr>
<tr>
<td>Prototype refinement</td>
</tr>
</tbody>
</table>

- Tabulate the demographic data
- Speech-to-text transcription of interview recordings
 - IBM Watson (70%-98% confidence)
 - Human revision
- Text analysis tools
 - Terms frequency
 - Word cloud
Requirement Analysis

Methodology - Phases

Design and Prototyping of UIs

<table>
<thead>
<tr>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data analysis</td>
</tr>
<tr>
<td>Research team brainstorming</td>
</tr>
<tr>
<td>User interface designs</td>
</tr>
<tr>
<td>Group discussions</td>
</tr>
<tr>
<td>Prototype refinement</td>
</tr>
</tbody>
</table>

- Scenario selection
- Key role identification
- Task identification
- Next-generation UI to support identified task
Requirement Analysis
Methodology - Phases

Design and Prototyping of UIs

<table>
<thead>
<tr>
<th>Data analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research team brainstorming</td>
</tr>
<tr>
<td>User interface designs</td>
</tr>
<tr>
<td>Group discussions</td>
</tr>
<tr>
<td>Prototype refinement</td>
</tr>
</tbody>
</table>

- Each PSO has their own needs
- Display technology
 - HUD, Handheld, arm-mounted,…
- Interactions
 - Gestures, buttons, eye-gaze, haptics,…
- Information
 - Patient data, criminal background, risk assessment, general situational awareness,…
Requirement Analysis
Methodology - Phases

Design and Prototyping of UIs

- Data analysis
- Research team brainstorming
- User interface designs
- Group discussions
- Prototype refinement

- Re-engage with first responders’ core group
- Present the chosen scenario
- Introduce the UI elements through a use case narrative
- Discuss UI designs
- Collect feedback
Design and Prototyping of UIs

Data analysis
Research team brainstorming
User interface designs
Group discussions
Prototype refinement

- Analyze audio recordings of the group meetings
- Identify points that need improvement
- Refine interactions and interfaces
- Add new elements for a second group discussion
Requirement Analysis
Methodology - Phases

Design and Prototyping of UIs

- Data analysis
- Research team brainstorming
- User interface designs
- Group discussions
- Prototype refinement
Requirement Analysis

Results
Requirement Analysis
Results – 1-1 Interviews

Demographics Questionnaire

- 13 first responders interviewed (2 female)
 - Durham Fire: 4
 - Wake County EMS: 5
 - Hillsborough Police: 4
- Years of service average: $M=18$ ($SD=8.11$)
 - One first responder with only 2 years of service
- 100% work at urban area
 - 4 also work in suburban area
 - 3 also work in rural area
- Experience with tech (1-4): $M=2.7$ ($SD=0.69$)
- Willingness to adopt new tech (1-5): $M=3$ ($SD=1.03$)
Requirement Analysis
Results – 1-1 Interviews

Semi-structured Interviews

• ~6h of recordings (~25 minutes each interview)
• Audio to text transcripts: IBM Watson Text to Speech
 • Good accuracy, but need an extra revision step
 • Allows for text analysis
• Identification of possible use-case scenarios
• Identification of desired user interfaces

INTERVIEW QUESTIONS

CONTEXT AND BELIEFS OF WORK

WHAT IS YOUR JOB TITLE?
• If you were describing your job to someone who knew nothing about it (like to a kid, or someone from another planet), how would you describe it?
• Tell me about your daily routine. How does your day begin?
 • If there isn’t one, list the different kinds of things you do during the day.
 • What’s typical communication like for you during your work day?
• What is it like when you are at the station?
 • Describe your relationship with other folks you work with.
 • Tell me about the community you serve.
• What is it like when you are at the work but outside of the station?

COMMUNICATION AND TECHNOLOGY

LIST THE DIFFERENT KINDS OF TECHNOLOGY (DEVICES, EQUIPMENT) YOU USE TO DO YOUR JOB.
• How would you describe the technology/equipment you currently use?
• Are there apps that you use to do your job?
• Have there been times when the technology has gotten in the way?

