

FORENSICS @ NIST

#NISTForensics

Footwear Impression Research at NIST

Martin Herman

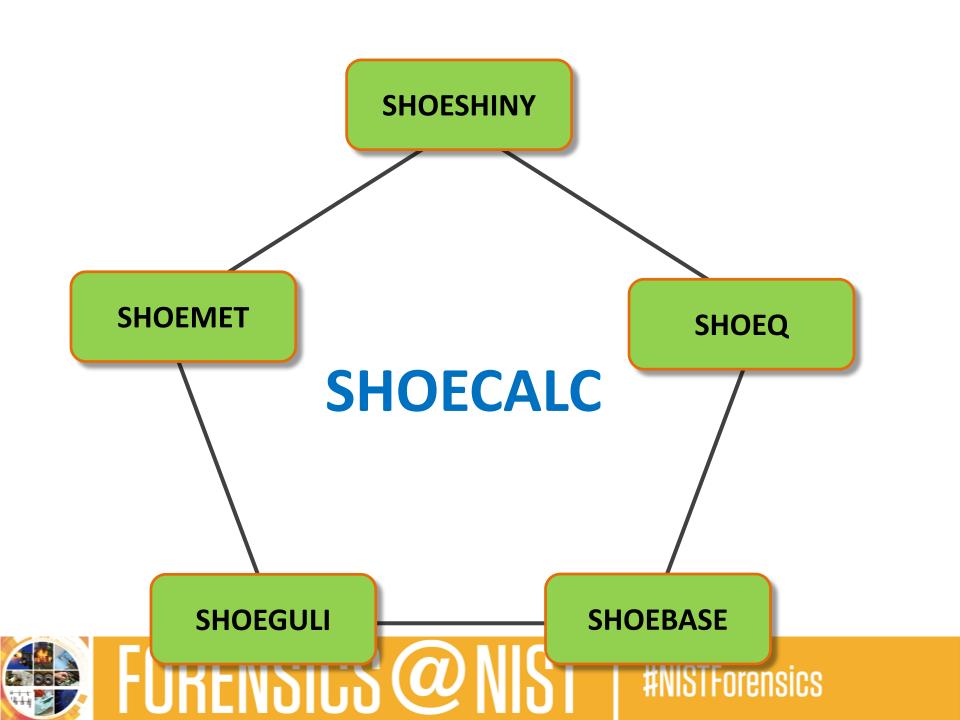
Information Technology Laboratory
NIST

November 7, 2018

MOTIVATION

- 2009 NAS; 2016 PCAST:
 - Footwear identifications are largely subjective
 - Questions about reliability
 - Questions about scientific validity
 - Need for quantitative assessments of footwear evidence
 - Need for increased empirically-tested objectivity of footwear analysis
- Need to improve quantitative analysis
- Need for algorithmic approaches for the forensic footwear community

GOALS


- Develop quantitative, objective methods for footwear impression comparisons
 - High degree of repeatability & reproducibility
 - Easier to measure accuracy with objective methods
- High performance good discrimination power
- Provide prototype software tools to be evaluated for the following purposes
 - Use by practitioners in casework
 - Use by researchers to develop algorithms

FORENSICS@NIST

SHOECALC

- A prototype system for footwear analysis that will allow
 - Researchers/developers to have a workbench for development of quantitative methods
 - Examiners to use these quantitative methods during casework
 - Development of this system is a long-term goal

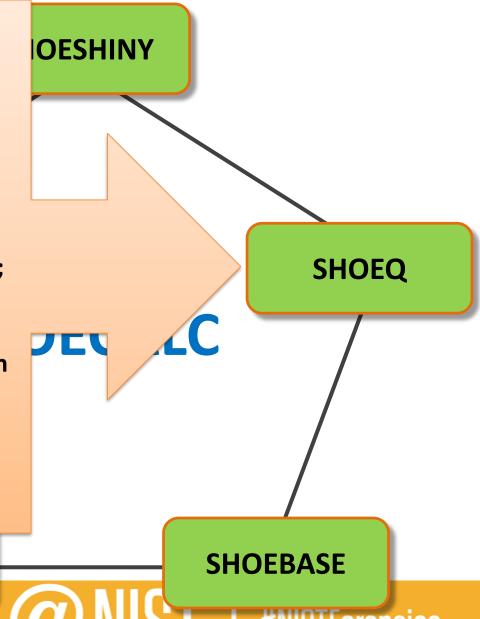
Database consisting of Real & staged crime scene impressions and metadata SHO Catalogue of outsole designs and metadata Test impressions from shoes of arrestees or research volunteers **Catalogue of acquired characteristics** (RACs) along with shape, size, location, brand, outsole design, etc. **SHOEMET** Interfaces and formats for submitting and maintaining SHC footwear data **SHOEGULI SHOEBASE**

Synthetic/augmented footwear **impressions** For research and testing, generates synthetic footwear impressions with user specified characteristics and with ground truth known Characteristics include outsole designs, wear amounts, sizes, and distributions of RACs; different matrix/substrate combinations **SHOEQ** Synthetic test & crime scene impressions ALC **Augmented data for research/tests SHOEGULI SHOEBASE**

SHOESHIN than others. **SHOEMET** reported. **SHOEGULI**

Comparison Measures

A workbench for experimentation with different comparison scores. Some scores lead to better discrimination between mated and non-mated pairs of images


User inputs a function for computing a comparison score and applies it to any given pair of images; numerical score is

Also uses SHOEGULI to conduct experiments and produce ROC charts for comparing with a catalog of known, high performance comparison scores.

