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1 Introduction

This is a summary and recapitulation in terms of transfer matrices of some of
the information in "Polarized *He in Neutron Scattering" by T.R. Gentile, and
other texts on polarized-neutron beams.

2 Setup

A general polarized beam setup for neutron-scattering spectrometers using He-
3 polarization cells, P1 (polarizer) and P2 (analyzer), is represented in the
following diagram. Our convention is that + represents the neutron spin-state
when the front flipper is OFF.

Typically the incoming beam is unpolarized so that N, = N_ = %N, where
N is the total number of neutrons incident on P1. The detector, D, does not
discriminate polarization states, and so counts n = ny +n_. The detection sys-
tem, D, may include energy analysis of the scattered neutrons. Here we assume
that such energy analysis would have equal efficiencies for the two neutron spin
states. In the above diagram, f1 and {2 are higher order wavelength filters, m1la,
mlb, m2a and m2b are low efficiency beam intensity monitors with efficiency
proportional to wavelength, and F1 and F2 are spin flippers.

3 Transfer Matrices

The detected counts can be calculated using transfer matrices for each device
along the beam path that affects the neutron spin, so that

()= )=r(h) % g

where the transfer matrix for the total beam path is the product of the transfer
matrices for each beam component. The detector will count ny +n_.



Figure 1: polarized beam triple-axis setup

T = AFABAS BpFpP (2)

and where A and P are the transfer matrices for the He-3 analyzer and polarizer,
F4 and F'p are the transfer matrices for the flipper on the analyzer and polarizer
sides of the sample, B4 and Bp are the transfer matrices for beam transport
efficiency on the analyzer and polarizer sides of the sample, and S is the transfer
matrix for the sample. It will be shown that the flipper and transport efficiency
matrices commute so that the transport loss before the sample can occur any-
where between the polarizer and sample, and the analogous condition applies to
the transport loss after the sample. Often the sample transfer matrix, S, also
commutes (is symmetric) with the flipper and transport loss matrices, in which
case the location of transport loss cannot be determined by neutron intensity
measurements any better than to have occured somewhere between the He3
polarizer and analyzer.

Note that in some of what follows we neglect time and spectrometer setting
variations of the parameters that determine the transfer matrix. In particular
we assume that a set of polarized beam cross-sections is measured in a short
enough time to neglect the time dependence of the He-3 transmissions. When
doing complete polarized beam data corrections this will often not be the case.

3.1 He-3 polarizer/analyzer

The transmission of the He-3 polarizer is characterized by the two different
absorption cross-sections: the neutron interacts with a polarized He-3 atom with
its spin (or magnetic moment) z-component aligned with that of the He-3, or the
neutron interacts with a polarized He-3 atom with its spin (or magnetic moment)
z-component anti-aligned with that of the He-3. The total cross-sections for
these two processes are o = ¢ ™M= 0, and o_ = o T]= 10666 barns ﬁg.



Also 09 = 3 (04 +0_) = Lo_. The effective absorption coefficients (inverse

of the absorption length) for each process are o 1= oinf = 0, and o 1=
o_n(1— f), where n is the number density of He-3 atoms in the polarizing cell
and f measures the fraction of He-3 atoms that have their angular momentum
polarized along the neutron spin direction.

The standard preparation of He-3 cells at the NCNR produces polarized
neutrons that are in the lowest energy Zeeman state. This is the same for
supermirror-transmission or Heusler polarizing devices (This is shown in another
document). This means that the He-3 magnetic moment is also prepared in the
lower energy Zeeman state (parallel to the holding guide field direction). In
order to symmetrize these expressions, define the He-3 polarization (a number
in the inclusive range -1 to 1) as

NHes T —NHes 4
PH 3= 3
“ nEes T Anmes | ®)
where np.s Tis the number density of He-3 magnetic moments aligned with the
He3 guide-field quantization axis. With this convention the standard setup will

take the He-3 polarization to have Pg.3 > 0. This means

1
npez T, 1= 5(1 + Ppes)n

where n = nge3 T +npges 4 is the He-3 number density.

Then if a neutron attempts to transit the He-3 polarizer with its spin | (magnetic
moment Taligned with the cell guide-field), it is only abosrbed by He-3 atoms
with magnetic-moments anti-aligned with the cell guide-field, so that the ef-
fective absorption coefficient for this +state neutron is ay = o_nges =
noo(1l— Pres). On the other hand, if a neutron attempts to transit the He-3 po-
larizer with its spin 1(magnetic moment |anti-aligned with the cell guide-field),
it is only abosrbed by He-3 atoms with magnetic-moments aligned with the
cell guide-field, so the effective absorption coefficient for this — state neutron is
a_ =0_nye3 T=noo(1+ Ppes).

The ideal gas calculation of nog yields 0.07404 cm™'x cell-pressure(bars at
293K) x neutron-wavelength in Angstroms. Then the transmission of the two
neutron spin states is

ty =tpexp(—ayrL) =tgexp (—7o[l F Pres)) (4)

where L is the path length through the He-3 gas in the cell, g is the transmission
of an empty cell, and

T0 — 7’LO’0L. (5)

The wavelength dependence of the absorption coeficient is linear to a very good
approximation so that

A

T = noo()\o)L/\— = TO’): = TLO'()LX,
0
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where as above we take \g = 1 Angstrom and

ty =tpexp (—7[1 F Pues)) (6)

T+ =7 (1 F PHes) -

A typical cell is roughly 10 cm in length so a typical value for 7_ s at Pre3 = 0.75
is 7_p =2 1.295%barsx A (Angstroms), while 71 pr = 0.185%barsx A (Angstroms).

The above analysis remains valid if the He-3 polarization is made negative
(which is functionally equivalent but not necessarily numerically equivalent to
flipping the neutron spin-state if the flipping efficiency is not unity).

3.1.1 Wavelength and pathlength variation

There are wavelength and pathlength variations for the neutrons traversing
the He-3 spin-filter. A zero order approximation to the averaged transmission
over all neutrons is just the transmission evaluated at the average values for
the pathlength and wavelength. Striclty, we should average the product of
pathlength and wavelength, but here we assume that the two are statistically
independent.

<tg >o=tyig =tpexp (— <T> (1 F PHeg)) =tpexp (—%i)

(r) = noo (L) <X>

Now if we include the variations of wavelength and pathlength about the
averages, we can improve out estimation of the averaged transmission by per-
forming a Gaussian average for the transmission. First write the varying 7
as

T = <7-> —+ €+ = Nog <L> (1 + €<L>) <X> (1 + EX) .
Note that e(zy = ez /(L) is dimensionless, as is e = €x/Ao. We drop the mod-

ifiers that indicate dimensionless quantities in the following. Now the varying
transmission is

te(erys 65) = teexp (— (L+emry) (1 +ex) 72)

and its Gaussian average is

. 1 2 2
<ty >= ﬁ/expff [<Q) + <€L) + 274 (ex + €1, +exer) | dexder,

2moNoy, 2 o or,

where o) and o, are the standard deviations for the Gaussian distributions for
normalized wavelength and pathlength, and we use
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The Gaussian approximation numerically works provided dy;, = 1—03077% > 0.
If both o) and o, reach 0.15 the Gaussian distribution works up to 7+ = 44
which (using the example above) corresponds to a wavelength of 15Angstroms
for 7_. Then

<ty >=Cityg

lai + U% — 20?\0%7}

Cy = d;Ll/2 exp 73

dxr

Typically at least one of the distribution widths is small enough that dyy = 1
and

Ci = expy (o +03) 7.

We will use this last approximation to C'+ for correcting the derivatives with

respect to He-3 parameters, for example,

d<tqy> 1 A7
dT4+ < tg > dPHe3

d74+
dPres’

1%

[(03 +07) 7 — 1]

The averaging brackets are removed in the notation that follows. We point
out that strictly speaking the wavelength and pathlength variations may not
be independently distributed. For example, when neutrons are scattered from a
crystal, the scattering angle and wavelength are correlated by Bragg’s law. That
is o3will depend on the crystal setting angle. However, crystals are typically
used with Soller collimators that will wash out this effect on the pathlength,
when averaged over the He3 cell.

3.1.2 Time dependence

Once a He-3 cell is polarized and removed from the optical pumping system
that produced the polarization, that polarization begins to decay exponentially
with a characteristic time constant, t¢, that depends on the homogeneity of the
magnetic-field on the cell (among other things). Thus

Pre3(t) = Pres(t = 0)exp (—t/te) = Poexp (—t/tc),

with
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- - t -
0123He3 (t) = J12:’0 + (tC> O—Ec'

If only the initial and final He-3 polarization measurements are available, then
the proper parameterization is

PHe3(t) :POeXp(_ln(PO/Pf) [t/tf])a
with
tc = tf/ln(Po/Pf>.

Then

~2 —52 (1 t)? t)? ~2 7
UPHeg(t)—UPf)( _tf> + (tf) Tp;- (7)

This time dependence is an important consideration when checking trans-
port efficiencies and performing data analysis so that it is necessary that it is
measured. This is accomplished by measuring the total transmission of an un-
polarized neutron beam through the He3 cell, both when it is polarized and
unpolarized. It is important that these measurements are performed without
higher order wavelength contamination present in the neutron beam (correcting
for the higher order contamination is difficult and introduces additional uncer-
tainty).

The total transmission for an incident unpolarized neutron beam will be

Cy 1 ~ N ~ .
to(Pres) = o = §tE Cirexp(—74)+C_exp(—7_)| . (8)
0
where Cpis the observed count rate with the He-3 cell in the beam, and Cj is
the count rate without the cell. As mentioned previously, we can arrange that

Ty = <T> (1 F PHe3)- Then,
to(Phes) =tgexp (— (1)) [< C > cosh((7) Pres) + Asinh((7) Pres)],

where < € >= (C; +C_)/2=1and A = (C; — C_)/2 with |A| < 1. If the
He-3 cell is unpolarized

Cy

to(O) =1go = Cg

=< C >tgexp(—7)

where C, is the count rate with the unpolarized He-3 cell in the beam. 7 can
be determined as

F=(r)= n(<c>tE> = n(:E>+ln(<C>),

00



with the squared relative uncertainty given as

2 _ =2 ~2 =2
0z =0, T0¢c, +0c,-

In general the squared relative uncertainty for any measured variable is

Once 7 is determined, the ratio, r, of the polarized cell transmission to the
unpolarized cell transmission can be used to determine the He-3 polarization,
Pyes, with A/ < C >= A

’I“(PHe?,) = % = % = COSh(<T> PHeS) + Ablnh(<7‘> PHe3)- (9)

This can be inverted to give

(Hwa_ (1+4) (1—A)>/(1+A)

Error analysis on the determination of the He3 polarization gives

<T>PH53:11’1

2

) _ =2 ~ —2 T 9
UPH63 - o—’l-' + (TPHGB) r2 _ 1UT’
where
2
o
-2 _ Op 2 )
0, = —35 =0gy, +0’Cu,

More often, one measures the polarized-cell transmission and uses knowledge
of (r), (C') and A (which depend on the measurement conditions, beam size etc.)

to determine Pp.3. Then
to(Pres) 1 A =
< C>tgexp(— (1)) <C>

1%

cosh((T) Prre3)

7Pies = In (?+ \/F27—1) .

Once the He-3 polarization is measured, its uncertainty increases with time
because the polarization decays with time, so that (compare with 7)

2
t
~2 ~2 ~2
O Prres (t) = OPyes + <tC) Otoe

Care must be taken when measuring transmissions with a detector where the
efficiency is wavelength dependent and higher order wavelength contamination



is present. A typical beam monitor is a fission detector where the efficiency
is proportional to wavlength, ¢ = egA. Then, neglecting beam pathlength and
wavelength variation corrections, the measured transmission is

to(Pres) :tEZan%exp <711< >> cosh (1 PM) Zan

n=1

too—tEZanfexp (— )/Zan :

where a, are the wavelength order fractions. It is obvious that wavelength

contamination is problematic for using transmission measurements to determine

the He-3 cell properties, especially if using a wavelength dependent detector.
The outgoing neutron polarization, —1 < P,, < 1, after an incident unpolar-

ized beam passes through a polarized He3 cell is

ny —mn_ A

T (T

The time dependent transfer matrices for polarizer or analyzer are

Pneutron =

Cyexp (—74) 0 typa O
’ g 0 C_exp( N)] { 0 t—P,A:| (11)
Ci—ci{l‘f'zan[(in}
n=2
1
(€ = 5(c++c)
1/~ ~
s=3ee)
N o\ 1
Ci=1+= (@A*) - 7P (02 +03)
M
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See the section on wavelength and pathlength corrections for definitions of the
symbols in these expressions. When convenient the correction factors, C1, can
be approximated as unity.

Transmission measurements are used to extract the Pp.3 , and a general
expression for transmission of an incident unpolarized beam of neutrons is

tup = Y _ an [H %(t+n +ton) /> an E]

n=1 n=1

T =noo(Ao)L

where the [1] is inserted when using a monitor with order contamination, and

tin = Cin (%in) tE €xXp (_%in) .

n just divides the wavelength.

Tin = —(7) (1 F Ppes)

3=

with (7) evaluated at the primary wavelength.

The measured transmission will have a counting statistics uncertainty that
will lead to the corresponding uncertainty in the solution for Pp.3. That is the
slope of the transmission as a function of Pg.3 at the solution will be oys/0ps,
where oy, is the uncertainty in the transmission due to counting statistics, and
o ps is the corresponding uncertainty in the polarization solution. If only relative
changes in transmission are important (as when determining the polarization
lifetime), the counting statistics uncertainty is appropriate. However, when
absolute polarization is required, one should include the effect of the absolute
uncertainty in the transmission. This absolute uncertainty derives from uncer-
tainties in the glass transmission, 0,5, and the value of () as o,.



3.2 spin-rotation flipper

Excluding transport losses, the transfer matrix for a spin-rotation flipper when
that flipper is ON, can be written in terms of the flipping efficiency, er (a
number in the inclusive range 0 to 1), as

1-— er ()
Fpa= 12
A { er l—er :|P,A 12)

Of course when the flipper is OFF this transfer matrix is the identity matrix
which can be fudged by an effective flipping efficiency of e = 0. So the flipper-
state dependent transfer matrix can be written

o=+ | 1—¢€% ew

FP,A - |: 6% 1— e% A (13)
With @ = —1 indicating the flipper-ON state (many use the opposite conven-
tion),

€ =0q,—16F = 3 (1-—a)ep.

