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National Institute of Standards and Technology                                      
100 Bureau Drive, Stop 2000 
Gaithersburg, MD 20899 
 
RE: RFI: Developing a Federal AI Standards Engagement Plan 
 
As a leading global professional services company, Accenture provides a broad range of services and solutions in 

strategy, consulting, digital, technology and operations that span multiple industries. We combine artificial 

intelligence (AI) with deep industry and analytics expertise to help our clients embrace these emerging, intelligent 

technologies confidently and responsibly.  

Accenture is grateful for the opportunity to provide input to the National Institute of Standards and Technology 

(NIST) Federal AI Standards Engagement Plan. We applaud the Administration in its commitment to ensure the 

U.S. maintains global leadership in AI, while driving efforts to advance trust and transparency so the American 

people may realize the positive benefits of these technologies. 

Accenture is partnering with business leaders across industries who want to leverage AI to grow, increase 

productivity, improve efficiencies, and innovate new solutions. As part of those strategies, we work to ensure 

value and technology are integrated at every step.  We advise clients to take a people-first approach to AI; to 

incorporate data privacy, safety, and cybersecurity; and to participate in multi stakeholder opportunities, such as 

the NIST process, which can help ensure producer and consumer interests while not hindering innovation or the 

enterprise economy.   

Accenture believes that a strong AI internal governance framework is crucial for any organization developing 

and/or deploying AI. An organization’s AI governance framework should include ongoing assessments and rigor 

around responsible and ethical design and use. As AI quickly becomes a major tool for both customer and citizen 

services, it will be essential to promote trust and transparency by ensuring clear governance is in place to 

establish boundaries on what AI systems can and will be used for, how fairness will be measured, what data will 

power them, how users will interact with them, and how adjustments will be made, when appropriate. With this 

submission we hope to address the following questions posed by this RFI: 

NIST question: AI technical standards and tools that have been developed, and the developing 

organization, including the aspects of AI these standards and tools address, and whether they address 

sector-specific needs or are cross-sector in nature. 

Accenture: The market is already adopting standardized AI to grow, increase productivity, improve 

efficiencies, and innovate new solutions. While AI that operates on the edge (or real-time AI machine 

learning) exists and those cases continue to grow, the current state of AI is such that the vast majority of 

major companies are cautiously proceeding forward with this emerging technology. Now is the right 

time to engage industry and co-create frameworks for best practices as adoption of AI matures.  

NIST question: Whether the need for AI technical standards and related tools is being met in a timely 

way by organizations. 
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Accenture: As industry adoption of AI matures, so do the safety and performance features. Accenture 

continues to drive innovation in both ethical governance frameworks and combating adversarial AI. 

These are just two examples of how companies are pro-actively seeking answers to AI’s biggest 

challenges.    

NIST question: Technical standards and guidance that are needed to establish and advance trustworthy 

aspects (e.g., accuracy, transparency, security, privacy, and robustness) of AI technologies 

Accenture: Governance of algorithms must include both quantitative and qualitative measures 

(technical and non-technical).  Quantitative measures are the empirical evidence necessary to prove AI 

systems are effective, fair, and transparent. Qualitative measures enable the critical thinking necessary 

to interpret evidence effectively.  Both context and evidence are necessary to understand risks because 

there is no one definition of fairness, nor one understanding of sufficient transparency.   

We hope the NIST federal AI standards engagement will lay a foundation that we together can continue to 

iterate from. We are encouraged that NIST will continue to engage a broad stakeholder audience in this process 

to ensure that the federal government gathers perspectives beyond data scientists, AI developers and non-IT 

government program experts. Professionals from across disciplines and interests must work closely together to 

systematically tackle the opportunities and challenges of AI. 

NIST Question #1 - The Current State of AI Adoption: Standardized AI 

The Accenture Applied Intelligence Platform 

Companies are eager to take advantage of the benefits of AI. In a 2017 survey of 5,400 business and IT 

executives across 31 countries, more than one-third indicated they were set to make extensive investments in 

each of seven critical AI technologies.  

To help companies take the next steps, Accenture created two indexes to see what has been working so far. We 

studied both the Fortune Global 100 and what we call the Intelligent Global 100—pioneers in the development 

of AI technologies and applications—for the period 2010 to 2016. For those 200 companies, we reviewed both 

their in-house focus (for invention) and their external orientation (for collaboration). Both are essential. 

Companies will need in-house talent and sometimes proprietary capabilities for AI, as they will need to own 

some of the technology and some of the data. They will also need to be deeply involved in a broader ecosystem. 

Neither startups nor incumbents will thrive with a “not invented here” approach. And yet our analysis revealed 

that fewer than 20 percent score well on both indexes — companies we call “collaborative inventors” — while 

56 percent were weak on both.  

When Accenture launched our first analytics as a service platform in 2015, AI adoption was just beginning to be 

adopted by large companies across industries. Since then, we have grown what we now call the Applied 

Intelligence Platform (AIP) to help our clients adopt reliable AI systems at scale and to transform the enterprise 

through AI. AIP allows organizations – across sectors and industries - to apply pre-configured, and configurable 

to use case, self-learning industry solutions, and to develop new solutions, without the need for deep data 

science expertise — which is becoming an increasingly scarce resource. It integrates these capabilities with edge 

analytics and Internet of Things (IoT) services, as well as provides access to more than 350 curated data sources 

— all made accessible via an on-demand, low-code software studio. AIP allows our clients to take advantage of 

the expertise of Accenture’s more than 3,000 data scientists and 6,000 deep AI experts, and 1,500 AI related 

patents As a result, clients are less dependent on specific technologies as the platform leverages solutions and 

https://www.accenture.com/us-en/event-g20-yea-summit
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tools from leading technology providers to enable creation of reliable, safe, trustworthy solutions across 

industries and functions. 