HOW (IF AT ALL) HAVE THINGS CHANGED IN TERMS OF COMMUNICATION SINCE YOU BECAME A FIRST RESPONDER?
• Do these changes make communication better or worse for you?

IN A TYPICAL DAY ON YOUR JOB, WHAT KINDS OF INFORMATION DO YOU NEED?
• Are there other kinds of information you need for situation that aren’t so typical – and if so, what is it?

IF YOU THINK ABOUT THE INCIDENTS YOU’VE RESPONDED TO OVER THE LAST FEW WEEKS OR MONTHS, IS THERE INFORMATION THAT COULD HAVE HELPED YOU UNDERSTAND THE SCENE BEFORE YOU GOT THERE? TELL ME ABOUT IT.
• What kind of information would be most helpful, either for typical or for more complicated calls?
• How would you want to get that information?

WHAT, IF ANYTHING, DO YOU THINK CAUSES COMMUNICATION PROBLEMS IN YOUR WORK?
• What, if anything, could help with these problems?

LET’S TALK OUT OF THE BOX FOR A MINUTE. DESCRIBE YOUR TECHNOLOGY WISH LIST. PIE IN THE SKY HERE. IF TECHNOLOGY COULD DO WHATEVER YOU WANTED IT TO, WHAT WOULD YOU WANT?
• Are there new or different apps you can think of that could be useful?

IS THERE ANYTHING ELSE YOU’D LIKE TO SHARE ABOUT YOUR JOB THAT YOU THINK IS IMPORTANT FOR US TO KNOW?

DO YOU HAVE ANY QUESTIONS FOR ME/US?
Requirement Analysis

Results – Text Analysis for each PSO

EMS

LE

FF
Activities done with PSOs

Emergency Medical Services
• 1-on-1 Interviews: 5
• Training observations: 2
• Group discussions: 2

Law Enforcement
• 1-on-1 Interviews: 4
• Training observations: 1
• Group discussions: 2
• Ride-alongs: 1

Firefighters
• 1-on-1 Interviews: 4
• Training observations: 1
• Group discussions: 2
Public Safety User Interfaces Resource Library

- https://sites.duke.edu/psui/
- The knowledge generated by this project will be maintained and made available to the public.
- PSOs around the country and industry providers will be able to leverage the materials and methods used in the design, prototyping and evaluation of next generation user interfaces.
Next Steps
Project Overview

11/2018 - 05/2019
Requirement analysis

06/2019 - 12/2019
Prototyping and evaluation of interaction techniques for PSOs

01/2020 - 02/2021
Prototyping and evaluation of comprehensive PSUIs

03/2021 - 06/2021
Prototyping and evaluation of a cross-discipline PSUIs
Design, Prototyping and Evaluation of Next Generation Public Safety User Interfaces

Regis Kopper, Ph.D. – regis.kopper@duke.edu
Jerônimo G. Grandi, Ph.D. – jeronimo.grandi@duke.edu
Mark Ogren – mark.ogren@duke.edu
Requirement Analysis - EMS Functionality Requested

- “Trauma glasses”: body scanner for injuries, patient vital info
- Safety: discrete way to communicate with the partner to inform a dangerous situation while assessing the patient
- Real time traffic
- Better way to communicate with other PSOs
- Information about the patient: medical history, allergies,...—fast assessment
- Equipment portability

(“Voices of First Responders” Dawkins et al. 2018)
1st Chosen Scenario: Gunshot Wound to Upper Chest

Scenario: Gunshot Wound to Upper Chest

Key Role: EMS Paramedic

Task to simulate: Assess a trauma patient, control bleeding
Requirement Analysis - EMS

1st Chosen Scenario: Gunshot Wound to Upper Chest

Issues identified with first responders

• 10-minute window
• Removal to hospital ASAP
• Limited Assessment
Requirement Analysis - EMS