The efficiency of a standard spin-rotation (Mezei) flipper depends on the
exact angle of the neutron spin as it exits the precession coil. It is assumed
that the guide field outside the precession coil is precisely in the z-direction,
and the neutron spin enters the precession coil with its spin precisely along this
z-direction which is parallel to the wires carrying the precession coil current. It
is also assumed that that current has been set so that neutrons with wavelength,
A, will precess by exactly 7 radians as it crosses the flipper on a path that is
in the x-direction perpendicular to the precession coil wire surface. Variations
in A or the path direction will result in variations in the precession angle as the
neutron leaves the precession coil. In the “sudden” approximation the probabil-
ity that the neutron spin has flipped is just the modulus of the overlap of the
exit spinor with the z-direction state. The rotation axis of the neutron spin is
the +y-axis, so that if 6 is the rotation angle of the neutron spin after it crosses
the precession coil, then the exit spinor in the z-up coordinate system is

= ()

The probability that this spinor state will be spin-down (flipped) is then just
sing(%). The actual precession angle of any given neutron just depends on the
time, ¢, it spends inside the precession coil, since the precession rate is fixed by
the uniform magnetic field inside the coil. Thus, if ¢;; is the optimum time in the
coil that produces a 7 flip, and Ly, is the corresponding minimum pathlength,
the precession angle for a neutron with actual time in the coil, ¢, over pathlength,
L, can be written as

t L)\

0:7 =
tr " Ladar

1 1
=(1+ 572 + 552)(1+x)7r =T+ e,

10



where the actual pathlength as a function of horizontal and vertical deviation
angles from the optimum perpendicular to coil direction is

1 1
L=1Luy(l+ =%+ =52
M( +2’Y +2 )7

and A/Ay = 1+, so that e = (z+ 372 + 302) 7 to second order in the
deviations. Then the flipper efficiency is

1 2 1
”;6)21—7 221—% {xz—kx('yz—ké?)—i—4(744—27252—#54)}.

ep = sin?( 1

Averaging over independent Gaussian probability distributions for the angle and
wavelength deviations yields

2
ng].—ﬁ A +§(J4+J§)+102O’§ .
4 AM 437 27

Note that the angle deviations contibute to fourth order while the relative wave-
length deviation contributes to second order. If ox/Ay = 0.02 the flipper effi-
ciency is about 0.999.

3.3 transport losses

In order to account for transport losses in terms of a transport efficiency, e;, use
the matrix

1| 14+epa l—epa
Bpa—— ) ) 14
PA ™5 { l—epa l14+epa (14)

If transport loss, ¢, = 1 — ey, is used as the parameter, then the matrix is

1-— lét lét
Bpa = [ 120 2,
2t 2%t

Transport losses are assumed to produce neutrons that have equal proba-
bility of being spin-up or spin-down (depolarized), although more complicated
cases can occur. Note that multiplying two transport loss matrices results in a
transport loss matrix where the transport efficiency is just the product of the
two separate efficiencies. Also the product of a spin-flip matrix and a beam
transport loss matrix is

Fop _ [ 1—e(2ep —1) 14e(2ef —1)

5| 14e(2e2 —1) 1—e(2e2—1) (15)

The symmetric matrices for the spin-flipper and transport losses commute. This

means that without loss of generality we can combine the transport loss matrices
with the corresponding polarizer and analyzer matrices. Thus

11



1\ N 1—tep  Lep t 0 1\ N
o 2 2 +P — =

BPP( 1 ) 2 { tap  1—3ep 0 t_p 1) 2
ter—%(ter—t,p)Etp 0 1 g
0 tfp-‘r%(ter—t,p)etp 1 2’

so that the beam transport loss on the polarizer side can be effectively absorbed
into the polarizer matrix. For the scattered beam, suppose that ny4 are the
number of scattered neutrons in the 4 neutron spin channels after the analyzer
flipper. Then the detected neutrons are

ny _ ABA nfq _ t+A 0 1 : %6@4 %6?4 nfy _
n_ ng_ 0 t_qa S€tA 1— 356 ng_
t+A (1;%6&4) t+A%€§A nfy _
t—A§€tA t_a (1 - 56,514) ng_
tya—2(toa—t_a)ea 0 Nyt
0 t_AﬂL%(t_;.A*t_A)etA ng_ ’

where the last line is valid since the detector measures n; + n_. Thus we can
include the transport loss on the analyzer side of the spectrometer into the
analyzer matrix. This simplifies the total transport matrix to

T = A,F4S FpP,, (16)

where the subscript ¢ indicates that beam transport loss has been included.

How does adiabatic transport loss occur? Consider a neutron travelling in
a guide magnetic field along the z-direction that encounters a magnetic field
perturbation. Take the magnetic field to vary in the reference frame of the
neutron as

B(t) = B.2 + B,G(t)i

so that the time dependence is in the magnetic field component along the &
direction. Take, for example, a Gaussian time perturbation of B,

G(t) = exp [—; (t;t‘))z] .

If B,is sufficiently small, a time-dependent perturbation solution based on an
expansion in terms of the eigenstates when B, is zero can be used. Such an
expansion is

X (1) = 4 (t) exp(iw:1) [ (1) } +c_(t) exp(—iwst) [ ‘1) ]

where w, = ¥,B. (Y, = 0.9162108s~'T~lis half the neutron gyromagnetic
ratio). Substituting this solution into the spinor Schroedinger equation yields

12



¢y = lwy, G(t)c— exp(—2iw,t)

¢— = iw, G(t)cy exp(+2iw,t)
where w, = v, B,. Satisfying the initial condition that ¥ (0) = { (1) }, means

that ¢4 (0) =1 and ¢_(0) = 0. Then the approximation is that ¢;remains near
1 and c_remains near zero during the perturbation, so solve only

¢— = iw, G(t) exp(+2iw,t).

tr=ion [ 5 (1)

c_(00) = iV2mw, T exp [—2((.027')2 + 2iw.to] .

Thus

exp(+2iw,t) dt.

or

Then the probability that the neutron ends up in the [ 0

1 ] state is

le_(00)|* = 2 (wpT)” exp [—4(w.T)?] .

This result shows that spin transport loss increases as the square of the magnetic
field perturbation, and decreases exponentially with the square of the number
of Larmor precessions the neutron makes during the time of the perturbation
(i.e. large guide field magnitude is better for this term). This indicates why
spin transport may be problematic, since the magnitude of field perturbations
may be proportional to the magnitude of the guide field. The conclusion is that
to keep the depolarization minimal we have the competing conditions, w,7 > 1
and |B,/B,| < 1.

3.4 sample transfer matrix

The transfer matrix for the sample is

s=| 55 & ] (17)

where St refers to the cross-section for scattering a neutron from a spin-up
state to a spin-up state, and S* refers to the cross-section for scattering a
neutron from a spin-up state to a spin-down state (spin-flip scattering). It is
important to note that in general ST+ #£ S~~and ST~ # ST, so that the sam-
ple transfer matrix does not commute with the spin-flipper and transport loss

13



matrices (which do commute with one another). This creates a real problem for
computation if there is depolarization in the sample where it can’t be determined
if the depolarization occurs before the scattering event or after the scattering
event (or if there may be multiple scattering and depolarization events). The
effective sample transfer matrix for depolarization before the scattering event is
St st 11—t de 1 [ (1-ie)StH+ %ets+* (1- %et) ST 4 seS5TF
Si+ ST %Gt 1-— %Ct - (1 — §6t) S_+ + §6t5__ (1 - §€t) S~ + §€tS_+
On the other hand if the depolarization occurs after the scattering event the
sample transfer is
1-— %Et %Gt S++ S+7 _ (1 — %Gt) S++ + %Et57+ (]. — %Et) S+7 + %Et577
%Gt 1-— %Et S_+ S—~ o (1 - §6t) S7+ + 56t5++ (1 - 5(—3) ST~ + §€tS+7
One can sensibly assume that the depolarization occurs with equal probability

before or after the scattering event, so that one can use the everage of these two
results as

(375 D-(om) 37 8 e[y 5]
S+ §—- 2Y) | STt ST | Tat | St 48T St 49
Thus if the scattering matrix has been solved without assuming any sample
depolarization and with matrix elements
S+t §+-—
£

then with the postulation of a sample depolarization probability of ¢; < 1 and
from the combinations

G+ g+ _ 1 (3—4— _ §+—)

1-— %Et
1
Gt— _ &+— _ _ 1 G—— _ &++
S =8 - (S S )

2
one can extract the cross-sections corrected for sample depolarization as

S++ _ 1 1-— %Et —%Et g++
St= ) T 1-¢ _%ft 1- %Gt S+-

o5t L (S‘” . S++)

1—5615

and

s s (70 s)

There are cases where the depolarization is itself caused by a scattering
event, for example when spin-incoherent scattering from hydrogen is the culprit.
Then the simple minded procedure above is invalid. There are also models for
depolarization due to ferromagnetic domains.

14



3.5 total transfer matrix

Combining all of the above transfer matrices, the time dependent detected
counts for the up and down spin channels, which depend on the flipper states,
«a and B can be written,

{ Zi8 rﬁ = A(t)F{BASBpFpP(t) [ %3 ] =T (t) [ %3 } (18)

where T°P(t) is a 2x2 matrix. Recall that the product of flip and transport
efficiency matrices can be written

(F°B) L T —ey(2e% — 1) 1+4e4(2ex —1)
vPAT 2 | Tte(2eg — 1) 1—e(2e3—1) |5,
11 1] 1, [+41 -1
T2l 1] 2PA a1 o4
where e 4 = {e;(2e% — 1)} 4. The following matrix products are then re-
quired
tia O L1)g[1 1) [t 0 B
0 ta|l1 1 11 0 tp| —
o tiatip tyat_p
T t_atyp toat_p

tia 0 +1 -1 g +1 -1 tip 0 .
0 t_4g -1 +1 -1 +1 0 t_p -
tyatyp  —tiat_p
—t_atep t_at_p

tia 0 Ll]gf+1 —1 tip 0] _
0 t_a 11 -1 +1 0 t_p

tyatyp —tpat_p

t_atyp —t_al_p

tya O + -1 ]g 11 tsp 0] _
0 t_a ~1 +1 11 0 t_p
tyatip  tpal_p
—t_atyp —t_at_p

Ot——+ [

Ot —+— {

Ot4—— [

Here 04444 refers to a sum of the four cross-sections, S**, with the sign of
each term given by the corresponding + index of . For example, 04414 =

15



STt + St~ + 8~ + S, The four elements (u = 41, = +1) of the flipper-
state-dependent total transfer matrix then follow as

« af af
T,uz/ﬁ( ) E pv #AtuP’
where
EY = 72# W SHY (1= e (1 — u’z/e*f,) .

The af indices are added to the He-3 transmission factors to indicate that they
must be evaluated at the time that the a3 count-rate is measured. The total
detected counts for each combination of polarizer and analyzer flipper states,
a = 1 for analyzer flipper OFF, o = —1 for analyzer flipper ON, § = 1 for
polarizer flipper OFF and g = —1 for polarizer flipper ON, are

N

N
Counts®? = C*F = n(j‘_ﬁ +n* = —EWTIf‘f = EWEﬁ‘ftz‘ﬁtzg

Recall that t1ap = 6iA’PtE exp (—7+4,p) are the transmission factors from
the He-3 analyzer and polarizer. Now the expected count rates can be written
as a linear function of the four polarized beam cross-sections

N
CF = ST S*

where the 4x4 matrix of coefficients is

ﬁf:4217u,u614 a,AZ(lfyyeP> (19)

so that each matrix element is the product of factors from before and after the
sample. Recall that the efficiency coefficients, €%, p» are given by,

€dp = ear(2epap —1)

which is a product involving the transport and spin-flip efficiencies. P refers to
before the sample and A refers to after the sample.

In order to understand the matrix of coefficients, examine the simplest case.
Assume that the transport and flipping efficiencies are unity so that e p = —«

(since €% = 3 (1 — @) ep). Then

%242 1+ ppa)t 'AZ 1+v'vp)t

Now

S+ ppe)tya=tiattoatpo(tia—ta)=2t4aa-
7%

16



so that the matrix elements have simplified to

il = tuayatws)p-

For example, if both flippers are off, ¢;f," = t,,at, p and the total detected counts
are

BothFlippersOF FCounts =Ctt =

N
(STHtpatep + St tpat_p+ S Tt_atyp + S t_at_p) 5

The He-3 transmission factors for the perferred spin-states, ¢ 4and ¢4 pare typ-
ically much larger than the transmission factors for the non-preferred states, so
one approximately measures S*T.

C++ o~ (S++t+At+P)

N
2
Now, turning on the polarizer flipper gives c:[; =t at_,p, and

Polarizer FlipperONCounts = CT~ =

N
(STHtiat_p+ ST tiatyp+ S Tt_at_p+ S "t_atip) —.

2
St ~is multiplied by the largest transmission factors so that
N
CH= = (St tyatyp) 5
Similarly
; -+ ~ -+ N
Analyzer FlipperON Counts = C~T = (S t+At+P) 5
and

BothFlippersONCounts = C~~ = (S__t+At+P) g
These expressions have to be corrected since the transmission factors for the
non-preferred states, t_ sand t_p are likely not zero.
Once more, it must be emphasized that the separate count-rates for the
different cross-sections are measured at different times, so that the He-3 trans-
mission coeficients must be evaluated for each different count-rate.
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4 correcting polarized beam data

Since neutron polarizing, flipping and transport devices may not be perfectly
efficient, it is necessary to examine the corrections that need to be made to
raw polarized beam data in order to extract the the cross-sections that produce
observed count rates. In this section it is assumed that the efficiencies of the
polarized beam transport have already been determined (that determination
is discussed in section 6). Recall from the section that derived the transfer
matrix, that the expected count rates can be written as a linear function of the
cross-sections

N
CF = ST S*
where the elements of the matrix of coefficients are
1
c,‘ff =1 Z (L= ped) ths Z (1 — V’Vefp) 0.
w vl

To be precise, each row («f3) can be associated with a time at which the count-
rate, C*? is measured, so that the transmission coeficients, t:f,ﬁ  and 197,
are labelled with the row index, 8. Otherwise we are assuming that all of
the count-rates are measured near enough to each other in time to avoid the
necessity for this lablelling. Do the sums on p/ and v/ by defining

Z tyx =tyx +t-x =tsx
w

Z Wtwx =tix —t_x =tax.
w

From the expressions for the transmission coefficients, t,x and ¢,x can be ex-
panded to

tsX = 2tEXCSX exp (—%X)COSh (%XPHe?,X)

taX = 2tEXCaX exp (_%X) sinh (%XPHeBX)

where

Cix = <Cx> {1 + <g§> tanh (%XPHeSX)}

A
CaX = <Cx> {1 + X COth (%XPHEBX)} .