Accenture continues to pioneer and integrate the latest and best-in-class applications to ensure that, in an 

increasingly complex and fast-moving world, we can help our clients as they face unprecedented challenges in: 

cybersecurity, privacy, safety, data veracity, and preventing bias and discrimination. With many of our 

technology partners at SAP, Workday, Oracle, and Microsoft, we offer nearly 250 applications on AIP. Accenture 

has already developed a range of use cases and more than 40 intelligent industry solutions to help bridge the 

gap between information technology and operational technology. Use cases include claims fraud, asset and fleet 

management solutions, and energy consumption. 

In the face of rapid change, the AIP ecosystem fosters a range of intelligent applications that run models on 

continuously updated enterprise and device data, which can drive network effects and new business models. 

We partner with our cloud ecosystem partners, including Amazon Web Services, Azure, and Google Cloud 

working side-by-side with Accenture Security to harden and secure the AIP and achieve certification with key 

third-party standards. Robust user identity and access control, including FIPS 140-2 validated cryptography and 

support for multifactor authentication, provide both safeguards and auditability. Penetration and other 

vulnerability testing are used to protect against external attacks at the application, software and hardware levels 

and to validate network isolation. Security design patterns are used for compliance with data privacy laws, such 

as HIPAA and other regulations governing the use of personal identifiable information, with HiTRUST 

certification and FedRamp approval. 

Accenture creates policies and processes that advance responsible development, deployment and use of AI and 

does so in a way that benefits all impacted parties and ensures innovation isn’t hampered. At the same time, we 

seek to empower and train our clients’ talent to work alongside these technologies to make faster, more 

informed decisions that are less transactional and more strategic. Our platform has the benefit of being 

operable across industries, with the ability to adopt the latest compliance requirements quickly and at scale. 

Currently, AIP, does not operate on the edge. Edge computing requires a significant amount of data science to 

vet real-time data which is a barrier for many organizations in adopting online AI/machine learning (ML). In the 

future, custom and edge AI will grow in use, but we predict that time will only come when companies feel they 

have the expertise and compliance guidance in which to do so. 

With each generation of AI, we work with compliance, data scientists, engineers and clients to continue to 

iterate new tools that can be added to our platform to ensure our clients have the ability to deploy trustworthy, 

reliable, secure, and ethical AI as soon as the solution is available. In this paper, we will describe two offerings 

that illustrate how Accenture continues to drive solutions that can be delivered quickly and scale quickly in order 

to respond to growing challenges: Responsible AI and adversarial AI. 



4 

 

 

 

NIST Question #6 – Ensuring the Safety and Performance of AI 

Management of the AI Lifecycle 

Accenture is increasingly helping our clients to deploy AI. At the same time, we work with our clients to 

incorporate best practices in management of those systems.  

We encourage all organizations to consider that there are two sides to the metaphorical technology coin: both 

the technology must be properly vetted and trained as well as the operator of said technology.  We must take 

care to consider both sides of the equation. 

The first area where organizations often start is transparency. Transparency is the ability to understand how and 

why an AI system decides and acts, particularly in the context of increasingly complex models. Transparency 

should include two important factors: understandability and interpretability. 

Understandability enables a non-technical person (e.g. business executive or customer) to gain insight 

into how an algorithm works, and why it made a given decision. It is critical that non-technical persons 

understand how their data is being used and how their actions can generate new predictions. There is 

an important difference between merely meeting any legal requirements to be transparent versus a 

desire to establish trust and prioritize understandability.   

Interpretability allows a technical expert, such as an AI/machine learning expert to understand why an 

algorithm made a given decision. Interpretability would allow government to know how their models 

will act in the “real world.” Interpretability tends to be the focus of what organizations such as DARPA 

call “explainable AI”. DARPA defines explainability as the ability of machines to: 1) explain their rationale 

2) characterize the strengths and weaknesses of their decision-making process and 3) convey a sense of 

how they will behave in the future.  
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In addition, organizations may want to consider how to proactively justify their design choices by explaining: 

• why they chose a particular data set to draw inferences; 

• why these inferences are relevant (and ethical) for the chosen decision they are trying to make; and  

• whether the data and methods used to draw the inferences are accurate and statistically reliable for 

the population they are trying to serve. (A data set full of Iowans would not serve the population of 

New York whose population is full of different characteristics.) 

 

Human participation is critical to creating AI systems. In considering the human impact of integrating AI into high 

risk areas, such as criminal justice and health care, organizations can set out to design, build and deploy AI 

systems whereby human responsibility is enhanced. Whereas transparency provides insights into the systems 

driving decision-making, human participation enables the ability to change or alter how consumers interact with 

that system.  An added complexity, that is aligned with the issue of transparency, is accountability of human and 

algorithmic systems. Presumably we build algorithms, at least in part, to standardize and address human bias 

even while we simultaneously say AI can be biased and call for human oversight. Because of this, we need to 

remain focused on tracing decision making, not just of algorithms but of people. 

In addition, ethics are critical to informing an organization’s strategy for its technology deployments.  

Organizations should consider what are the values that should be encompassed in their product, and how these 

values might vary across different demographics. Organizations can then proceed by developing AI that 

incorporates those values.  

Policymakers have long used the word “transparency” to address issues in data privacy and security, not 

algorithmic harms or disparate impact. This is an important distinction, as any discussion of potential harm to 

impacted communities must consider systemic and institutionalized bias and discrimination as well as systems 

of power. This means that representative data sets must be selected carefully and that even if an organization is 

able to build what they consider to be a representative data set, especially in cases that would impact a human 

life such as criminal justice, health care, and finances,  we need to consider implementing systems that enable 

agency – the ability to take meaningful action against harm. While transparency is necessary, it is insufficient. 

Governing bodies should consider establishing flexible guiding principles to govern AI that are general enough to 

evolve with a rapidly changing technological environment but are also specific enough to be useful for 

applications. Effective guiding principles marry both restrictive rules and open-ended principles to provide both 



6 

 

 

the nuance and flexibility required to govern this rapidly developing technology. Furthermore, clearly articulated 

and established guiding principles create a culture within an organization that allows for ethically responsible 

attitudes and behaviors from top to bottom. 