1st Chosen Scenario: Gunshot Wound to Upper Chest

Issues identified with first responders

- 10-minute window
- Removal to hospital ASAP
- Limited Assessment

Better scenario: first responder on scene for an extended period of time
Requirement Analysis - EMS

2nd Chosen Scenario: Complicated Medical Call

- **Scenario**: 65-year-old burned while cooking at home
- **Key Role**: EMS Paramedic
- **Task to simulate**: Assess the patient, identify how much of the patient’s body is burned, decide if the burn is considered critical, initial burn care, control bleeding and other injuries due to the fall, notify the medical center
Possible User Interface Features

- Display
 - HUD
 - Forearm mounted display
 - Tablet, smartphone

Interactions

- HUD on/off
- Face scanner
- Threat scanner
- Ask backup
- Voice commands
- Haptics: touch in body parts to send information (danger, ask for help)
- Audio: push-to-talk, radio

Information:

- Patient's info
- Real-time patient's vitals
- Hospital recommendation based on location and trauma
- Procedures checklist – dynamic
- Procedures guidance

Alerts

- Equipment location
- Threat identification: guns, knives, body language
- Communication: voice, text, radio
[Patient Data]
Name: John Doe
Birth: 07/18/1954

[Allergies]
Sulfa
NSAIDs

[Medical]
Arm, Chest burn: 9%
Blood lost: 300ml

[Center]
UNC Hospital

[Check List]
- Alert Hospital
- Control Bleeding
- Burn Care
- Pain killer (5 mins)
[Patient Data]
Name: John Doe
Birth: 07/18/1954

[Allergies]
Sulfa
NSAIDS

BP: 90/60
F: 40-102
Requirement Analysis - LE Functionality Requested

- Body scanner: face recognition, detect gun, danger
- Better communications: instant communication, clear voices, 1-1 and group
- Information about indoor spaces: pinpoint info in maps
- Information without the need to go back to the vehicle to use the computer
- Alarm is tapping
- Arm display
- Easy access to information: Interface that integrates multiple databases

(“Voices of First Responders” Dawkins et al. 2018)
Requirement Analysis - LE
Chosen Scenario: Traffic stop

Scenario: Traffic stop

Key Role: Police officer who’s on duty patrolling the streets

Task to simulate: Execute the traffic stop, assess the vehicle and the occupants, Proceed with warning, ticket or severe actions
Passive system

Vehicle

Owner

Driver

Toyota Prius

Plate: TK7B9

Tag expired

Color: Red
Active system

“Run plate: TK7B9”

- **Vehicle**: Toyota Prius
- **Color**: Red
- **Plate**: TK7B9
- **Tag expired**
When interacting with the driver

John Doe
Date of birth: 06/13/1984
Driver’s License: Valid
Outstanding Warrant

Vehicle
Owner
Driver

TK7D9
Requirement Analysis - FF Functionality Requested

- Information about the buildings, floor plans, people inside
- Interactive maps: tactical information, shared location, 3D maps,
- HUD: info about the environment, about the location of other folks
- Reliable systems
- Drone footage, 360 video of the scene before get there
- Lighter equipment, smaller
- Easy way to report (paper work)

(“Voices of First Responders” Dawkins et al. 2018)
Requirement Analysis - FF

Chosen Scenario: Search and Rescue

- **Scenario**: Burning commercial building
- **Key Role**: Firefighter who’s tasked with finding the victim
- **Task to simulate**: Search + rescue: Path finding (in and out), hazard detection and avoidance, victim detection
Double-click button on side of gas mask to activate HUD.
Dynamically generated floorplan

The floorplan is generated in real-time
Dynamically generated floorplan

Fire marker added
Dynamically generated floorplan

The fire spreads

Blocking the way out
Dynamically generated floorplan

Central commander sends a new path
Come back for the Next Session