(Cx)

18



See the section on correcting the transmission for wavelength and pathlength
deviations, 7, for the definitions of (Cx) = 1 and Ax < 1. Then the matrix
elements are

sz = i (tSA — ue%ti‘ﬁ) (tsp — Velﬁgtg‘lﬁ;) .

In general the matrix of these coefficients will require numerical inversion to
solve for the cross-sections corresponding to observed count rates. In order to
determine the uncertainty in the coefficients, it is reasonable to assume that the
uncertainty in the transmission factors, t4; = C'thEM exp (—T+n), is due
to the uncertainty in 745;. This works because the empty cell transmissions,
tgn, occur in all of the the coefficients, so that the uncertainty in ¢ga; can be
considered to just affect the uncertainty in an overall scale factor when solving
for the underlying cross-sections S#¥. Also, the uncertainty in the correction
coefficient, Cy M, arises primarily from the uncertainty in 74,7, as can be seen
by looking at a typical formula for Cyar and realizing that the instrumental
factors are typically on the order of 0.01. Thus it is easy to show that

g~ =
Cim

Csn

p 07
87—iM T+M)

but the partial derivative coefficient is much less than one, and 06, , can be
neglected compared to oz, ,,. Thus we can write to a good approximation that

Oty SteMO7y -
From the definition of 74, it follows that

2 _ 2 2 2

0% = TMOPHe3,M + 0%y,

This means that the relative uncertainty in the transmission coefficient, 6, ,, =
Oton/teM = 07, is independent of the spin state. The computation of
0pres s and o2 is described in the previous section 3.1. Trivially we also
have

2 _ 2
o, ., =0

_ 2 2
sM tanm _Ut+M +O’t,M'

The partial derivatives of the coefficients, cgf, with respect to the transmission
factors, tspr and tqps are
a8 1
o = 7 (tor —vebtar)
S

ol 1
8t#; = Z (tsA - HeitaA)
s
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HcoB 1
v B
315:,4 —ilﬂfi (tsP - VeptaP>

HeB 1
B
3t:; —qver (tsa — peltan) -

The partial derivatives of the coefficients, cfjff , with respect to the transport

efficiencies, e;ps, and flipper efficiencies, erps, are

B o)
gff = —iutaP (tsa — pieStan) (2e§ b 1)
B (o)
St i) 0

Combining all the terms for the uncertainty in cl‘jf results in contributions from
both the analyzer and polarizer groups,

2 2 | 2
Olap =04+ 0p,
v

where
1 2
o = T (tsp — Veéitap) f(4 )
2 1 o 2
Op = TG (tSA - lueAtllA) f(P7 B)a
and where

FO,7) = (14 @07 [oear + ofn] Htant] [ 2€fas =1V 02, + (1 =) €0y,

€t M
Given the coefficients, czf , and their uncertainties, afw, it is then possible
b
to solve for the underlying cross-sections, S*¥, and propagate the errors to
osuv. Methods for doing the inversion and propagating errors are discussed in
another document, PBcorrect. Sometimes in polarized beam experiments the
number of unknown cross-sections to be determined is reduced by contraints, for

20



example when ST~ = S~ Tand/or ST+ = S~~. One must be able to put these
constraints into the master equation and there should also be a method to reduce
the number of equations if more of the count rates, C*?, have been measured
than there are independent equations. One can, of course, discard equations,
or combine by adding or subtracting equations. For example, if ST— = §~T,
then one simple way to bring the number of equations down if both C*~and
C~71 were measured, is to add the two equations for C*~and C'~Ttaking care to
propagate the errors. A discussion of the overdetermined problem where there
are constraints so that there are more equations than unknowns will require
additional discussion in terms of the Totla Least Squares problem.

4.1 determining count rates

Note that the formulae for the observed count rates depend linearly on the
neutron flux into the He-3 polarizer. If this neutron flux is time indepedent,
then the count rates can be used directly in the correction formulae. If the
neutron flux varies with time, which or course happens if the incident neutron
energy is varied, then a low efficiency beam monitor before the polarizer could
be used to determine relative changes in the incident neutron flux. This is
usually accomplished by counting until a fixed number of beam monitor counts
is recorded and correcting for the higher-order wavelength contamination (Ei
dependent) counted by the beam monitor. The correction factor that multiplies
the counts, in terms of the wavelength order fractions, a,, (where > a, = 1)
is

monitor Rate AllOrders an
tionFactor = = — .
correctiontractor monitor Rate Primary <Z n ) Jax

This correction to the count rate is greater than unity when the incident beam
is contaminated by higher orders since the monitor counts the higher orders as
well as the primary measuring wavelength.

A more involved correction is required if the incident flux has to be tracked
using a beam-monitor placed after the polarizer. Now the time and wavelength
dependence of the polarizer transmission has to be taken into account to de-
termine relative fluxes of the primary and higher order wavelength neutrons.
In this case with the beam-monitor after the polarizer, the correction factor is
given by

correctionFactor = (Z %(tin + tn)> [(a1(tyr +t_1)).

n

Here t.4,, are the transmission factors for the preferred and nonpreffered spins
states for the nth order wavelength.

4.2 spin-flip and non-spin-flip cross-sections only

One important special case is when the cross-sections have the often occurring
symmetry that ST+ = §~— = 87/ and ST~ = S~1 = §%/. In this case the
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master equation for the expected count rates reduces to

N
Co‘ﬁ/g = (ciﬁ_ + cié) snst 4 (cf_ﬁ_ + ciﬁ_) st
Cross terms cancel when the coefficients are added in this way (in the equal
time approximation for the He-3 transmission factors), so that

N 1 X 1 X
= v o ) .

where

ty =tsatsp =tiatyp+t_at_p+tiat_p+t_atip

t_ =toatap =tyatyp+t_at_p—tiat_p—1t_atip.

The expansions of ¢4 and t_ follow simply from the expansions of t;x and t,x.
These equations can easily be inverted to obtain the cross-sections as a function
of the count-rates. This is typically accomplished by measuring the non-spin-flip
counts as C*t+ = C™f, and using one flipper to measure either C*~ or C~F
as the spin-flip count rate, C*/X, where X indicates which flipper is used. This
system of equations is

Ct \ N1 /[ ti+edt. t,—eAt_ Snst
( CcsIx ) 22 ( ty —eBt_ ty+eBt_ ) ( sst )
where e; = egqeqp is the aggregate beam transport efficiency, A = 1, B =
2epx — 1, and X = P, A depending on which flipper is used. In the case
that these equations are used to solve for count rates when the beam is A/2, a
current-flipper set to flip A will depolarize the beam when activated. This can

be handled by setting B = 0, or epx = 1/2. The determinant of the matrix is
deiepxtyt_ so that matrix inversion gives the result

N (sl 1 ayp  —a_a ) ( C*F
2 Ssf - 2eiepx —a_p a4 A CsIX

where the elements of the inverted matrix are found from

t+ + GtAt_
A4 A = —(—
tot_
t+ + etBt_
a4p = Lt
+ —

In order to do the error analysis on this solution, write

B 1 A 1
Snsfetepr: eti_i'_i C+++ etf = Cst
et .t
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SSfeteFXN — (etB _ 1) C++ + (61514 + 1) Ost

tL ot tL ot
which is
NSsf = g+t L gt—osfX
NS/ = K—tCott K=~ 0%
where
Kaﬂ _ AaB +Bo¢ﬁ +Ca5
and
AP — af i
eepx t_
Baﬁ _ 26[3+
ty
e
erx ty

The partial derivatives of ¢ and ¢_ are

Ot+ -
GE = ti |:PHe3P,A tanhil (TPHeB)pA — 1}
TP,A ’
Ot4 - -
=1y [TP,A tanh™" (#Ppes) p A} :
OPpesp,a k

Then the error propagation for the coefficients is

2
0%an = (A°9)° 62 4 (A0 L CF)’ 52+ Y (W;ﬁ) o%

X=Fa7pPaPp
where
W)";ﬂ = AP [z coth (27) — 0yr) + (B*® + C*F) [z tanh (2T) — 6,

and Z is the partner variable for z in the pairs 74 Pye3a and 7pPge3p. The
error propagation for the X variables 7 and P is in section 3.1. Also, in general



The final error propagation to the cross-sections is

0'J2VSnsf = (C++0'K++)2 + (OSfXO'KJrf)Q + (K++0'0++)2 + (K+7acsfx)2

0'12\/'sz = (C++0K_+)2 + (CSfXUK——)2 + (K_+Uc++)2 + (K__O'Csfx)2

If count rates are measured for all four cross-sections then the counts in the
spin-flip and non-spin flip channels can be added so that

1/ CtH4+C~ \ _ N1 ([t +eAt. t, —eAt_ gnst
o\ Ct—+C~*t ) 22\ ty —eBt. t,+eBt_ Ssf

where

A= % [1 + (26FA - 1) (26FP — 1)]

B = % [(2€FA — 1) + (26Fp — 1)}

The determinant of this matrix is 4e;epaepptt_ so that the inversion becomes

N Snsf\ 1 ayp  —a_A (Cnst)
2 S5t " 2eiepaepp \ —G—B  A4a <Csf>

where
t+ + 6tAt_
a = —m-
=4 tot_
t+ + etBt
-
=B tit_

The error analysis proceeds as before by separating the solution coefficients
into terms that depend on transport and flipper efficiencies,

S"SfeteFAerN = (etB -+ 1) <C”3f> + (etA _ 1) <Csf>
t+ t_ t+ t_

B 1 A 1
SSfeteFAerN = (ett — t) <Cnsf> 4 (ett + t) <Csf>,
+ - + —

which as before is

NS§™f = KtHCtt + KT Cs/*
NS/ = K=FC + K= 0%
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where
KaB _ Aaﬂ +Bo¢6 +Ca5 +Da[‘3 +Ea,8
and

. af 1

CtepACE P t_

2
-5

B8

s 1

CF A t+

cP =

81

DY = — —
€ p t+

pofo__ P 1

epaeppty
Then the error propagation for the coefficients is
2 2.2 2 .9 2.9 8\? o
OKas = (Aaﬁ) Oe, + (WeapﬁA) Ocpa + (W:FBP) Ocpp + Z (W; ) 0x
X=Fa7pPsPp

where

WaB :Aaﬂ+CaB+Ea,8

EFA

Waﬂ :Aaﬂ+Daﬂ+Ea[3

erp

W’ = A% [z coth (aT) — 0y ]+ (B? + C°P + DYP  EP) [z tanh (2T) — 0,

The final error propagation to the cross-sections is
e = (C"F) 000 )’ + ((CF) are )+ (KH010m)) 4 (K0’

2

PBrser = () o)+ (O 03-)" + (K000 + (K 00on)”
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4.2.1 simplification using a flipping ratio measurement

Returning to the solution for the cross-sections, this is a good approach if the
ratio S /S™s/ (or its inverse) is of interest, since this ratio depends only on the
measured counts, the measured flipping ratio and a small correction for flipping
efficiency. However, in the following it will be shown that the formula and error
analysis is even simpler in terms of the cross-section asymmetry and count-rate
asymmetry. Using these results, the solution for the ratio S™*//S*/ is (assuming
that S5 > 0),

gnsf cnsf — %nCSf — ¢ (Cnsf _ Csf)

Snsf = Ssf Csf_RLCnsf

with squared relative error

62 =Whoh+ W2 52 + W (68m + Gaur)

Snsf €F~ EF
where

(1)’ — (ct)?
Wr =R, .
(RaC™F — C°T) (RaCST — O

cnsf —osf R, —1
WeF = nsf _ ('sf
R,C C er

cmI oo (R2 — 1)

We = . . :
© 7 (R,C™T = C5F) (R, C5F — CmsF)

If the ratio S°//S™f is of interest, simply invert the formula above and in-
terchange O™/ and C*f in the error analysis. 5% is defined in the section on
flipping ratios 6.

Now the remaining time dependence is in K, which is

eept_
1 + ett, /t+

Making the same replacement for ¢_ /¢t in terms of R, K.can be rewritten as

K, = (20)

1 1
Ke = iet (26F_1+_Rn) t_

where recall that ¢_is

t_ =4tpatppCa_ exp (—7~'A) exp (—7~'p) sinh (%APHei’)A) sinh (%pPHegp) .

Be aware that the transport efficiency may be angle dependent. To be pre-
cise, the transport and flipping efficiencies should be measured at the same
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spectrometer settings and guide field settings used to measure C™*f and C*f
and those efficiencies should then be used to make the corrections to obtain
Smsf and S°f. A classic case is the use of the neutron polarization direction
to vary the amount of magnetic scattering that contributes to the spin-flip and
non-spin-flip channels. This dependence arises from the fact that spin-flip mag-
netic scattering is due to the neutron scattering from sample magnetic moment
components that are perpendicular to the neutron polarization direction, and
conversely the non-spin-flip magnetic scattering is due to the neutron scatter-
ing from sample magnetic moment components that are parallel to the neutron
polarization direction. This dependence is utilised experimentally by control-
ling the neutron polarization direction at the sample with either a vertical (to
scattering plane) or horizontal guide field. If the horizontal sample guide field
is aligned along the scattering vector, @, then all magnetic scattering must be
in the spin-flip channel, since the neutron spin scatters only from sample mag-
netic moment components that are perpendicular to @@, and these same sample
magnetic moments are also perpendicular to the neutron spin. Since there are
other possible contributions to the scattering in the spin-flip channel, the usual
procedure is to subtract off the spin-flip scattering observed when the sample
guide field is vertical. This vertical field spin-flip scattering will have a different
amount of magnetic scattering but all the other scattering processes will be the
same as in the horizontal field case. Since the transport efficiencies may be
different between the vertical and horizontal field cases it is important to cor-
rect the observed counts (using the efficiencies) to obtain the true cross-sections
before making such a subtraction.