Ethics Committees 

As previously stated, AI ethics should be derived from an organization’s core values and mission statement. 

Rather than create a committee or board that is introduced at the end of product development, a better 

purpose would be to utilize this resource as an early-stage education tool. No one committee or board is able to 

encompass all of the skills necessary to provide this nuanced education on all technological implications. A 

better plan is to use this body as a sourcing group to identify experts from a wide range of backgrounds and 

empower them to shape design and development. 

At Accenture, we are constantly refining our Responsible Business practice, which is an interdisciplinary 

leadership and practitioner community that encompasses technology, sustainability, legal, corporate social 

responsibility, and others. We evangelize and apply the principles developed by this group via our Responsible 

Innovation groups, which includes Responsible AI, but also encompasses other technologies, including 

blockchain, AR/VR, and quantum computing. Ultimately, we see a long-term benefit for organizations to respect 

and protect employees who may raise questions they feel are a concern to society and the long-term benefit of 

the company. 

Assessing Disparate Impact or “Fairness” 

At the beginning of 2018, our Responsible AI team sought to tackle what seemed to be one of the big problems 

in the ethics of AI space. Business leaders, and stakeholders across industries lacked tools to understand 

algorithms and thus be equipped to partake in decision making around fairness considerations in algorithms. As 

we approached this challenge, we looked to just two of the definitions from Arvind Narayanan’s paper titled ‘21 

fairness definitions and their politics’ codified into computer science.1   

For a technical explanation of the tool, please see “A Framework for Translating Academic Research to 

Application: Accenture Fairness Evaluation Tool” (appendix). 

Adversarial and Trustworthy AI 

Much attention has been paid to unintentional misuse of AI that can lead to problems like discrimination and 

bias. However, it is prudent to remember that another key component we must reckon with is the intentional 

attacks on an AI system, often using AI to carry out such attacks. Researchers in adversarial AI have created 

proof-of-concept attacks against a number of core technologies like computer vision, OCR (Optical Character 

Recognition) and malware detection. A brief examination of some of these highlights the methodologies and 

desired outcomes behind these attacks. 

Computer vision 

                                                           
1 The 21 definitions illustrate the challenges policymakers and standards designers may have if they attempt to codify or 
endorse any one system. Fairness is a challenging concept to assign a specific definition to. That is why agile management 
methods are critical to the future of AI. 

https://docs.google.com/document/d/1bnQKzFAzCTcBcNvW5tsPuSDje8WWWY-SSF4wQm6TLvQ/edit
https://docs.google.com/document/d/1bnQKzFAzCTcBcNvW5tsPuSDje8WWWY-SSF4wQm6TLvQ/edit
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Many recent advances in computer vision have been enabled by deep learning – from classifying image 

content and creating decision-making processes for self-driving cars to recognizing objects in 

surveillance feeds.  

Image content/classification is one of the most researched areas of adversarial AI. A typical attack in this 

space generates an adversarial example which is given to a machine learning model. Because of 

manipulation, the model misinterprets the content of the image and misclassifies it. 

In this way, an attacker can tailor the expected behavior of an algorithm to achieve a number of 

outcomes. And in self-driving car use cases, researchers have created adversarial examples that can 

cause accidents.  

Widely used by organizations to extract text from images, OCR software is another area at risk of attack. 

Proof-of-concept adversarial attacks have caused OCR systems to misread the information from images 

that is then translated to text. Fraud use cases represent one of the broadest attack vectors (online 

banking apps could be exploitable).  

Natural language processing (NLP) 

Recent research shows that applications of deep learning in NLP are also vulnerable to adversarial 

attacks. Unlike images, which are usually scaled to have continuous pixel intensities, text data is largely 

discrete. This makes optimization for finding adversarial examples more challenging. 

Adversarial examples in this space focus on inducing misclassifications through changes that maintain 

semantic similarity (sentences with similar meanings are close to each other) or making changes that 

maintain syntactic similarity (sentences are structured the same).  

The objectives of these adversarial attacks are varied and could include subversive manipulation of the 

algorithms that determine sentiment, gather intelligence, or filter for spam and phishing. 

Industrial control systems 

To reduce computational complexity, many control systems make estimations and approximations. This 

simplification means that some interactions will not be captured in the control equations. By creating 

Generative Adversarial Networks (GANs) that make minor manipulations (that may go unseen by human 

operators) to control systems’ inputs, attackers can cause unexpected behaviors that create a wide 

array of outcomes – from simple system degradation, to increased wear-and-tear, to catastrophic 

failure. 

Securing AI 

The majority of organizations’ current investment into security is dedicated to securing the hardware and 

software attack surface. These include patching vulnerabilities, static and dynamic analysis of production codes, 

and OS hardening.  

This overlooks a key point: adversarial AI targets areas of the attack surface that have never previously had to be 

secured, the AI models themselves. From now on, organizations need to include these in their security budgets – 

or risk them being exploited by attackers. 
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Securing an AI model requires different skills and toolsets than securing code. In large part, that’s because it’s 

impossible to test every combination of inputs for an AI model (the number of values taken by a single variable 

can be infinite).  

Until recently, data scientists addressed this problem by using sensitivity and robustness testing. But these tests 

are used to test for stability on random inputs, not specific combinations of inputs engineered to trigger 

unexpected behavior. And they’re more likely to fail to predict behavior in more complex models.  

To ensure their AI models are robust enough to withstand exploitation, organizations must take advantage of 

adversarial AI counter-measures and emerging practices. The AI attack surface is an entirely new area of 

infrastructure that has to be secured. Security practices must adapt to accommodate it, including updating 

threat modeling processes to account for adversarial AI threats. 

So how can the AI attack surface be comprehensively protected? It’s a complex challenge and organizations will 

need to combine multiple approaches to ensure robust, secure AI such as: 

• Rate limitation – by rate-limiting how quickly individuals/systems can submit a set of inputs to a system, 

organizations can increase the effort it takes to train their models. That’s a major deterrent to 

adversarial attackers.  

• Input validation – data sanitization focusing on what’s being put into AI model while in inference mode, 
or while undergoing training. By making small modifications to an adversarial example, it’s often 
possible to “break” its ability to fool a model. When performed during the training phase of the model 
through special techniques, this process can be used to clean poisoned training data and prevent AI 
trojans/backdoors. 

• Robust model structuring – the structuring of machine learning models can provide some natural 
resistance to adversarial examples. It is worth noting that this will involve tradeoffs between the 
model’s accuracy, its robustness, and its explainability.  

• Adversarial training – if enough adversarial examples are inserted into data during the training phase, a 
machine learning algorithm will eventually learn how to interpret them. Adversarial examples can be 
generated by training a special Generative Adversarial Network (GAN). 
 

Even though AI attack surfaces are only just emerging, organizations’ future security strategies should take 

account of adversarial AI, with the emphasis on engineering resilient modelling structures and strengthening 

critical models against attempts to introduce adversarial examples. 

Immediate priorities for organizations to consider include: 

1. Conduct an inventory to determine which business processes leverage AI, and where systems operate as 
black boxes 

2. Gather information on the exposure and criticality of each AI model discovered in Step 1 by asking:  
o Does it support business-critical operations?  
o How opaque/complex is the decision-making for this process? 
o Is the process exposed to the outside world? 
o Can customers create their own inputs and get results from the model?  
o Are there similar open-source models to this process? 
o What potential outcomes could an attacker drive from this model? 

3. Prioritize plans for highly critical and highly exposed models: 
o Using the information gathered in Step 2, prioritize each model and create a plan for 

strengthening models that support critical processes and are at high risk of attack 
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o To support prioritization, create trade-off matrices that weigh criticality vs the risk and exposure 
of each model.   

 

NIST Question #8: Technical standards and guidance that are needed to establish and advance 

trustworthy aspects of AI technologies. 

Just like other critical technology matters such as cybersecurity and privacy, AI will require global governments 

to come together to establish best practices and frameworks to guide organizations. They will be key to both 

safety and innovation. For that, we were pleased to see countries come together for the recent  OECD Council 

Recommendation on Artificial Intelligence. We encourage the United States government to adopt a similar 

whole-of-government approach for the other standards organizations currently working on standards such as 

the IEEE and ISO. 

However, while cross-sectoral best practices will be useful at a high-level, industry specific and risk-based 

frameworks will be necessary in some high-risk cases. Through this RFI process, NIST is well-positioned to play 

the role of convener for stakeholders as they work to create guidance, helpful across sectors, on how to 

approach technical standards. It is important that NIST/the federal government consider whether NIST should 

also serve as a convener for non-technical frameworks.  

Once the discussion reaches industry specific frameworks, we must take care to specify how the guidance 

applies to what specific kind of AI. And, we must ensure that best practices and guidance continue to be 

updated- just as the NIST Cybersecurity Framework continues to be updated taking into account new technology 

advances, threats, and opportunities.  

We believe that effective government approaches to AI clears barriers to innovation; provide predictable and 

sustainable environment for business; protects public safety; and builds public trust in the technology. An 

example of such an approach is the UK Financial Conduct Authority’s regulatory sandbox model, which has 

proved so successful that it has now been adopted in other countries, including Australia. As suggested in the 

OECD AI recommendations, we would support NIST developing a sandboxing scheme for AI technical tools, that 

will enable innovative businesses to test and pilot AI algorithms and tools responsibly, in a safe environment, 

and within a safe framework. 

However, standards or “assessments” must not be used to create a checklist for ethics or fairness. Governance 

of algorithms must include both quantitative and qualitative measures (technical and non-technical).  

Quantitative measures are the empirical evidence necessary to prove AI systems are effective, fair, and 

transparent. Qualitative measures enable the critical thinking necessary to interpret evidence effectively.  Both 

context and evidence are necessary to understand risks because there is no one definition of fairness, nor one 

understanding of sufficient transparency.  Evaluations of fairness and transparency in AI systems, such as 

Algorithmic Impact Assessments, are a productive tool to proactively identify, mitigate and monitor these risks 

but they should be used to foster conversations between policymakers, regulators, and stakeholders; not to 

“certify” if a technology is “fair.”  

https://legalinstruments.oecd.org/en/instruments/OECD-LEGAL-0449
https://legalinstruments.oecd.org/en/instruments/OECD-LEGAL-0449
https://www.fca.org.uk/firms/regulatory-sandbox
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I. A Framework for Translating Academic Research to Application: Accenture Fairness Evaluation Tool 
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A Framework for Translating Academic Research to Application: 

Accenture Fairness Evaluation Tool 

Accenture Applied Intelligence 

Rumman Chowdhury, Caryn Tan, Deborah Santiago, Benjamin Jones August 

2018

Abstract 

Fairness is a critical and much-discussed component of 

good algorithmic deployment. However, the definitions 

of fairness are numerous and diverse, and promising 

academic literature can be difficult to develop in prac- 

tice. In this paper, we discuss the components of Ac- 

centure’s Fairness Evaluation Tool and present a frame- 

work for translating academic research into practical ap- 

plication. We utilize the key steps of scaleability, gen- 

eralizability and integrability to examine each potential 

solution for viability. We also discuss the concept of 

human centricity, and provide some concrete examples 

of design decisions made in the algorithmic tool devel- 

opment process to encourage agency and accountability 

via human-centric design. 

 

1 Introduction 

Algorithms are everywhere. They have become an inte- 

gral part of our lives and dictate everything from which 

ads we see to whether or not we are approved on our 

mortgage, what music we are listening to and how ex- 

pensive our car insurance premiums are. But what are 

the consequences on businesses and society as a whole 

if the algorithmic output is fundamentally unfair? What 

are the implications on society if, as is sometimes the 

case, men are more likely to be shown higher paid,  more 

senior job advertisements than women?1 Or, if re- sumes 

of women submitted for programming jobs were 

discounted because the definition of a successful em- 

ployee was based on the composition of current exec- 

utive pool2? The prevalence of algorithms in our daily 

lives has led to a growing concern among academics and 

industry alike that more needs to be done to understand 

and prevent the effects of systematic algorithmic bias. 