Now finally we return to consider the contamination of a flipping ratio mea-
surement, by spin-flip scattering. We want to use information about the con-
tamination obtained from a background measurement to calculate the correction
necessary to give the true non-spin-flip flipping ratio. Using the formula for the
spin-flip scattering measured in the background (after fast-background subtrac-
tion)

sf st 1 nsf
Spg NKe =Cy; — &, Cbo
Measuring at the Bragg peak, we assume that the spin-flip cross-section from
the background, S, g , is the only source of spin-flip scattering at the Bragg peak.
Then

1
f _ f f
Slfg NK. = ;ragg - Ecgiagg
and then
_ sf sf sf sf
R, = (ng"agg - l:ng ) / (O;ragg - C(bgg>

4.2.2 cross-section asymmetry solution

When the ratio of cross-sections is the quantity of interest, the ideal analysis is
in terms of the cross-section asymmetry, —1 < s < 1, defined as
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Snsf_sz
§= Snsf+sz

and the count-rate asymmetry, —1 < ¢ < 1, defined as

Cnsf _ Csf
c= Cnsf +Csf’

1-c)C™ =1 +c)C.
The result for s in terms of ¢ in the equal time approximation is

ty c/eq R, (2ep —1)+1 c LR.+1c
§ = — =~

“t_ep—(1—ep)c R,—1 er — (1 —ep)c R, —legp’

where the approximation is for er near to unity. All of the time dependence and
beam transport efficiency is now contained in the measured flipping ratio, R,.
This result becomes quite simple when the flipper efficiency can be assumed to
be unity. This can be combined with

gnsf +sz . 1 (2€F — 1)C"Sf +osf
Tt

+ er

)

if it is necessary to extract the individual values S™*f and S57.
The error analysis on s produces

02 =Wheh + W2 62+ W& (Gomer + Gener)

erp  EeR
where

We =5 26FRn ESQBFRTL

B Ry —1[Rn (2er — 1) +1]  R2—1

2er R, er (1+c¢) 2er R,
We. = — o~ —s(1

e S[Rn(erf].)‘F].] Sepf(].*ep)c SRn+]. 8( +C)

nsfvsf 1 nsfrsf
We = 25 e cnsrc g21’?%—1- cnsrc

er — (1 —ep)c (Cnsh)? — (Csf)? R, —1(Cnsf 4 Csf)*
Note that op is just the error for the flipping ratio measurement, which simply

depends on the count rates measured in obtaining R, as shown in a following
section.
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4.3 all four cross-sections with perfect flippers

In the case that the spin flipper efficiencies are unity, the full transfer matrix
can be solved algebraically for all four cross-sections when we can approximate
that all count-rates are measured at the same time. Recall that the formula for
the transfer matrix coefficients in

N
CoF = S S*
was
ap _ 1 aaB 8 jap
Cop = 1 tsa —peat 'y ) (tsp —vept,p) -
Also, e 4 = {ei(2e% — 1)} p 4 can be rewritten as
epa=—a(l—epa)

where the small transport inefficiency parameter, €p Ay 18

e =1—¢
and
e =1l—ep=1—¢€(2ep—1)
If the spin-flipper efficiency is unity then 6;14 = €pa = €pa = 1 —eap
is independent of a so that e , = —a (1 - €p,a) = —aegs p. Then when

count-rates are measured at the same time so that the transmission factors are
independent of a and S,

40/0;5 = [tsA + MaetAtaA} [tsP + Vﬁetptap] )

so that p and « appear only as their product, and the same for v and 5. This
means

g 5 aB
czf = cgff = cfjg = a5
where @ = —a, so that there are only four distinct elements in the matrix.

These four distinct elements can be generated by fixing 4 = v = 41, and they
are

4t = [toa + erataa] [tsp + erptap] =t + epaerpt— + eiata + eptp

4c77 = [tsa — erataa] [tsp — erptop] = t4 + eraept— —epata —eptp

4T = [toa + eratan] [tsp — erptap] =t — epaerpt— +eiata — erptp

29



4¢™F = [tsa — erataal [tsp + erptap) = t4 — eraerpt— — epata + eptp,
where

ta=toatsp = (tya—t_a) (typ+t_p)

tp =tsatep = (tya+t_a)(typ —t_p).

Now form the symmetric two by two matrices
. ctt -
[ N L

[t et
Cr=\ ¢+ o )

with the corresponding two component vectors

e - (&)
()
- (5
- (5)

and the system of equations can then be written

C.,\ N/[c, cf S»
Cf _5 Cf Cp Sf ’

Because the matrices ¢, and cy are symmetric and thus commute with each
other, the inversion of this matrix problem is

¢, —cCf C.\_ N/[c—c} 0 S,

—cf ¢y Cr ) 2 0 c;, —c} Sy
which can be checked by substituting the solution for (C,,, Cy) from the previous
equation. Letting ¢, —c7 = ¢4, which is another symmetric matrix, the solution

becomes

and
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With
Cq = < ;‘ ;]; ) 5
= () ) - () ()
f=2ctte ™ —2c¢t ¢t
cd1 = (62 f2)1( _ef _ef )
then
crlen=s.= (= )" ( v )
where
u=ctt [(c++)2 (c")2 - (c+_)2 - (c"")ﬂ +2c "¢t t
v=c [(c")2 - (c++)2 — (c+_)2 — (c_+)2} +2ct et e .
Similarly,
—ciler=sp= (= 7)) < Zj ; )
where

=t [ () () () e
Calculation shows that

e? — f2 =l elpt t_tatp

4
e—u = (ty +eit_)tatp +tit_ (erata +eptp)
t
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4
ZU = (ty +eit_)tatp —tit_ (ezata +eptp)
t

4
—gx = (t+ — ett,)tAtP +t+t, (etAtA — etptp)
t

4
oY= (ty —eit_)tatp —tit_ (erata —erptp)
¢

and as usual e; = e;ae;p is the aggregate beam transport efficiency. Thus the
sub-matrix solutions are

s _il a++b+ a+—b+
" dey \ ay — by ay by

_ 1 /fa +b. a —b_
51 = de; \ a— —b_ a_+b_

where
tL et 1
g, = trEeat- 1 e
tot_ t oty
by = eiata T eptp _fA &P
tatp tp ta
If at this point it is found that ST+ = §~— = S"sf and S+~ = §—+ = 5/

then the pairs of equations in the solution can be added to reproduce the pre-
vious result in terms of average count-rates, but now with the flipper efficiency

set to unity,
N Snsf B 1 ay —a_ <Cnsf>
2\ S )7 2, \ —a- ay (csfy )~
The system of equations for the general solution with flipper efficiency unity
can now be written

NS*P = Kafcm,
where
Kof = 1 b
wo = 3P (100Guans) +Diuavs)) -

The partial derivatives of ¢, and ¢_ are
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Ot4
ITp.a

=ty [PHeSP,A tanh™! (%PHG?’)P,A — 1}

Oty

— =14 |:7~'P,A tanhﬂ (%PHeB)p A:| .
OPpesp,a ’

The partial derivatives of t4 and tp are

t
g~X = tX |:PHe3Y tanh_XY (%PHeS)y — ].:|
Ty

Otx . XY =
O (P ].
OPresy v tan (FPies)y

where X = P,Aand Y = P, A and A is equivalent to —1, while P is equivalent
to +1 for the purpose of calculating the tanh exponent. In order to do the error
propagation divide K ﬁ‘f into the contributions from a and b to find

1 vBuo v o
2K = — + Puer | VB b
ty  ewaerpt—  eptp  epala

As before this takes on only four distinct values that can be generated by choos-
ing u = v = +1, so that

Kol = Ky =K% =K.

and

) (B) _ golap)(Br)
K;(L V)(ﬁ) =K%
can be used to generate all the other coefficients. Then write

2K = AP 4 B*F 4 ¢°F 4 D,

where
AeB — i
Ly
pes = P
etaeipl_
o= b
eptp
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[e%

D*F = .
erata
Then
2 a aB\2 ~2 a aB\2 ~2 2 2
40Kfﬁ = (B +D 5) Ocia T (B e ﬁ) Ocip T Z Wy oy
Y=7a,7p,Pa,Pp
where
Wy = > X
X=A,B,C,D
and

V=P = ¥ tanh™ (YY) — by,

VE=OP = ¥V tanh ™Y (YY) — dy,.

Y is the partner variable of Y in the pairs 7Pp.3. The A, B, C and D coef-
ficients (X) are equivalent to +1, —1, +1 and —1 respectively, and the A and
P subscripts (Y) of 7 and Ppe3 are equivalent to —1 and +1, for the purposes
of obtaining the exponent of tanh in these equations. From the equation for
NS8 the final error propagation is

2
gen = Y (O o2 4 ()

nv

4.4 single spin-flip cross-section only

Suppose that only ST~ # 0 or S~ # 0, as might be the case for spin-wave
scattering. Then the equations for count-rates as a function of the single cross-
section ST~ are

N
C++/§ = (tsa + eratan) (tsp — etptap) ST~

N
Cii/g = (tSA - etAAtaA) (tsP + etPPtap) St-

N
C+7/§ = (tsA + etAtaA) (tsP + €tthap) St—

N
C_+/§ = (tsa — etaAtaa) (tsp — erptap) ST,
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where as usual A = 2ep4 — 1 and P = 2epp — 1. Then

, . ct- . ].-l—etpptap/tsp . c—
SWoCtt T L —eptap/tsp O

This could be used to extract the polarizer transmission factor ratio t,p/tsp as

tap T;W —1
€tp = F )
tsp riw + P

where

t C
ab = ol tanh (7~'pPH63p> .
tsp sP

Once the tanh is calculated, then sinh and coshcan be separately extracted to
obtain the individual transmission factors t,p and tsp,

1

\/1 - tanh2 (%PPH53P)

cosh (%pPHegp) =

tanh (%pPHegp)

\/1 — tanh2 (%pPHegp)

sinh (%pPHegp) =

tap = 2tppCap exp (—7p) sinh (Tp Presp)

tsp = QtEpCsp exp (77~'p) cosh (%pPHegp) .
Similarly, if S~Tis the only non-zero cross-section contributing, then

C~t  1+eaAtoa/tsa  C -

[ = .
sw ct+ l—etAtaA/tsA ct-

This could be used to extract the analyzer transmission factor ratio t,4/ts4 as

taA Tow — 1
CtPpT— = — >
tsa Tow + A

where

t C -
ad = ad tanh (TAPHegA) .
tsa sA

It should be noted that if ST~and S~ Tare from inelastic cross-sections (spin-
waves) then the count rates may be too low to make this analysis possible. One
must then rely on separate transmission measurements of the He-3 cells along
with any correction for time dependence to obtain the individual transmission
factors necessary to extract the cross-sections from the count rates.
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4.5 both spin-flip cross-sections contribute

Suppose that only St~ # 0 and S~ # 0. Recall that the formula for the
transfer matrix coefficients in

N
O = SV S
was in equal time approximation
af 1 a B
Cuy = 1 (tsA - MeAtaA) (tsP - VeptaP) ;

where e 4 = {et(2e% — 1)}P,A. Then the equations for count-rates as a function
of the two cross-section S*— andS~7 are

N _ _
C++/§ = (tsa + eratan) (tsp — erptap) ST +(tsa — eratan) (tsp + erptap) S~

N
C__/g = (tsa — e1aAton) (tsp + etpPtap) ST +(tsa + e1aAtan) (tsp — erpPtap) ST

_,N _ _
CT7 /5 = (toa + eratan) (bor + ep Plap) ST+ (tsa — eratan) (tsp — ecpPlap) S7°

N
C_+/§ = (tsA - etAAtaA) (tsP - etPtaP) S+_+(tsA + etAAtaA) (tsP + 6tPtaP) S_+;

where as usual A = 2ep4 — 1 and P = 2epp — 1. It is easy to invert a pair of
these equations to solve for ST~ and S~ in terms of the count rates.

Assume the common case that the flippers are perfect. Then the coefficients
have the symmetry czf = cffﬁ Then in each pair of equations above there are
only two different coefficients. For the last pair of equations the two coefficients

are

Cy_ = C*jr = Z(tsA - etAtaA)(tsP - etPtaP)

_ _ 1
T =cl= Z(tsA +etatoa)(tsp + erptap)

As in the case of sf and nsf scattering only, we can define the cross-section
asymmetry, —1 < s <1, as

S+— _ §—+

ey

and the count-rate asymmetry, —1 < c¢ < 1, as
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c+t- — o+
C = W’

(1—c)CT" =(1+c)C™ T,

(1-8)St"=(1+s)St.

Recall that in the case of sf and nsf scattering only the result for the cross-
section asymmetry, s, in terms of the count-rate asymmetry, c, for perfect flipper
was

R+1
5§ =——~c,
R-1
where R was the pure Bragg peak nsf flipping ratio, which again for perfect
flipper is
tsatsp + eitaatap
tsatsp — eitgatap '

R:

In the present case, using the equations for C*~ and C~% it can be shown that

sjle+1 CI: _ (tsa tetaton)(tsp +eipltap)  tsatsp 4 eitaatap + esataatsp + erptsatap

S/C -1 B erir B (tsA - etAtaA)(tsP - 67§PtaP) N tsAtsP + ettaAtaP - etAtaAtsP - etPtsAtaP ’

This can be rewritten in a similar form as before,

where

Note that typically Rss > R as can be seen by inspection of terms in the ratio
ci:/c;f. In terms of the He-3 parameters

R, = 1+ e¢atanh (TaPyesa) 1 + erp tanh (7p Pyesp)
sf = 1-— €tA tanh (%APHeSA) 1-— Etp tanh (7~'PPH53P) '

For comparison the equivalent expression for R (with e; = e;ae;p) is

R~ 1+ €¢ tanh (%APHe?)A) tanh (7~'pPH63p>

1 — e; tanh (%APHeSA) tanh (f‘pPHegp) '

For example if e;4 tanh (74 Presa) = erp tanh (7p Presp) = 0.95 then R = 19.5
and Rsf = 1521. Or if the terms are 0.9 then R = 9.52 and R,y = 361. Thus,
for sf only scattering s = c is typically a good approximation.
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4.6 saturated ferromagnet

The case of ST~ = S~Ft =0and ST # S~ is treated in a following section

5 inelastic scattering

All of the analysis can be applied to inelastic scattering by simply scaling 7 by
A/Ao, where A is the actual nominal wavelength of the incoming or scattered
neutrons, and \gis the wavelength at which 7 was originally calculated. 7 occurs
in all the He-3 transmission factors and also in the correction coefficients for the
He-3 transmission.