Algorithms provide the veneer of technological ob- 

jectivity. With data, math and programming as interme- 

diaries, we remove ourselves from the decision-making 

process and presumably, remove ourselves from human- 

bias. However, in the context of machine learning, the 

machine can only learn from the training data it is pro- 

vided and the constraints of the algorithm. Therefore, 

algorithms are not automatically fair by design. There 

are many ways to address algorithmic fairness. One 

method involves doing more to anticipate for and 

mitigate against “unintended consequences” of the uses 

of technology. 

 

 
Accenture’s Fairness Evaluation Tool was designed 

with an appreciation of the depth of contextual under- 

standing that may be involved in an assessment of fair- 

ness. Ultimately, the weight of responsibility of this de- 

cision should not solely fall on one person; it should  be 

a collaborative effort informed by many parties. We 

discuss specific human-centric design decisions that em- 

power the user to make trade-offs and decisions, rather 

than outsource the outcome, and the responsibility of the 

consequences, to the model. The Fairness Evaluation 

Tool was designed for human decision-making and for 

simple interactive visualizations intended to explain 

quantitative output to a non-technical audience. 

 

 
The statistical underpinning of our work is not new or 

novel. However, what our efforts introduce is a frame- 

work for translating academic work into integrated ap- 

plications based on the concepts of scaleability, gener- 

alizability, and integrability. Thus, the subsequent sec- 

tions are organized as follows: (a) a discussion of the le- 

gal and quantitative literature on fairness, (b) a proposed 

framework for assessing academic work for readiness in 

integrated applications, (c) an overview of how we ap- 

plied that framework to the fairness literature to create 

the tool and (d) the human-centric design decisions that 

serve to nudge the user towards agency and encourage 

collaborative decision-making. 
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2 What  is fairness? 

A popular approach that has translated from the legal 

sphere to the quantitative academic field is the concept 

of using disparate impact as a red flag for determin- ing 

“unintended consequences” and possible unfair out- 

comes. This practice of anticipating unintended con- 

sequences can find historical precedent in the frame- 

work of analysis surrounding the concept of “disparate 

impact” found in United States jurisprudence. Under 

Griggs v. Duke Power Co.3, the US Supreme Court 

evaluated whether an actual intent to discriminate (i.e., 

overt discrimination) was needed in order to conclude 

that an employment practice was discriminatory. The 

US Supreme Court found that there might be practices 

that are “fair in form but discriminatory in operation” 

even without an actual intent to discriminate. As this 

concept has evolved over the last 47 years, the frame- 

work is as follows in its simplest form: (1) does the 

employment practice have a disparate impact on pro- 

tected classes of people (e.g., race, gender), (2) is there a 

business necessity for that practice and (3) are there any 

reasonable alternatives available to the employer rather 

than the questionable practice at hand? 

Translating this legal concept to algorithmic out- 

comes, we find that most of the quantitative literature 

on fairness focuses on (1), but not (2), or (3). While  the 

last two considerations are outside the scope of this 

paper, they are often raised in the context of model as- 

sessment. (2) roughly translates to “just because we can 

make something, should we?” and (3) asks, does the 

model perform better than a human? For example,  in  a 

binary classifier, we ask if the model performs better 

than a coin flip. 

There are many ways of enforcing fairness constraints 

in data analytics, but not all of them can be achieved at 

once. Additionally, fairness often involves a compro- 

mise on model accuracy. Thus, it is important to un- 

derstand what the implications of each constraint are. In 

this section we go into greater detail about con- cepts of 

fairness that are most relevant to the realm of the data 

scientist’s work: issues around data process- ing, 

modelling, and model evaluation. These concepts are 

illustrated in subsequent sections using the publicly- 

available German Credit Score Dataset4. For simplicity, 

we suppose that gender is the only protected attribute 

when providing examples. 

 
2.1 Quantified fairness as a 

measurement of disparate impact 

For the purposes of the Fairness Evaluation Tool, we use 

the term disparate impact to describe the possible oc- 

currence of unintended discrimination through the us- 

age of interconnected variables. Even if gender is ex- 

cluded from a model, decision-making can lead to dis- 

crimination if there are variables associated with gender 

in the model. Examples are variables such as salary and 

profession, which have different distributions for each 

gender. It is also helpful to consider the less serious 

example of shoe size, because it is a good example of 

non-obvious associations.  After a model is built with  a 

protected variable excluded from the build, we know 

some form of discrimination may have occurred if the 

probability of an outcome is not the same for different 

values of the protected variable. 

 

2.2 Quantified fairness as Predictive Par- 
ity, Equal Opportunity, and Equal Le- 
niency 

If a model is well-calibrated, then the classifier exhibits 

predictive parity if it obtains similar predictive values 

for different groups within a protected variable (for ex- 

ample, the predicted value is similar for males and fe- 

males). Equal opportunity means that the true positive 

rate (TPR) is equal across the protected groups, where 

the TPR is defined by Verma and Rubin as the fraction 

of positive cases correctly predicted to be in the positive 

class out of all actual positive cases5. It is often referred 

to as sensitivity or recall as it represents the probability 

of the truly positive subject to be identified as such. In 

our example, a true positive is a person who paid back 

their loan and for whom it was predicted that they would 

do so. In this context, a difference in TPR is unfair be- 

cause it means that the rate at which the model predicts 

the individuals who were loan-worthy is different be- 

tween subgroups. Equal leniency is also referred to as 

predictive equality. Leniency is a measurement of False 

Positive Rates (FPR), or, the fraction of negative cases 

incorrectly predicted to be in the positive class out of all 

actual negative cases. 