6 flipping ratios and efficiency measurements

6.1 spin-flip and non-spin-flip cross-sections only

In order to examine the performance of a polarized beam setup, it is required
that the cross-sections be known and fairly simple. One useful case is where
S+t =8 =67f and ST~ = §~+ = 957, 50 that the cross-section asymme-
try can be defined as

Snsf _ sz
ST Ty

Note that in this case where the scattering matrix commutes with the transport
and flipper matrices, e 4 and ep only appear as the product e4ep, and there is no
way to separate the effects of the transport efficiency before the sample from the
transport efficiency after the sample. To perform that separation would require
ST+ £ 8=~ or St~ # S~*. Examples of the S™*f, §5f case are pure non-spin-
flip scattering, s = 1, pure spin-flip scattering, s = —1 and spin-incoherent scat-
tering, s = —1/3. These cross-sections should be free of multiple scattering and
produce count rates that are in the linear range of the detector electronics. Then
expressions for the flipping ratios using the polarizer flipper or analyzer flipper
can be used to determine transport and flipping efficiencies. These flipping ra-
tios are given by Rp 4(s) = CountsFlipperOF F*+ /CountsFlipperONt—>~+.
Thus
t++€t$t_ 1+€t8t_/t+

R = =
pa(s) ty —e(2eppa —1)st— 1 —e(2eppa —1)st_ [ty

Recalling the expressions for ¢} and t_, the ratio t_/t, is

— CiA
Cia

t_ nsf — 1
r = tanh (%pPHegp) tanh (7~—APH@3A) = RO’if
+

P, =
RO,nsf +1

(Ro,nsyf is defined in the following) is approximately the product of the neutron
polarizations produced by the two He3 cells. Here e;p = e;(2er — 1) depends
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on the product of the transport and flipper efficiencies. If the transport and
flipper efficiencies are unity then the expected flipping ratios are

1 + t_/t+ o t++ o t+At+P + t_At_P
1 —tf/t+ t+7 t+At7P +t7At+P
_ C a cosh (74 Presa + 7p Presp)

C_ A cosh (TaPresa — TpPresp)

Ro(S = 1)=R07n5f:

. A A . N
Cin=1+ ((C; + (Cj:)) tanh (T4 Pyesa £ Tp Presp)

1

Ro(S = *1) = R07Sf = Ro(l)

Ro(1) +2

Ro(s=-1/3) = Ryinc = —— .
ols =—1/8) = Ro, 9Ro(1) + 1
If the flipping efficiency is unity then the expected flipping ratios are

- 1+€t8t,/t+

R(ep =1,5) =
(F ) ) 1—€t8t_/t+’
and in particular

Rlep =10 1) = L8t _ oy
F ’ 1-— ettf/t+ etRO,nsf +1

where ¢, = (1 —e;)/(1+e) is the transport loss. Thus, when the flipping
efficiency is assumed to be unity, then the transport efficiency can be determined
as

1/R(s)—1\ 1ty 1Ronsy+1 (R(s)—1
s\R(s)+1/)t_  sRonsf—1\R(s)+1)"

€t =

or for nsf scattering the transport loss is given by

Ronsg — Rnsy o, 1 1

€t = = —
RO,nsznsf -1 Rnsf RO,nsf

If both transport and flipping efficiencies are unknown then they cannot be
determined separately by a single flipping ratio measurement. One of the effi-
ciencies can be found in terms of the other for a single flipping ratio measurement
as

1 R(S) —1 t+

“T SR() Qeppa—1)+1t_

(21)
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6.1.1 using two different cross-section asymmetries to measure effi-
ciencies

One way to uniquely determine the efficiencies is to make flipping ratio mea-
surements for two different types of cross-sections (different known s values).
Then

e = f(sh 82> ti
"7 s1s2[R(s1) — R(sq)] t_
and
% —1 = saR(s1) — s1R(s2) + (51 — $2)
f(51352)
where

f(Sl, 82) = R(Sl)R(SQ)(Sl — 82) + SQR(SQ) — SlR(Sl).

Another measurement that can be made is the ratio of observed counts when
both flippers are OFF to when both flippers are ON. This yields

B ty +est
ty +er(2epa — 1)(2epp — 1)st_

Rpya(s)

If Rpya(s) =1, and it can be assumed that the transport is the same for either
flipper state, then this is a good indication that the flipper efficiencies are unity
(Note that Rpya(s) = 1 if the flipper efficiency is zero also). In general it is
expected that this flipping ratio is near unity. By measuring both Rpi(s)
and Rp 4(s) two equations are generated but the product of the two flipper
efficiencies appears in one of the equations. If it can be assumed that the flipper
efficiencies are equal (as might be suggested if Rp(s) = Ra(s)) then a quadratic
equation can be found for the flipper efficiency,

1 1 1 1
1— — X2+<1— )X—( — ):0
( Rpa ) Rpya Rpya Rpa

where X = 2ep — 1. Because Rpy 4(s) is near unity and Rp 4is not, an approx-
imate solution is

Rpia—1
X=2p—-121— ——"~—
er 1—1/RP7A
or

1 RP+A_1
~1_ Z s -
er 2RP’A RP,4_1

This solution for the flipper efficiency can then be used to solve for the transport
efficiency21.
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6.1.2 using polarizer and analyzer flippers to measure efficiencies

More commonly when both polarizer and analyzer spin flippers are available,
the efficiencies can be determined by measuring all four polarized beam cross-
sections and the He-3 cell transmissions. This is usually done with pure non-
spin-flip scattering, although for any cross-section asymmetry, s, the observed
counts for the four cross-sections are in equal time approximation

CHH = K(1+ segt_/ty)
C+7 = K(l - S@tpt_/t+)
C™t = K(1—seAt_/ty)

Cii = K(l -+ SetAPt_/tJ,_)

where K is some proportionality constant, e; = e;ae;p is the total transport
efficiency, P = 2epp — 1 and A = 2ep4 — 1. Note that if S5 = S™5f then the
counts for all four polarized beam cross-sections are identical and independent
of beam transport and flipping efficiencies. For s # 0 it is easy to show that

C———C*~
P=2epp—l=pr (7
C———-C~*
A=Zera—1= G e
The error propagation produces
0b  Opui + 0t 0% _ +oii-

-2 _0Op _
7P = p2 (C++ —C—+)?2 ' (C— — 0+ )?

2 _ 04 _ 0w $0%s | 0f - +00
AT A (o o) (0 — 0+

o

and where 0., = $0pa.
If one of the flipper efficiencies is known to much greater accuracy than the

other, then the unknown flipper efficiency can be found by measuring just 3
cross-sections. For example, suppose P # 0 is known to some accuracy op.

Then
P (C++ - C’_+) =C " —-C*™
ctt — (C’** — C’+7) /P = c—*
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C———Ctt—(C——-C*)/P

A=2eps—1= o+
A C——(1-1/P)—-C*+ + C’+*/P.
C++ — O+
The transport efficiency can also be obtained from
sett; _ O+t _ o+- _ o+t — o+ _ (CHr —Cct ) (CHF — C_+)7
t, PCt+4+C*t— ACH+4+C-F ct+C——-C+=C-+
which is symbolically

1 Nt°N°F
et = P D

The transport efficiency can only be obtained as a function of the cross-section
asymmetry and the He-3 transmission factor, ¢_ /¢, where

ot C_a
t+  Cia

tanh (%APHESA) tanh (%PPHeSP)

n

and the correction coefficient is

CfA A171 2
A C ~1 - — .
Con  “R= ;A (Cp) sinh (275, Prream)

The error propagation for the beam transport efficiency measurement thus de-
pends on uncertainties in 7 and Ppy.3, in addition to the uncertainties in the
measured count-rates, and is then given by

Goo =D Wanp0as + 3 Wi (5h,, +53),,
af m=P,A

where

-1 +C*+
TONt- D

_]_ C+*
Wee=§="+7
27 Phes
Sinh (2%PH63) m

Win=pa = [

See section 3.1 for an explanation of the calculation of the errors 67, and 2.
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6.1.3 checking He-3 cell polarization during an experiment

Up to this point it has been assumed that the full time dependence of the He-3
cell transmissions must be taken into account, especially in the error propaga-
tion. If a flipping ratio measurement is available at the approximate time of
data collection, then the uncertainty produced by the time dependences can be
reduced. This procedure will work for elastic-scattering data, since the flipping
ratio is measured under elastic scattering conditions (although, as shown later,
it is possible to apply this procedure to inelastic data by making a wavelength
dependence correction to the flipping ratio). To this end, rewrite the correction
formulae in terms of the flipping ratio measured at the same time as the data.
Here it is assumed that C™*f = C**and the spin-flip counts can be collected
with either flipper. The expression for the non-spin-flip flipping ratio (there is
absolutely no spin-flip scattering), that is R,sf = CT/C*T~, is

R - t++€tt, - 1+€tt7/t+
T —eBt_  1—eBt_Jty

where B = 2ep — 1. Solving for t_ /t, in terms of R,

to 1 Rygy—1
ty e RospB+1

If the time dependence of ¢_/t; is known, then it can be checked against a
measurement of R, ;. However, it may turn out that measurements of R,y
are not clean. That is there may be spin-flip contributions to the cross-section.
This is often a background contamination from magnetic inhomogeneity or from
hydrogen spin-incoherent scattering. Then, by measuring the spin-flip and non-
spin-flip count rates in the background, one can make a reasonable correction
to the flipping ratio as shown in the following.

Now the cross-section solutions for spin-flip and non-spin-flip can be written
in terms of Ry,

SnSfNKG _ 1+€tFt7/t+ Cnsf _ 1 1—€tt7/t+ Csf (22)
1+ ett_/t_,_ Rnsf 1-— etpt_/t+

or

1 1 1 1 1 1
e o st (et ()
er R,sp \er R,s5er er

Separate out the flipper efficiency dependence by using 1/ep =1+ (1 —ep)/er,
to find

LCSJ” — ¢ (CnSf _ CSf) ,

S™INK, =C" —
‘ Rnsf

where
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€ = .
er Rnsf

The formula for the spin-flip cross-section in terms of the pure non-spin-flip
flipping ratio is

1
SSINK, =3 — ——cms/f, (23)
nsf
and the formula for S™5/ takes this same simple form when the flipping efficiency

is unity.

If the flipping-ratio is going to be used to track Pp.3, the measurement is
simplest using a Bragg-peak with no spin-flip scattering. If there is spin-flip
scattering, a case that is straightforward to treat is that the spin-flip scattering
appears as a flat background, as for spin-incoherent scattering (hydrogen) or
random magnetic impurities. Then one can measure a flipping-ratio at the
Bragg-peak and off the Bragg-peak far enough to be in the background. These
two measurements yield

ssf

1
_ st nsf
gy NE. = C —C

Bragg — Rnsf Bragg

1
Rnsf

sf _ sf nsf
SINK, = Cyf -

Now if S;’;_agg = Slf; (flat background) then we can extract the non-spin-flip
flipping-ratio as
Rinsp = (Cgi];gg - Ol?;f) / (Cg"agg - CEJ)

This formula corrects for any flat background including any fast neutron back-
ground, which clearly gets cancelled by the subtractions in the formula. Thus
it is often useful to make the flipping ratio measurement on a Bragg peak and
in the background.

The formula for observed counts applies to the case that the neutron wave-
length is A/2, with the caveat that if a current-flipper is used it will depolarize
the beam (if it is set to flip A) so that ep = 1/2, B =2ep —1 =0.

Crsl N N1 [ ty+et . ty—et Sl N1 (s
Csf B 29 t+ — €tBt7 t+ + etBt, sz o 22 sz
If the beam is mixed with A fraction a; and A/2 fraction as reaching the

detector, and the cross-sections for A and A/2 are equal, then we can write
equations for the combined count-rate as

Cnsf N1 Snsf
< st )222(G1MA+¢12M,\/2)< gsf >
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In the case that a He3-flipper is used, the combined matrices have the same
form as above, so that we can simply replace ¢} and ¢_ in the solution,

ty — tA+ =aityx + agt_,_,\/g

t_ it = ait_y + (Lgt_A/g
In the case that a current-flipper is used, we must also replace B in the solution,
B — B = Bayt_,/i_

Thus we have shown that flipping ratio measurements can be used to track
the time-dependence of the He3-cell transmissions, even when there is back-
ground or A/2 contamination. If the user is going to run the experiment with
A/2 contamination, it helps to build confidence if the relation between R,
and the transmissions is checked by comparing the clean beam case to the /2
contamination case. This comparison can be used to make sure that a; and as
make sense.

The best way to keep track of the polarization of the He-3 cells is to use beam
monitors as shown in the diagram at the start of this document, and measure
the transmissions as a function of time. If this is not possible, measurements
of the non-spin-flip flipping ratio can be used to monitor the polarized beam
performance. Also, as will be shown in the following section, these flipping ra-
tio measurements aid in correcting polarized beam data. Typically, previously
measured values of transport and flipping efficiencies are assumed to remain
in effect, and the flipping ratio measurement is used to check on the expected
polarizing efficiency of the He-3 cells. The solution for the polarizing efficiency,
P, in terms of the measured non-spin-flip flipping ratio and the transport effi-
ciencies is

t_ 1 Rusr—1

Po=—== :
"ty et Rpsp(2ep —1)+1

The error propagation for measuring this polarizing efficiency int terms of the
flipping ratio is

2
2er R 2 2¢p R2
~2 =2 Filnsf ~2 nsf ~2
e ”@f*(Rmf@eF - 1>+1> “e”(mmf ~ A [Rusrer — D +1] ) 7w

~2 _ =2 ~2
UR,LSf - UCnsf +UCsf7

and C,sr and C,y are the count rates that determine the flipping ratio. Recall
that the expected value of P, is
t_

pn = o = Cgr tanh (%APHeSA) tanh (7~'PPHe3P) ,
+
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and the error propagation for this expected value was calculated previously as

27 Py 2
~2 e3 ~2 ~2
05 = E _— o +02) .
P DA [s1nh(27'PHe3)]m ( Pre T)m

The values for 63, () and 62 are given in section 3.1.

Of course if there is already confidence in the expected value of P,, then the
flipping ratio measurement can be used to check on the transport efficiency.

A beam monitor after the He3 polarizer can be used to help track its polar-
ization. The monitor rate as a function of time, due to the decay of the He3
polarization can be written as,

m(E.s) = (B3 an(E) [tpam(s) + tpoa/a(s)] D3 an(B)

Here s is the time in seconds, M (F) is the energy dependent monitor rate
with no cell in the beam, and tpy/,(s) are the transmissions of the He3 po-
larizer for preferred and non-preferred states at the given wavelength order and
time. Normally when cell transmissions are measured we calculated M (E) based
on expected order fractions, and then compare with the measured M (FE) with
the cell out of the beam. The He3 polarization is known at start time s;, so
that when we measure a monitor-rate at later time, sy, then

% = ; %an(E)% [tpa/n(sy) +tpox/n(sy)] /; %a"(E)

This allows a calculation of the He3 polarization at time sy.