From a measurable and applied perspective, a data 

scientist needs to understand the context of the model 

and which of these fairness quantifiers is the most ratio- 

nal. Leniency, or false positive rates, can often be a bet- 

ter measure of fairness than others. True negative rates 

are not possible to measure in many cases, as we can- 

not determine the counterfactual outcome. While equal 

opportunity is enforceable, it is difficult to optimize. To 

ensure equality in the wild for our example, we may 

have to enforce a very low credit approval rate, which is 

not an optimal business outcome. From a business per- 

spective, one may choose to optimize for leniency. A 

leniency approach is more strict on subgroups that are 
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favoured, and increases the level of acceptance for the 

groups that are traditionally less favoured. The bank can 

reduce cost with fewer loan defaults from the favoured 

group, thereby reducing overall cost, and increase rev- 

enue by allowing more people to receive (and pay back) 

loans who may not have otherwise received them. 

 

2.3 Fairness as collaboration 

In defining fairness, we caution the development of a 

tool that relies on pure algorithmic solutioning.  This   is 

because pure algorithmic solutioning often lacks the 

requisite context that enables informed decision- 

making. We also appreciate that the responsibility of 

identifying an “ideal” level of fairness may be a heavy 

burden to bear for an individual data scientist, and there- 

fore we approach fairness as a collaborative effort. In 

particular, an organization’s definition of fairness should 

be a function of their core business values, industry- 

specific requirements, and the definition of success for 

the product. 

Human-centric design is a popular, and possibly 

overused, term in the technology product space; here, 

human-centricity allows for the collaboration that is re- 

quired for true contextual awareness. For the Fairness 

Evaluation Tool, we define human centricity as enabling 

human agency, accountability and understandability. In 

subsequent sections, we will describe the human-centric 

nudges included to inspire ownership over the outcome 

and collaborative decisioning. 

 

3 Translating academic work to 

application 

Our tool prototyping began with a broad range of aca- 

demic literature on fairness. However, academia is of- 

ten focused on exploring the boundaries of what can be 

achieved, and it can often be difficult to translate aca- 

demic research into a product offering that can be ap- 

plied to industry. As a result, we focused on the follow- 

ing criteria for assessment: (1) scaleability, (2) general- 

izability, (3) integrability. 

For technology product designers, scaleability is the 

critical component in the creation of a new offering. 

Scaleability is defined as: the ability of a process, net- 

work, software or organization to grow and manage in- 

creased demand. In other words, it is critical that we are 

able to provide consistency and accuracy in results, and 

have an expectation that this process will not impede 

workflow. 

Generalizability asks whether the statistical underpin- 

nings of the code is something a general data scientist 

can understand and execute with a high level of under- 

standing with a minimal amount of training. Highly spe- 

cialized academic literature may require a skill set that 

is beyond the capability of data science and AI teams at 

many companies, particularly those outside of the tradi- 

tional technology fields. Even in more algorithmically 

sophisticated industries (e.g. banking), we may find that 

the fairness literature requires niche capability they do 

not possess. 

Finally, integrability appreciates that ethical data and 

algorithmic practices are often seen as an impediment to 

progress. A commonly heard phrase is “regulation stifles 

innovation”– and ethical assessments are consid- ered 

part of this regulation. To address this, the Fairness 

Evaluation Tool mandate was “flexibility by design”. 

Each of the models we used is assessed for ease of in- 

tegration, and our development team is focused on cre- 

ating seamless pipelines from data to deployment. As a 

result, the model output needs to exist in a format that is 

easily integrated to a variety of cloud-based or on- 

premise machine learning solutions. 

As an example of an application of this framework 

that led to the elimination of a fairness procedure, we 

examined the counterfactual fairness paper6 for the Fair- 

ness Evaluation Tool. Kusner et al define counterfac- 

tual fairness in the context of decision making as “a 

decision that is fair towards an individual if it is the 

same in (a) the actual world and (b) a counterfactual 

world where the individual belonged to a different de- 

mographic group”. The authors point out that enforcing 

equal opportunity at the modelling stage will not mean- 

ingfully protect equal opportunity if the individuals in 

the training data have not experienced equal opportu- 

nity. However, this academic research, while ground- 

breaking, did not meet the application framework crite- 

ria. Counterfactual fairness requires an understanding of 

causal relationships and the ability to map these link- 

ages in a meaningful manner to understand latent causes 

of bias. As model complexity increases, the difficulty of 

mapping these linkages increases exponentially. This 

skill is not taught as part of a standard data science prac- 

tice, and the learning curve may be steep. Finally, the 

process may take longer than is acceptable for a stan- 

dard development process. A cost-benefit analysis here 

is key to the success of applicable research. 

Using this criteria, our examination of the literature 

results in a tool with three parts: i) a data investigation 

tool that examines the hidden impact of sensitive vari- 

ables (Section 6.1), ii) a tool to look at disparate im- pact 

of the model outcome (Section 6.2) and iii) a tool to 

enforce equalized leniency for classification models 

(Section 6.3). 
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4 The analytical journey 

 
 

Often overlooked, the analytical journey undertaken by 

data scientists is a key first indicator of bias in a given 

model. Figure 1 compartmentalises the data journey, 

highlighting some fairness considerations that can be 

accounted for at each stage.   Olteanu et al.7  provide    a 

taxonomy of biases that can occur. Here, we step 

through the analytics workflow, drawing attention to a 

few examples of biases that can arise. We recommend a 

close reading of Olteanu et al. to understand the com- 

plete picture. 

 
At the point of ideation: Is the group of people 

tasked with brainstorming relatively homogeneous? If 

so, they may not have an adequately diverse set of view- 

points between them. This is particularly troubling if the 

analysis concerns a population of people that include 

individuals very different to the brainstorming decision- 

makers. 

 
Data collection: Is the collected sample representa- 

tive of the population it is supposed to represent? If 

you’re trying to build a model to predict whether a per- 

son will default on their loan, and the sample is made up 

of people who were granted a loan based on criteria such 

as credit score, then your model will not be predictive in 

the population at large, but merely in the subpopulation 

of people who had a credit score exceeding a certain 

threshold. 