6.2 saturated ferromagnet

Another set of cross-sections that can be useful in characterizing a polarized
beam setup, has the conditions that St~ = S~ = §%f =0 and St # 5.
For example, these cross-sections apply to a saturated ferromagnet Bragg peak.
It is important that complete saturation is reached, otherwise there will be con-
tributions from spin-flip scattering or beam depolarization from ferromagnetic
domains. In this case the cross terms in the expression for the transfer matrix
elements do not cancel. This cancellation had simplified these matrix elements
in the case of spin-flip and non-spin-flip scattering symmetry, so that there was
no dependence on solely the pre-sample or post-sample side of the beam path
transport. Breaking this symmetry complicates the expressions, but does allow
extraction of the separate beam transport efficiencies. The expressions for the
expected count-rates are

N
CQB/—2 = cjﬁSJ“* +c*P s
Explicitly writing these out
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N
C++/§ = (tsA + etAtaA) (tsP + etPtaP) S+++(tsA - etAtaA) (tsP - 6tPtaP) S

N
Ci*/g = (tsa — etaAtoa) (tsp — etpPtap) STH+(tsa + €1aAtan) (tsp + €tpPtap) S~

N
C+7/§ = (tsA + etAtaA) (tsP - etPPtaP) S+++(tsA - etAtaA) (tsP + etPPtaP) S~

N
Ci+/§ = (tsA - etAAAtaA) (tsP + etPtaP) S+++(tsA + etAAtaA) (tsP - 6tPtaP) Siia

where recall that A = 2epq — 1 and P = 2epp — 1. Now define the following
combinations of count rates,

dP — C++ _ CJrf
dy=C~"—-CF
Sp = PC’JﬁL + C+7

sa=C""4+PCT,
and also the cross-section asymmetry,
St+ _ §——
()
Then if P > 0 (else the expected count-rate differences dp and dawould be

zero) and A > 0 (else dp +da = 0) and e;4 > 0,

1 tsa Adp — da
— §= —".
etA taa dp +dy

(24)
However, even if P = 0 the following equation holds true provided A > 0 (else
Sp =S4),

taa Sp — 84
epg—S = ———. 25
“toa Asp +sa (25)

Also if P > 0 and A > 0 there is the result
822 (Adp—d,q) ( Sp—SA ) _ N1N2
dp +dg Asp +sp .Dl.DQ7
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which is independent of transport efficiency (except that e;4 > 0) and indepen-
dent of the time dependence of the He-3 transmission. These formulae allow
determination of the beam transport efficiency on the analyzer side, or a mea-
surement, of the cross-section asymmetry, s, or a check on the He-3 transmission
factor t,4/tsa. Note that the second equation, 25, that holds true even if P =0
indicates that s can be measured even with an unpolarized incident beam pro-
vided that A > 0 (otherwise sp = s4) and e;4 > 0. This is due to the fact
that by the nature of the sample cross-sections, the scattered beam is polarized
(ST £ S77). For the error propagation on the analyzer-side beam-transport-
efficiency, e;a, the transmission factor, t,a/tsa, is required. Recall that this
is
taa CaA

— 24 tanh (74 Prpe
tsa CSA o (TA H3A)

where the ratio of correction coefficients is

Coa 14 Ay 2
Cia (Ca) |sinh (274 Presa) |

Using the first equation, 24, to measure e; 4

tsa dp+da
toa Adp —da’

€A — S
and the error propagation for e;4 is then
62, =Y WZ250%0s + Wic5 + W} (63, +52),+0:
etA afY CaB AY A t Pre T)A Q)
ap
where

W af LA+
B e +ds  Adp —da

Adp

Wa = Adp —d4

274 PHe3a
sinh (274 Pyesa)

Using the first equation, 24, to measure s

taa Adp —da
tsa dp+da’

S =€tA
the same error propagation applies so that

57 =Y W250%as + WiGh + W7 (63, +632),+062

€tA”
ap
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Similarly the error propagation for s%is given by

~2 § 2 2 § 2 2
052 = WQBO'CQL; + Wng,
af X=A,P

where

CH+—C—+ ACHt 4O+
N> D, '

Wp =

7 wavelength and path-length variation of He-3
transmission

In order to account for wavelength dependence in the He-3 transmission, take

A A
T=7(\)= nao()\o)LoA—O = TOA—O.

where )\ serves as a reference wavelength for og. We have already shown that
the averaged transmission in the Gaussian approximation for the distributions
of wavelength and pathlength deviations from average, can be expressed as

<ty >=Cityg

tio =tgpexp(— (7)) (1 F Pres)) = exp (—71)

1 0% + 0% — 20505 Ty

—1/2 ~
Cy = dAL/ exp N Ti
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dyr, =1 70§0’%7~'§: >0

(1) =nog (L) <X>

tg is roughly wavelength independent, and is about 0.86 for the cells used at
the NCNR made of GE180 glass. Lgis the path length along the center line of
the He-3 cell. Also recall that o) is the dimensionless distribution standard-
deviation for A/\g, and o, is the dimensionless distribution standard-deviation
for L/ (L).

As a simple example, the neutron path-length through the He-3 may vary
due to beam divergence or variation in the separation of the cell walls. If the
beam divergence can be treated by assuming parallel cells walls so that the angle
dependence of the path length is

L(6) = Lo/ cos(9) = Lo(1 + 37 + 557
where L is the minimal He-3 thickness for a beam perpendicular to the cell flat
walls (this is the value of L that goes into 7+ ), ¢ is the neutron path divergence
angle with respect to the perpendicular to the cell walls, and v and § are the
corresponding divergence angles in the scattering plane and perpendicular to the
scattering plane respectively. Then using <m4> = 302 for Gaussian distributions,
we can compute the average pathlength and estimate its distribution width,

(L/Lo) =1+ 5 (02 +0?)

3 1
<(L/Lo)2> =1+ 0?/ +o3+ = (Uﬁt +03) + fagrag

4 2
2\ 2—1 4 4\ ~ 42
((L/L0)*) = (L/Lo)® = 5 (o4 + 03) = o}

7.1 Triple-Axis Case with flat end-windows

Consider the case that the incident neutrons have been scattered by a monochro-
mating crystal, so that the incident and outgoing deviation angles in the scat-
tering plane, 79 and 7, are correlated vai the wavelength according to Bragg’s
law. The transmission probability function (TPF) depends on the crystal mo-
saics and collimations before and after the crystal. The scattering plane TPF
can be derived in terms of the deviation angles (measured positive with respect
to nominal in the clockwise from above direction), collimations before and after
the crystal, agand a1, and crystal scattering-plane mosaic, 7y, as

a0



1 /) Yo +7\> 7\’
- {42+ (52 (2 o

The Bragg’s law correlation gives

AN
Y1 =" + 27 tan(war)

where wy, is the Bragg angle of the crystal and AX = A — Ay, with Ay =
2dpr sin(wpr). Of course, dpy is the crystal d-spacing for the reflecting atomic

planes. Thus the in-plane TPF can be written in terms of 7; and x = % as

2 2 2
1 —2xt —xt
Py = Ny exp{_2 [(% x an(OJM)> n <71 x an(o.)M)> N (71) ]}d%dm
%) NH (€3]

or
1
Pg(v1,7) = Ngexp {—2 [47f — 2Bz + C2?) } dyidx
where
1 1 2 2 4 4n? 1 1
Ny = — (AC — B2)1/2 = %o+ ot My tan(wy) —=—
2 V2 Qo V2m NH
A 1 a%a% + (a% + a%) n%
N aga
1 a2+ 2n?
B= —2&0 +2 it tan(war)
Uhzs Qg
1 a2+ 4n?
C = Tao +2 il tan?(way)
Ulz; Qg

If the crystal mosaic is zero, thenAX and ~ are perfectly correlated so that

1
Pro(y1,2) = Ngod(y — xztan(wpr)) exp {—200962} dy,dx

where now
1 a2 + o2
Ny = 0 L tan(war)

2T pQg
2 2

oaptay o

Co = 3 5 tan (W]\J)

QpQay



If there is no crystal then just the collimation determines the angle spread which
is independent of the wavelength distribution.

1 1 1 1
P =—— exp{ —=~? 02}d ex {—x2 0'2}d.’[
HoO = e p{ 571/05 dmn . P 72 I

a2a?

2 0]
Ty a? + a?
0 1

If we integrate over all the deviation angles we get the uncorrelated wavelength
AX

distribution for the neutrons scattered from the crytstal, x = 52

1 1
/PH(’Yhm)d'Vl = \/%exp{—ZxZ/oi}dx

1/2

B a2a? + (a2 + a2) n?

Ui = (C— BQ/A) 1/2 = COt(UJM) 0 12 ( 20 12) 77H
of +af +4ng

The TPF for deviation angles out of the scattering plane is

o)+ ) + ()

— | tle7"77F7—) +| 5+ ddodd
(50 2ny sin(war) B o
where dy and §;are the deviation angles before and after the crystal, 5y and 5y

the corresponding vertical effective collimations and 7y the crystal mosaic in
the out of scattering-plane direction. Integrating over Jy and normalizing gives

1
Py (d0,01) = Ny exp {2

_ 1 Ll
P\/((sl)— mo—& exp{ 251/05}d51
where
B |83 + (20 sin(war)?]
o? =

B2 + (83 + (2 sin(wa))’]

To remove the crystal just set ny sin(wys) = 0.
Now the average transmission can be calculated. For this calculation use
A = Ap (1 + z) in the expression for the transmission so that

1 1
t+ =tgexp <7’iM(1 +x)(1+ 572 + 252))

where 74 = Tio%. Ay is the average wavelength produced by the monochro-
mator and Apis the reference wavelength at which the He-3 absorption cross-
section in 74g is evaluated. The expansion of the transmission up to second

order in the deviations is just
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1 1 1
t+ = t4oe {1 — Tz + 5’72 + 552) + 2732[1\/1332}

where t1o. = tg exp (—74as) is the transmission for zero deviations. The average
transmission requires the integrals

1 1 1
<ty >= ti()e/PH(’y,x)PV(é) {1 —71em(z+ 572 + 552) + 2TiM:172} dvydx db

The perfect crystal case with a delta function produces
1 .
<ty >=1t40¢ {1 - iTiM [(tanQ(wM) — TiM) 0’3 + 0'?}} = Cyot+o,
where 0'2v =1/Cp and 02 = 1/Ay. Note that the sign can change for the in-plane
part of the correction for 74 s and 7_y.
The more general case requires tedious integration. The 62 integral term is
simply

/ Py (v, 2) Py (0)8°dydx d§ = 0.

The y%term integrated over v yields

2 1 B2 1 B \?
P P, 2 = I il _ _ 2
/ 1 (v, 2) Py (0)y*dydr d§ = Ny /dx exp[ 2 (C >x } — 4+ (m)
which is
C o (ad + 4n%)
2 _ 1\®% H 2
/PH(%JS)PV(CS)’Y dydz dé = OB it 2.

To remove the crystal set ny = 0.
The integral of the linear x term can be shown to be zero. The integral of
the 22 term is

A (of + af) nf + agod ox )\
P Py (8)2? dydx d§ = = t2 =o2=(-2
| Pty a) P ) drar s = 5Py = S SOESO cor) = o2 = (2
To modify these expressions for an analyzer cell in 2-axis mode, fudge the cell
d-spacing to be that of the monochromator, as well as the horizontal collima-
tions, so that one gets roughly the wavelength spread due to the monochromator,
but set ny = 0 and ny = 0. The sum of all terms yields

1 1 N
<ty >=1t40e {1 — §T:|:M [03 + Gg] + QTiMUg} = C4ityo

This expression agrees roughly with the formalism layed out previously, as

33



t+0e €XP <—;Ti]w [03 + Ug] + ;TiMai) = {40 €Xp (;TiMai)
which is what we would calculate if the width of the pathlength distribution
is zero. For thermal triple-axis instruments 71, is never very large, while the
angular divergences are relatively small.
Note that in this case of flat windows, the wavelength variation increases
the transmission while the angular distribution decreases the transmission. The
effects are largest for the non-preferred spin-state.

7.2 Effect of cell geometry on the path length
7.2.1 end-window geometry

There is a correction to the transmission from the varying path lengths due to
the shape of the end windows. The end-window shape is characterized by its
radius of curvature, R (R — oo for flat windows). In order to calculate this,
take the coordinate system origin at the center of the He-3 cell with y-axis up
and the primary beam direction as the z-axis, so that in terms of the x() and
y(9) deviation angles the neutron direction is

n = cos (0) [cos (7) Z + sin (7) X] + sin (§) §.

In the z = 0 plane passing through the cell center, assume that the neutron
passes through the point P = (X,Y,0). Then the neutron path is along the line

r, = [X 4+ Bcos(0)sin(y),Y + Bsin (d), B cos () cos (7)] .
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If the primary neutron beam is displaced along the Y-axis, the same co-
ordinate system can be used, but divergence angles will be associated with a
non-zero Y-value. The expression for beam direction remains the same. Find
the intersections of this line with the front and back spherical faces of the He-3
cell in order to calculate the path length. If R > L is the radius of curvature
for the spherical faces and Lg is the straight through diameter of the cell, then
points (zy,yy, zy) on the front (beam entrance) face ( where z; < 0 ) satisfy

L 2
[(R—S’)—g] +a%+y; =R,
2 Lo Lo ? 2 2 2
2 LO 2 2 1 2 _

L
ZfZ(R—20>—

1/2

Lo ? 2 2 1 2

zp = <R—I;> —(Rz—xfc—y?)lm

L
o= =5+ R{1-[1- @} +y})/R)}

Similarly, the back (beam exit) points (xp, yp, z5) with 2z, > 0 satisfy

I 2
KR—;) +zb} +ai +yi = R?

L

L
2y = +70 _R{l -[1- (z} +y§)/R2]1/2}
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and if it can be assumed that xfc + yfc <« R?, an approximate expression for 2y
is
Lo 177ty

T Ty TR

Now use the expression for the neutron path to find the intersection point

xy =X + fycos (9)sin (v)
yr =Y + Bysin (0)

zy = By cos () cos(v).
Exactly,

{5 (r-L] in ()] n () = R?
¢ cos (0) cos () R 5 +[X + Bfcos (0)sin (7)]"+[Y + Bfsin (0)]” = R

{Bb cos () cos () + (R — I;ﬂ +[X + By cos (8) sin (V)]>+[Y + By sin (6)]> = R

Cancel out the R? terms and find

,8]20 +2Bfeﬂf +Ce=0
55 + 2Bbeﬂb + Ce =0

By = — (R - I;) cos () cos () + X cos (6) sin (y) 4+ Y sin (4)
By = + (R - I;) cos (8) cos () + X cos (8) sin (y) 4+ Y sin (§)

L
C. = —Lo (R— 40) + (X2 +7?)

The correct signs for the roots are determined by the known signs of . and
5bea

Bfe = _Bfe - (BJQCE - Ce)1/2
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1/2
61)6 = *Bbe + (Bl%e - Ce) /
so that

Le(3,8,X,Y) = Bro—Be = —2 (R - L;) cos (8) cos (4)+(BE, — C.) "+ (B}, - ¢.)*
Let K = (R — £2) cos (6) cos () and A = X cos (§) sin (v) + Y sin (§). Then

é 1 ’ — Ce é +1 ’ _ Ce

K K? K K?

This becomes an expansion in 1/R by using a Taylor’s series for the square-root
terms.

1/2
+ K

1/2
Le(7,6,X,Y) = 2K+ K

Lo(7,6,X,Y) = 2K+ K[1—e1+ ] ? + K[1+ € + €]

where

A2 C,
©= TR

Now we can expand in terms of the small 1/R quantities €; and es.
Use

v2_q 1 1o, 15 5
e =14 ge -5+ 6 ~ 123°
First look at the solution for the case that  =~v =10

Bfe(5:7:0)2_<R_L20)



(Bj. = ) = (B~ )P = R[1- (X 4 v R

L
o= o= (5= 0) " = (8= ) RO 4 vy )
L
Bpe = —Bpe+ (BL —C)* =~ (R-22) + R[1— (X2 +Y?)/RY]"?
be 2
Approximating the square root
L 1
ﬂfe((S =7= O) = *70 + §(X2 +Y2)/R
L 1
Bre(d =7 =0) = +70 ~ 5 (X2 +Y?)/R

L6(070aXa Y) = 51)6 - Bfe = LO - (X2 + Y2)/R

Also look at the case that X =Y = 0.

Br(X =Y =0) = - (R - /:20) cos (8) cos (7)
Br(X=Y =0)=+ (R - L2°> cos (9) cos (7)

Co(X =Y =0) = —Lo <R>
(B —Co)'/* = (BR. - )" = {(R - LQO)Q cos? (8) cos® (v) + Lo (R - L40> }1/2
1 =7 =0) = (R = 5 ) cos ) os (v)—{ (r- L2) e+ 1o (R~ 2) }1/2

A =¥ =0) == (R~ ) ox o (7”{ (R "0) o yeost () 4 20 (- 20) }1/2
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9 1/2
Lc(7,6,0,0) = Bpe—Pfe = —2 (R — L20) cos () cos ()+2 { (R — I;) cos? (0) cos® (y) + Ly (R — I;f)}

Note that for R = Lo/2 this correctly gives L¢(v,0,0,0, R = Lo/2) = Lg. For
R — o0, approximate the square root,

Le(7,6,0,0) = Bpe—Bre = —2 (R - L20) cos (d) cos () |1 — {1 + Lo <R_ L40> /

L0(0.0.0) = i = g0 = Lo (R =) | (= 5 ) cos () cos )]

Le(’77 570707 R— OO) = /gbe - ﬁfe = LO/ [COS (6) COS (7)]

The exact expression is unwieldy for doing averaging over divergence angles
and or beam coordinates. Practically, the small angle approximation for the
divergence angles can be used, and if we discard terms of order 3 or greater in
the angles,

L 1
Bf:_(R—°> {1—2(62+v2)]+X7+Y5
_ Lo Lo 2
By=+(R-—= 175(5 +92)| + Xy +Y4
Lo

C=-Lg (R—4> +(X*+Y?)

B} = (R - L2°)2 [1-(8%+~%)]-2 (R - L;) (X~ + Y5)+<R - LO) (0% +74%) (X7 + YO)+(Xy + Y0)’

2
B} = (R - L;)Q [1- (6% +~)]+2 (R - L;) (X + Y&)—(R - L;) (32 +7%) (X + YO)+(Xy + Y9)?

Normally the last two terms should be smaller than the others and can be

omitted, as they are quartic in small quantities. Note that the terme; =

(R—L£2) (6% ++?) (X +Y4) which is cubic in the small divergence angles

could be comparable to the last term, e; = (X~ + Y(S)2 becaus of R.
Approximating the square root and omitting e; and es,

60



(B]%—C)I/ZZR{l—;(l—LO> (8% +°) - (1—51%) (X7+Y5)/R—(X2+Y2)/RQ}

(35—0)1/2:3{1—;(1—“) (82 +2) + (1—L) (X7+Y6)/R—(X2+Y2)/R2}

2R 2R
Lo 1/ 2 2 1/2
5f:(R—2) [1 5(5 +7)]+X7+Y§—(B - 0)
Lo Lo 2 2 1/2
Bb:—<R—2> [1—2(5 +7)}+X7+Y6+(Bb—0)
L(7,6,X,Y) = By—fy = -2 (R—LQO) [1—;(624—72)}—}—(35—0)1/24—(3?—0)1/2

L(v,6,X,Y) =B, — Bs = Lo {1+ (6> ++7) (1 — QLEH —(X*+Y?) /R

L(v,6,X,Y) /Lo = [1+ (62 ++?) (1— QL]%)} — (X?+Y?) /(LoR)

Note that §2+~2 just gets multlphed by 1—3 R, so this is the curvature correction
factor that multiplies U7 + 05 in the expression for the averaged transmission.
Thus, curvature weakens the increase in pathlength due to angular divergence,
but also strengthens the decrease in pathlength due to beam cross-sectional
area. The general expression for the transmission becomes

AL
tiL =tpexp T:t()/\ Lo

= tgexp (—TiM(l + ) {1 + % (v* +6%) (1 —~ QL]‘%)} +7rem(l+2) (X2 +Y?) /(LOR)>

X2 4y? 1 Lo X2 4+v2
=t - -1 ) 1 S+t (1- 22| - R
ECXP< TiM( ToR > e (1 +2) [2 (7 + )( 2R)] TiMl'< ToR

Keeping only terms up to second order this can be approximated as

X2 4+ Y? 1 Lo
ti = tE exp <_TiM (1 — LOR) — T4+M |:2 (72 +62> <1 — 2R):| — TiMl‘)
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X2 +Yv? 1 Ly 1
=tgexp l:—TiM <1 - LOR)] {1 —T+M {2 (72 —|—52) <1 - 2R>} — T+MT + QTiMa:Q}.

As before, the linear term in x will average to zero, so for the averaged trans-
mission

<ty >=tgexp [Tiw[ <1 —

LoR

{1 —Tem B (v* +6%) (1 - 26%)] + %T:%:M <~’U2>}’

and we have the previous expression for the average transmission, with now

2 2
03 + 02 scaled by ( — QL—I%) and 747 scaled by 1 — %

Again this fits into the formalism for averaging the transmission as

X2+v?%) 1 L
tiro =tpexp [TiM (1 - <LOR> + 5 <'Y2 +52> <1 — 21%))

1
Cy =exp <27’iM <x2>>

and the pathlength distribution width is assumed zero. A rough estimate for
the pathlength distribution width is

1

1
> (04 +03) +2 (0% +0v) /(LoR)?

2
gy, 9

As promised, we have arranged the averaged transmission in the form

<ty >=Cyitpexp (—T+m)

with 747 = 7as (1 T Ppes) and Cy = 1.
To compute the unpolarized beam transmission requires (C) = (C1+C_)/2.

(Cy+C)/2=1- % (eL) (Tym + Tom) + i ((X) + (1)) (T2 +7200)

(€)= 1= fer) + 572 () + (1)) (1+ Phoa)

Soller type collimators with vertical blades, provide some degree of trans-
lational invariance across the beam in the scattering plane. This makes the
divergence angles for the most part uncorrelated with the neutron cell-crossing
point (X,Y,0) and the averages can be performed separately. This is no longer
true when using radial collimators which are typically focussed to the sample
position. Then v and X are correlated. If the sample is small enough then we
can correlate § with Y as well. We can directly use the formulae in the following
section
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v = (X —852)/15:]

0= (Y —=5y)/ 5|

where |5, | is the distance from the sample to the analyzing He3 cell center, and
Sz, Sy locate the neutron at the sample.

7.2.2 SANS flat area detector with end-window geometry

In the case of small-angle scattering onto an area detector, wavelength and
pathlength deviations are uncorrelated, but the pathlength and deviation an-
gles are very correlated. The neutron coordinate at the detector is relatively
well defined, so that the best formulation is obtained by averaging over sam-
ple coordinates. Let S, < 0 be the distance from the sample to the analyzing
He3 cell center, let D = D, — S, be the sample to detector distance (D, is
the He3 cell center to detector distance). Then if D,, D, locate the neutron
on the area-detector, define (D2 + D2)/D? = tan®0, and let S,, S, locate the
neutron at the sample. That is, given the detector position, there are only two
degrees of freedom to average over, the sample coordinates, S, and S,,. We can
use the following relations between the deviation angles and He3 cell midplane
coordinates of the neutron, X and Y,

7= (S, - X)/S. = (D, — 8,)/D
5= (S, - Y)/S. = (D, ~ 5,)/D
X =8, = S.(D, - 5,)/D
Y =8, - S.(D, - S,)/D

Then we can series expand the approximated expression for the path-length in
terms of the sample and detector coordinates.

1 L 21 D24+D2 1
%MFM&@DMMMFH{(lg @}y+[0_

2\ 2R/ RL, D2 2

This expression assumes that the sample coordinates will be averaged and the
sample is symmetric about the origin so that cross terms in S, and §, will
average to zero. Otherwise add the cross term (from X2 + Y2 and 2 + 62) so
that total L/LO = LS/LO + Lzy/Lo, with

1

Lay (S, Sy, Doy Dy) /Lo = =2 [2 (1

— @ _ SZDz Sme + S"/Dy
2R RL, D2
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(S2) (Dz) + (Sy) (Dy)

<LwU(SIﬂ Sy7 Dwa Dy)/L0> = -2 (C — SdZ)

D2
If this asymmetry is not needed,
D? 4+ D2 5% 4 52
Ls/Lo = L(Sz, Sy, Dy, Dy)/Lo = 1+ (c — s2) Ty + (¢ — d2) 2 ’
where ¢ = 3 (1 - £2), 52 = RS—EO, dz = RD—EO and sdz = Séﬁj. In all cases our

approximation can be written as,

| (D2) +(D2) )+ (53)

(L/Lo) = 14(c — sz —2(c— sdz)

(Se) (Dz) + (Sy) (Dy)

op +(c—dz) foF
Similarly we can break the variance of the normalized pathlength into contri-
butions that apply when the sample (or detector) coordinates are zero, and
contributions that apply when this is not the case. Note, however, that L, has
a contribution to the variance in the zero-coordinate case.

2 2 2 2
O—sz +0—Dy2 208z2 +0-Sy2

<L/L0>f = (6752)2 D4 +( - ) DA

ot = ((L/Lo)’)

The part of the variance that will contribute only when averaged sample and
detector source and destination coordinates are non-zero is,

S

(Sz) D3 + (Sy) Dy*!
D4

OFwy = <(L/Lo)2> (L/Lo>iy = —4(c—s2)(c—sdz)

zy
Here, D3*' = (D3) — (D2) (D,) and similarly for the other like terms. Note
also that o2 , = (D) — (D2)? and 02, ,, = (S2)(D2) — (S,)* (D).

These are easy to calculate for the case that source and destination coordi-
nates are uniformly distributed (rectangle distribution) with mean coordinate

symbolized by p and object size (coordinate range) symbolized by A. Then
since the distributions for sample and detector are independent of one another,

(Dz) = pips
0hy = AD, /12
0hy2 = Aby (ADe /20 + ph, /3)
T8upa = Dby (Aba/24+ 1i,) /12 + A%, (AD./24 + i) /12
Dim = ADxN'2D7;/3
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For SANS the detector coordinates are relatively well defined (no averaging
required), and we can average over the sample coordinates. A common case
is the disc approximation with the radius of the disc as Ry and the sample
cross-sectional area as A; = wRZ, so that the average SANS path-length in
terms of the scattering angle, 0, becomes, in the symmetric sample-at-He3-cell
XY-origin,

w040 /o= 145 (1= 55 ) = o aancos [ 5 (1- 1) - 2] A

2 2R) RL, 2 2R) RLy| 27xD2

Note that in the SANS case A,/D? /4 is typically much smaller than 1tan?¢
(S, < D,). Dropping this term leaves

B 1 Lo 52 ., D? A,

so for the averaged transmission (with 1+.5,/D = D, /D approximated as unity
for SANS case),

<ty >=exp 7l
0

This is different than the triple-axis case as the coordinate average is now
over sample coordinates instead of the beam coordinates at the center of the
He3 cell, and the angular divergence term is different.

Interestingly, it is possible in the approximation to cancel the tan?d or A,
dependence of the pathlength. For example, the tan?f dependence vanishes by

choosing S, such that
1 Lo\ o
2%<Rz)5z

With Ly = 10em and R = 40cm, S, (sample to cell distance) would have to
be about 13cm which is pretty small. Typically S, is larger than this number
so that the pathlength decreases with tanf. The averaged pathlength also
decreases with the sample-area. For example, if the sample is a 1 cm disc with
R = 40cm then the reduction in path-length due to the sample area is just 0.012
cm. Take the example where S, = 50cm. Then the correction is approximately

Lo (1 —56%)

so that when 6 reaches 5 degrees (0.1 radians) this becomes a 5% effect.
The dependence on sample cross-sectional area vanishes when

1 Lo )

“Ly(R—2) =D

9 0 ( ) ) z
where D — |S,| = D, is the He3-cell to detector distance. D, is much larger
than R or Lg so that this condition is never approached.
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Note that we have used oy, = 0 in our formula, but 745, can become quite
large for SANS experiments. We can estimate 0% just from the variance due
to sample size, as the angle variation for a given detector pixel is quite small.
Then

2 2 2 4 4 9
o'% =92 |:1 (1 LO) Dg :| JSI2+USy2 E2A5r+ASy ~ (A§/27T)

2\" 2R/} RIL,

ok 20 (RLo)* ~ (RLo)®

For a sample radius of 2cm , R = 25¢m and Ly = 8cm find o2 = 0.0008.
For SANS 7_can reach 10-15 at long wavelengths so that this correction can
become important.

7.2.3 Non-SANS PSD radial collimator end-window geometry

In the general non-SANS radial collimator case we cannot drop any of the terms.
The radial collimator correlates pathlength with angular deviation just as in the
SANS case, and the wavelength angle correlation depends on whether a crystal
is used before the detector. One must calculate o, accordingly. In addition if
the PSD is one-dimensional in the scattering plane, we need to average over
the the detector Y direction in the pathlength expression. For example, take
the distribution for neutrons along D, = Df as a Gaussian with some effective
detector vertical-divergence standard deviation angle, og (The ¢ averaging above
was with D, fixed). We need to average (D7 4+ D2)/D? = tan®@ over this
distribution.

(tan®0) = Ny /((DQB/D)2 + %) exp (—;ﬁ2/0%> dg
v = addet — adHe3

(tan®0) = <(DI/D)2> + 03 = (tan® (7)) + 03.
If there is only a single detector then D, is averaged as well so that
<tan29> = ag + O’i.

These are the replacements for tan?6 in (L(0, As)) /Lo. We also need to do
the average (tan? (v)) over detector acceptance angle.