 
Data processing: There are many issues that can 

arise here. One example concerns missing values. If a 

choice is made to work with “complete cases” only, then 

any observations with missing data will be excluded 

from the analysis. Yet this missingness could be sys- 

tematic, so that a subpopulation is systematically under- 

represented after the data cleaning. Data aggregation can 

also cause bias because reducing the granularity of the 

data may obscure crucial differences between sub- 

populations. 

 
Analysis and evaluation: Depending on the model 

that is chosen to represent the data, very different re- 

sults can be achieved. It is important to compare several 

models in terms of predictive performance in subgroups 

defined by protected characteristics such as gender. In 

Section 6 we highlight several methods evaluating and 

adjusting for differences in model accuracy between 

these subgroups. 

5 Human centricity and SGI 

framework applied to the Fair- 

ness Evaluation Tool 

First, in the data investigation tool, we allow the user to 

select their sensitive variables. In the disparate impact 

tool, we allow the user to select their desired level of 

repair, and visualize both the level of repair as well as 

the accuracy shift. In the predictive parity tool, we allow 

the user to select the leniency (false positive rate) and 

illustrate the cost associated with this value. In each 

case, rather than pre-select or optimize an output, we 

assume the user has the contextual knowledge to select 

the right value for their trade-off function. 

Our visuals are designed to invite conversation. For 

example, we choose to illustrate the cost – not accuracy 

level - associated with the predictive parity value. Pro- 

vided a 2x2matrix of cost for false positive, true posi- 

tive, false negative, and true negative outcomes, we cal- 

culate a monetary value of the adjustment. In doing so, 

we enable the data scientist to have an outcomes-related 

discussion with key stakeholders. In the example of the 

data used for testing the tool, we model the monetary 

cost of predictive parity, and illustrate that some levels 

of adjustment lead to lower costs for the bank, due to a 

decline in defaults and additional opportunities for those 

previously denied. 

 
6 The Fairness Evaluation Tool 

For each concept of fairness outlined in Section 2 

(minus counterfactual fairness), we have implemented 

methods for quantifying and adjusting both the data and 

the modelling process. This includes evaluating the 

fairness-accuracy trade-off inherent in each process. We 

propose a platform for integrating the considerations of 

model accuracy and its cost implications with those of 

fairness. We also illustrate how each fairness component 

fits in with the typical data science workflow. 

 
6.1 Mutual information 

To get a better understanding of how the variables inter- 

relate, bi-variate analyses of each combination of vari- 

ables was carried out. Mutual information was chosen 

as the measure of inter-variable dependence.  Brown   et 

al.8 provide a short introduction to this metric. The 

mutual information between two variables, X1 and X2, 

tells us how much knowing the value of one variable, 

say X1, informs us about the value the other, X2, might 
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Figure 1: The stages of the analytical process. 

 
take. It is calculated as 

MI(X1; X2) = 
L

 

 
  p(x1, x2)  

p(x1, x2) log , (1) 

p(x )p(x ) 

Then G is said to be E-predictable  from  X  if  BER(f 

(X), G) E. And it is “E-fair” if the BER ex- ceeds this 

threshold. See Feldman for a full description 

 

where 1 and 2 each represent the values taken by the 

X variables. Note that if the variables are independent, 

p(x1, x2) = p(x1)p(x2) so that the MI value will be 

zero. In reality, it will be close to, but not exactly, zero 

if the variables are independent. 

The maximum possible value of MI is achieved if the 

two variables are completely dependent, so that know- 

ing one tells you what value the other will take. How- 

ever, MI is not just a function of dependence, but also 

depends of the number of different values taken by each 

variable and the marginal distribution of each, so that the 

maximum possible value varies between variable com- 

binations. 

MI can only be applied to discrete variables. We dis- 

cretized the continuous variables by binning each into a 

maximum of five bins with an equal number of observa- 

tions, N , in each bin. Figure 2 displays the normalized 

MI values for each variable combinations. To test the 

significance of these values, calculate the G-statistic as 

2 ∗ N ∗ MI(X1; X2). It follows the χ2 distribution9. 

6.2 Disparate impact 

6.2.1 Evaluating disparate impact 

Feldman et al.10 propose a model based approach to 

identifying disparate impact by using the concept of bal- 

anced error rate (BER). If X = (X1, ..., Xn) are the 

non-sensitive predictors of the German Credit Data and 

G is gender, build a model, f (X) to predict G from X. 

Then the BER is defined as: 

 

BER(f (X), G) = 
P (f (X) = m|G = m) 

2 

of the method. As this method is model dependent, it X1 ,X2 
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must be kept in mind that if the “right” classifier is not 

applied,  the BER will not be accurate.   In this study,   

a hinge-loss Support Vector Machine (SVM) algorithm 

was applied, in line with the approach taken by Feldman 

et al. 

Where bias is not corrected for, or not completely 

corrected for, it is possible for this bias to become am- 

plified in the model build process. Bias amplification 

identification was proposed by Zhao11 to evaluate the 

change in disparity between two groups in terms of out- 

come. We did not focus on this method in the Data 

Study Group, but wish to highlight its existence. In sum- 

mary, first calculate the maximum likelihood probabil- 

ity of default based on the observed outcome for each 

subgroup, P (D = 1 G = m) and P (D = 1 G = f ). 
Then compare this to the classifications output from the 

model, P (D̂  = 1 G  = m) and P (D̂  = 1 G  = f ).  If 

there is a difference between the values, this suggests 

that bias amplification has occurred. 

 

6.2.2 Correcting for disparate impact 

Feldman et al. state that their method removes all in- 

formation leakage that leads to disparate impact while 

preserving the rank10. In our case, this is the rank of 

individuals in terms of credit-worthiness (we did not 

verify this in our experiments). They propose several 

approaches for partially “repairing” the data so that the 

disparate impact is reduced. The complete removal of 

disparate impact is cautioned against because it can lead 

to a significant reduction in model accuracy. 

Our experiments based on the credit data show the 

effect of repairing the data with respect to protected 

variable gender, Figure 3. This is a high-dimensional 

+P (f (X) = f |G = F ) 

2 

(2) 
data set, so, to enable a meaningful visualisation of how 

the classification quality changes with adjustment for 
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(a) NMI values (b) Significance testing 
 

Figure 2: Normalized mutual information for each combination of variables in the German Credit Data in plot (a). 

In plot (b), dark blue squares indicate a statistically significant relationship between two variables at the 0.05 level. 

 
disparate impact, we projected the dataset into a two- 

dimensional embedding. The axes are chosen as the nor- 

mal vectors of the separating planes of classifiers trained 

on reconstructing the protected attributes and predicting 

the credit rating, respectively. So the x-axis equals the 

decision value of a linear classifier for reconstructing 

the protected attribute, and the y-axis equals the deci- 

sion value of a linear classifier for predicting the credit 

rating. 

It is advisable to explore the fairness-accuracy trade- 

off of this method for various degrees of repair, ranging 

from none to complete, before finalising the extent of 

repair. Any compromise made on the accuracy of the 

model will impact a bank’s risk profile. So, similarly, 

the fairness-cost trade-off should also be made clear. 

See Figure 4 for what this visualisation might look like. 

If achieving the desired standard of fairness requires 

too great a compromise in terms of model accuracy, the 

data collection process should be scrutinised. A com- 

pletely new data set could be the more appropriate solu- 

tion. 

 
6.3 Equalized leniency 

Several methods have been proposed12,13 to impose 

equal treatment amongst subgroups, say male/female 

gender, of a data set by adjusting the classification 

threshold on model output. These methods can easily be 

inserted into a workflow in so far as they are agnostic 

to the type of model that has been used to generate the 

output. The only requirement is that the model outputs 

a continuous prediction. In this study we focus on prob- 

ability outputs, but it is straightforward to extend this 

approach to other continuous model outputs. 

A disadvantage of this approach is that it can be naive. 

Consider the problem of information leakage described 

in Section 6.1. Correcting for differences with respect to 

a protected variable will not address the issue com- 

pletely if predictor variables are related to it. 

A logistic regression model with elastic net is applied 

to the credit data to obtain predicted probabilities of be- 

ing given a loan. We then visualise any divergence in 

model performance between the categories of the pro- 

tected variable using ROC curves. ROC curves permit a 

comparison of the TPR and FPR for every possible 

threshold on the model output. The ROC curve in the 

Figure 5 (a) shows that there is a difference between the 

two age groups, under 30 years and 30 or older, in terms 

of model accuracy. 

It is possible to re-threshold the probabilities output 

by the predictive model in order to achieve equal FPR 

and/ or TPR in both subgroups. However, Choulde- 

chova14 has shown that the TPR, FPR, and PPV cannot 

be equalised at the same time using classification cali- 

bration techniques: 

FPR = 
 p 1 − PPV   

(1 FNR) (3) 

1 − p PPV 
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(a) No corrections (b) Corrected 
 

Figure 3: The plots show the data set (a) before it is corrected for disparate impact, and (b) after the correction has 

been applied. It can be seen that data points of the same category clustered towards the edges are better interspersed 

with correction applied, and thus anonymized 

 

 

(a) fairness-accuracy trade-off 
(b) fairness-cost trade-off

 

Figure 4: Visualising the trade-offs that are involved in enforcing fairness constraints in disparate impact. Cost 

analysis is based on a cost of five units for a true positive and one unit for a false positive. 

 
 

(a) ROC curve (b) Cost analysis 

Figure 5: (a) compares the ROC curves of subgroups before classification calibration is applied. (b) shows the 

fairness-cost trade-off for different levels of equalised FPR. 
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Figure 6: A comparison of overall accuracies (listed be- 

neath each pair of bars) for the unconstrained approach 

and model calibrations which enforce parity amongst 

subgroups of misclassification rate, FPR, FNR, and FPR 

& FNR. 

 

Chouldechova notes that if the PPV is kept the same 

across subgroups but the prevalence, p, differs between 

groups, equal FPR and TPR across subgroups cannot be 

achieved. 

A cost analysis of the impact of different equalised 

FPR thresholds is provided in Figure 5 (b). Depending 

on what the primary fairness concerns are, an alternative 

plot can be generated to compare, say, the TPR-PPV 

trade-off instead of the TPR-FPR of Figure 5. 

 

7 Conclusion 

Incorporating a definition of fairness from academia 

into the data science workstream of corporate applica- 

tions is challenging. In this paper,  we have presented  a 

methodology for translating ethical AI research into 

disruptive, industry-standard applications, using the Ac- 

centure Fairness Evaluation Tool as a use-case, with 

human-centricity at the core. We break this down into 

three key areas: scaleability, generalizability, and inte- 

grability, and discuss how each is relevant to the respon- 

sible AI field. 

During this process, we discovered some key learn- 

ings. When correcting for equalized leniency in Section 

6.3, we found the interesting relationship seen in Figure 

6. As we enforce parity amongst subgroups of misclas- 

sification rate, we obtain a higher overall accuracy. This 

is a welcome but unexpected result. An explanation of 

this may come by considering, in the context of the Ger- 

man Credit Data, that certain subgroups are being given 

an opportunity to access credit that they were not 

other- wise able to. As this technique is applied in 

future ap- plications, we look to investigate this finding 

to create a reliable benchmark for the fairness-accuracy 

tradeoff. 
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Future implementations of this tool will take into ac- 

count the limitations of infra-marginality with regard  to 

the application of predictive parity to marginalized 

groups. This issue can be addressed with a guardrails 

approach to compare differing risk distributions.15
 

It should be made clear that the Fairness Evaluation 

Tool is limited in the number of variables that can be 

corrected simultaneously. Correcting for one variable 

can be achieved as discussed, but initial findings suggest 

that correcting for disparate impact on multiple vari- 

ables leads to an inadequate compromise on predictive 

quality. Instead, a decision must be made as to which 

variable is most “impactful” given the context. This 

provides further evidence for the conclusion that fair- 

ness cannot be decided solely by a tool; rather the tool 

should drive a larger discussion around accountability, 

governance and ethics in algorithmic decision making. 
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