(tan? (7)) = N/expf% <“Td>2tan2 (v + 2) d.

g

(tan® (7)) = tan® () + (1 + 4tan® (v) + 3tan® (7)) o3
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1 L S2 1 )’ D2
L(Sz,Sy,v,8)/ Lo = 14{2 (1 - 2;) —~ RLZJ (tan® (v) +62)+{2 (1 - 2]%) - RLZJ

2 2
L(Sz, 8.7, 8)/Lo = 1+ (c — s2) (tan? (7) + %) + (c — dz) Sm;sy

(L/Loy =14 (c—sz) [t(m2 (v) + (1 + 4tan? (7)) 03 + 0’%] +(c—dz) %

4 4
2 05z + USy

<(L /L0)2>—<L/L0>2 = o} = 2(c—s2)? [2tan? (7) sec’ (7) o + o] +2(e—d2)? =

<(L/L0)2> —(L/Lo)* = 0} = 2(c — 52)* [0} + 0] +2(c — dz)2%

7.2.4 cylinder geometry

In some cases He3-transmission filters are used with the neutrons passing through
the cell cylinder walls instead of the end windows. The geometry is shown in the
following diagram where D is the cylinder diameter and R is the radius. Recall
that the primary beam direction is +z and +y is up out of the scattering plane.
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First look at the pathlength when the neutron is in a plane perpendicular to
the cylinder axis so that the x-coordinate is fixed for the entire neutron path.
Then the beam entrance and exit points satisfy

5=

z +yp = R

Now use the expression for the neutron path to find the intersection points. For
the front face

xy =X + fycos (9)sin ()
yr =Y + Bysin (6)

zf = ffcos(0)cos (7).
But we are fixing v = 0 so

foX
yr =Y + Bysin (6)

zy = ffcos(0).

The expressions for the intersection with the back wall are the same,

l‘b:X
yp =Y + By sin (9)

zp = By cos (9).
Then
Y2+ 2Y By sin (6) + BJ% = R?
Y2 +2Y Bysin (6) + 57 = R?

Br = =Y sin (8) — [R* — Y>cos® ()] Yz
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By = =Y sin () + [R* — Y?cos® ()] 12

and the pathlength is

L(Y,0) = B — By = 2R[1 = (V/R) cos? (8)]

These formula all can be obtained by setting v =0, X =0 and Ly = 2R in
the standard configuration. Since there is no Soller collimation in the vertical
divergence, § is correlated with with Y. Using S, < 0 as the distance from cell
center to the sample, S,the neutron height coordinate at the sample, D, the
distance from the cell center to the detector, and D as the distance from sample
to detector (no longer the cell diameter).

6= (Y =5y)/[5:] = (R/[S:)(Y/R) = Sy/ |S-| = (Dy = Sy)/D = (Dy =Y)/D..

An expansion in terms of S, and D, as in the SANS case is what we want
to end up with since the two distribution functions should be approximately
independent. The expansion in terms of Y and Sy also reveals some of the
symmetry of the problem. Here, |Y/R| could easily reach values of 0.3 so we
make the expansion in terms of z = Y/R fourth-order. On the other hand
y = S,/ |S| should be much less than 1 in magnitude and we should be able
to use a second order expansion. The resulting power series for the reduced
pathlength with (R/|S.|) = is

1 1 1 1 1
L(z,y)/(2R) =1 — =22 — —2* + —r%2 — 128y + <22 + -2t — 7‘224) v

2 8 2 2 4
L(z,y)/(2R) = L g uey sy L Lo o a2
Y = 22 8( r)z rz°y + 2z+4( r)z y©.

If |z| < 0.5 this series approximation is good to about 0.0005 of the pathlength.
This is now easily averaged over a normalized height distribution in the He3
cell and the the distribution of neutrons from sample height. Using normal
distributions for both with (z*) = 307

2
TGy

S5z

(L(z,y)) /2R)=1— %af - g (1—4r*)o; + Eaﬁ + Z (1—4r?) 03]

Note that the fourth-order terms drop out when R/|S,| = 1/2. This is actu-
ally pretty close to the MACS conditions. This was the reason for doing the
expansion in terms of Y and S,.
Now the expansion in terms of Sy and D, can be done using
D, 5,

5:ﬁ—5:dy—sy
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Y D.S, |S:|D
E_ffy+|R|6y:dz*sy+sz*dy

At MACS 2max(Dy)/D is approximately the vertical divergence angle which is
on the order of 10 degrees. Also at MACS the He3 cell placement is such that
|S:| /R = 2. The fourth order expansion, keeping only terms even in S, and D,
since their distributions will be even as well, is

1 1 1 1
L(sy,dy)/(2R) = 1—2sz2dy2—2d223y2+<2d22 + =522 — 2dz % sz — id22$z2> dy? sy

2

For the MACS geometry using just the quadratic terms alone gets the path
correct to about 0.0001. Then

1 1
(L(sz,dz)) /(2R) =1 — 552'20’(2@ — §d2’20'52,y

1
o3 3 (sz4a§y + dz4a§y)

MACS is a cold neutron triple-axis, so 7 can be large enough that the o%
correction can become significant.

This result is indendent of X as long as the neutron stays away from the end
windows, and the v dependence can be added easily by noting that for fixed §
it is equivalent to the zero curvature end-window case. There the «v dependence
of the pathlength just multiplies by 1/cos (v — 7o), where 7o is any tilt angle of
the cylinder with respect to the perpendicular to the fiduciary beam direction.
and in the small angle approximation we have

1

=1+
cos (7 — 7o) !

~v = addetector — adHe3Center

If we average the a4 detector angle over the detector acceptance using the
standard deviation angle for the detector collimation, oy,

< 1 >:1+[§+tan2(fy—'yo)]a§
cos (7 — ) cos (v — 7o)

1+ [4 +tan? (y — )] 02

2

1 1
L(sz,d 2R) = ¢ 1— —sz’05, — =dz%02, 3 < 1
< (SZ, 27’7»/( R) { Sz Udy 2 z Usy}{ + COS(’)/—’)/())

) = () ) = v e (3 ) o

71

al



Making the small angle approximation for v — 7
¢

(€y) = % (v —70) + {1 + % (v— %)2] B + (- 70)2} g

1 2 1 5 2| o1 s 1 4

(€Ly) = 5(7*70) + {2+4(’770) ]Ud 5(7*70) T 5%

As usual, if we do the averages for Gaussian distributions just replace dy

and sy by their standard deviations og4, and o,,. Remembering that it is the

pathlength deviation average that goes into the transmission average, and using
just the second order terms from the above expression,

L/ 2,9 2.2 1
e = —= (sz°dy* + dz"sy”) + —— — 1
L= g sy V) s (Y — )
2
€2 = 1 (Sz4dy4 + dz4sy4)+ {1 — 1} — {1 — 1] (szgdy2 + dz28y2)
4 cos (7 = 7o) cos (Y = o)
(€ )z—1 (sz%07, + dz*02)) + ;—1
t 2 dy 7 \eos (v = 0)
<€L>2:1(SZ o4 +dzto? 4+ 2s2%d2?ol )+ ;—1 2— ;_1 (52 ogy +dz%0 )
3 (577w + Ay w70 "\ s Gy —0) cos (7~ 0) g

3 1 : 1
<6L>:Z($Z od +dzto )Jr dz szzodycf +<Los(’y—%)1] ><cos(7—'yo)1> (Szzad +d2%0 sy)

tan® (Y = 70) o o
oy +dz'oy,) + 05 (7 =gy T4 Ot

(524

(1) —(er)? =

DO | =

Currently this geometry is only being used with detectors along the x-
direction. We can replace 1 + %72 by its Gaussian average, or if there are
multiple detectors behind the He3 cell, use it to vary the pathlength for each

detector.
’ ; AL
=tgexp | —Tro——
+ E €Xp +0 o Lo
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7.2.5 alternative derivation for end window geometry

The following alternative derivation produces a slightly different approximated
form. This was the first approximation I used, but it turns out the approx-
imation in a previous section is not only more accurate, it is also easier to
average. The inclusion here is somewhat historical. If instead we start with the
approximation

Lo 123 +y3
=75ty R

the result of substitutions in the small angle approximation is a quadratic equa-
tion for the beam-path intersection length parameter, 3, (which must be neg-
ative for the front face)

Aﬁ?—FBfﬂf - C =0,

where
1 . .
A= R [cos2 () sin® () + sin® (6)]
By = % [X cos (0) sin () + Y sin (0)] — cos (§) cos ()
Lo X2+Y?
“=% " g

For small beam divergence angles, v and 4, BJ% >~ 1 and |AC| < 1, so that the
solution for B¢ can be approximated as

B X Y. 1,, o C
By = C{1+R7+R5+2(7 +§)(1 R)}.

The quadratic equation for 3, the beam exit intersection path length parameter,
has the same coefficients A and C, but there is a sign change in By

By = & [X cos (§) sin (3) + Y sin (5)] + cos (5) cos ()

so that

ﬂb=0{1—£7—25+;(v2+52) (1—2)}.

The total path length is then

2 2
L(v,0,X,Y) = By — By = <Lo—X;;Y) {1+;(72+52) <1_ g)}

Note that if R — oo the expression for the path length in the flat wall case
is recovered. The X2 + Y2 dependence can be handled by assuming that the
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probability distribution for beam divergence angles is independent of X? + Y2
(which should be true for small enough X2 + Y2), and then replacing X? + Y2
by its average over the effective beam cross sectional area in the x = 0 plane.
For example, if the effective beam cross sectional area is a disc of radius r then
<X2 + Y2> = <p2> = %7’2. The final result is that the previous expression for
the transmission as a function of deviation angles and wavelength deviation,
which was

1 1
t4+ = tgexp (—’Tj:M(l + 1’)(1 + 5’72 + 2(52))

can be simply modified by scaling down 74 s

2
TeM = TaM (1 - iﬁ]«é)

where L is the straight through path length of the cell. Also, the % coefficients
of 42 and §2are scaled down
1
} _lp
2

1 1 Lo

2 - 2 {1 2R
Note that for a completely spherical cell (R = Ly/2) and a beam that must pass
through the cell center (<p2> = 0) the dependence on angular deviation becomes
zero, as it should. The scaling of 42 and §%translate directly into scaling of 03
and o} in the results for the averaged transmission. Disregarding angle and
wavelength deviations the basic transmission is modified to

2
- AN
tio = tg exp l (1 <p >) nog— Lo (1 :FPHe)

(r*)

LoR

- =t —Fiar).
TR " B exp (—T+n)

The general form for the averaged transmission for all corrections is

- 1. 1. A7
<ta =T {1 TP o2 4 o) + 3720 | = Catao

Also consider the effect of higher order wavelength contamination of the
neutron beam. In this case the wavelength probability distribution is a sum of
probability distributions centered at each higher order wavelength, A, = A1 /n,
so that

P (/\) = Z an Py, (/\n) s
n=1

where the sum of wavelength fractions is unity

Z a, = 1.
n=1
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All the wavelength fractions are at the same settings for angles and angle dis-
tribution parameters so that the transmission correction factor, Cy, should be
approximately wavelength order independent. The averaged transmission factor
is then

<ti> = éitE Z an €XP (_Tin) )

n=1

where 74, = 741\ /A1 = 72 /n. Thus

R 1 _
ty)=Citp »  ay —Z7p ) = Cyty,
(tr) =Citp ) a ,eXp< nT:I:> City

n=1

where the correction factor is now

Cy=Cy {1 + ZanKin}

n=2

K4, =exp Kl — 1> 7'4 —1
n

For example, take 7,, = 1.8662, Py, = 0.7 and the primary wavelength as
1.77 Angstroms. For the uncorrelated beam correction, using % =0.05, 04 =
0.01 and og = 0.04, C4 = 1.0001 and C_ = 1.01. For the correlated beam
correction with cot(6,,) = 1 and the same o, and o values, C; = 0.9998 and
C_ = 1.0017. The second order wavelength contamination factors (which still
have to be multiplied by a,,) are K s = 0.323 and K_» = 3.885. This means
that the corrections to the transmission factors due to second order wavelength
contamination can be significant (depending on the fraction as).

and

8 monitoring He-3 polarization and neutron po-
larization

If the transmission, tgg, through the unpolarized He-3 cell is measured (Py. =
0), then measurements of to(Pp.) can be used to monitor the He-3 polarization,
Prye, of the He-3 cell, assuming 7 has been determined by a transmission mea-
surement of the unpolarized cell. This is most conveniently done when there
are no higher order wavelength contaminations, so that

7(Phe) = fo (t]:;k) = cosh(7Py.) + Asinh(7 Pye). (26)

Neglecting the correction term in A, the coshfunction can be inverted to give

%PHe%mozln(r—i—\/rz—l).
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If the correction coefficient is known then
’7~'PH€ = o — A.

The outgoing neutron polarization, —1 < P, < 1, after an incident unpolar-
ized beam passes through the cell is
ny —n_ A

P, = —— =tanh (%MPHe) +

—_—. (27)
ny +n_ cosh”(7as Prre)

As in the example above, using a 7 cm gas-thickness He-3 cell at 2 bars
has 7y = 1.8662. With Py. = 0.7 He-3 polarization and tg = 0.86, the
cell transmits an uncorrected ty = 0.2636 of an incident unpolarized beam at
1.77 Angstroms and produces an outgoing beam that is P, = 0.8633 polarized
(n—/ny = 0.0733). Making the corrections as in the example above, for the
uncorrelated beam case, tg = 0.2638, and for the correlated beam case, ty =
0.2637. The corrections to the polarization for these two cases yield P, = 0.8621
and P, = 0.8631.

The best way to keep track of the polarization of the He-3 cells is to use beam
monitors as shown in the diagram at the start of this document, and measure the
transmissions as a function of time. If this is not possible, the remaining handle
on the polarized beam performance is the flipping ratio, preferably measured
with a non-spin-flip cross section. Recall that this flipping ratio is

t+ + ett

R =
nsf t+ — etFt,

with e;p = €;(2epp 4 —1). Now it is assumed that the correction factors for the
He-3 transmission factors are unity. When the transport and flipping efficiencies
are unity this simplifies to

cosh(7ar1 Pre1 + TaraPre2)
cosh(Tar1 Pre1 — T2 Prre2)

RO,nsf =

and in terms of this ideal flipping ratio

1+e
Rnsg = Ronsf Tren 6t; (1+€/Ronsf — €t Ronst)

where the transport loss is ¢, = (1 — e¢)/(1 + e;) and transport-flipper loss
is e = (1 —ewr)/(1 + eyr). If the cell parameters 7311 and Tps0are known,
as well as the cell He-3 polarizations (through transmission measurements and
known time dependences) and beam efficiencies, then the calculated R,scan
be compared to measured values.
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