SHOEBASE

Quality Measures

- Measuring different characteristics that describe the degradation, distortion, completeness, number of features in the impression
- Input is any footwear image; output is a list of quality metrics
- May be used as a workbench for experimentation with different image quality metrics

SHOEGULI

#NISTFORENSICS

SHOESHINY

SHOEMET

SHOEQ

- GUI for user interaction with the other modules of SHOECALC
- Allows user to upload images for calculation of comparison and quality scores
- Examine various choices of comparison metrics, scores and their ROC charts, and select choices for reporting the information in the evidence
- Exploratory analysis of data, charts, etc.

Today's talks

- 1. Towards an end—to—end system for quantitative footwear impression comparisons Martin Herman
 - End-to-end prototype system for use by examiners during casework
- 2. Image Alignment and Feature Extraction for Shoeprint Matching Gautham Venkatasubramanian
 - As part of end-to-end system, alignment of questioned and known impressions, along with feature extraction to be used for image matching
- 3. Deep Learning based Feature Extractors for Shoeprint Matching Sarala Padi
 - As part of end-to-end system, features learned in a DNN model are used for image matching
- 4. Matching Randomly Acquired Characteristics (RACs) in Footwear Impressions Weiqing Chen
 - As part of the end-to-end system, RAC features are extracted and matched

FORENSICS @ NIST

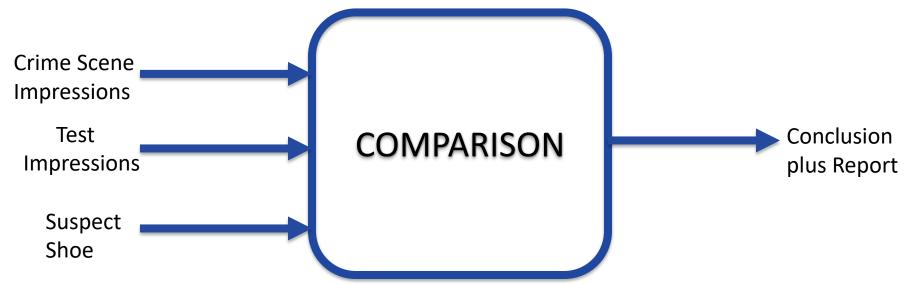
#NISTForensics

Towards an End-to-End System for Quantitative Footwear Impression Comparisons

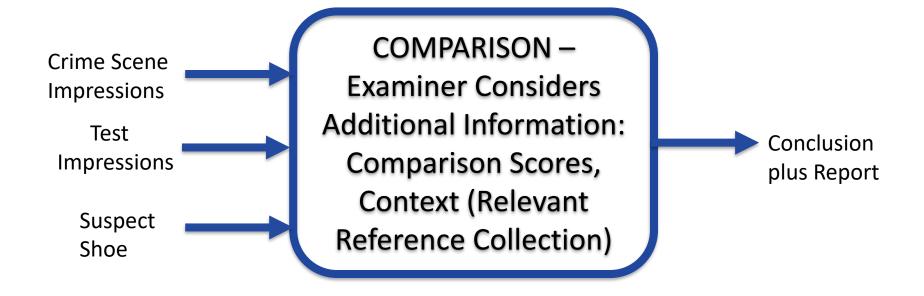
Presented by:

Martin Herman

Other Core Team Members:


Hari Iyer, Steve Lund, Gunay Dogan, Yooyoung Lee

Information Technology Laboratory, NIST November 7, 2018


Use of SHOECALC: Quantitative Footwear Impression Comparisons

- For use by examiners in evidence evaluation
- FRStat for fingerprints (U.S. Defense Forensic Science Center) – currently in use

Current Examiner Comparison Process

Proposed Examiner Comparison Process

Elements of the Comparison Score

- Features considered in total score
 - Shoe size
 - Outsole design features
 - Wear features
 - RACs
- Transparency for examiner
 - Examiner should be able to understand how the score is related to features above
 - Our goal is for the examiner to be able to relate the score to SWGTREAD "Range of Conclusions Standard"

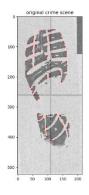
Workflow for End-to-End Scoring System

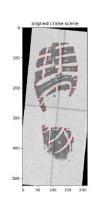
Test

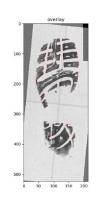
Step1: Image

Alignment

Step2:

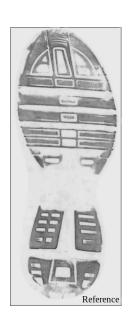

Feature Comparison Step3:

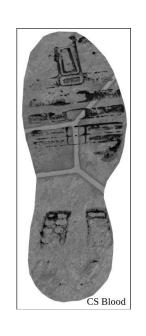

RAC Comparison Step4:


Final Score Computation

Questioned

Step1: Image Alignment




- Determine best alignment of the two impression images (Questioned and Test)
- If images do not align well, then (optional) SCORE <- 0 & STOP

Described in talk later in session.

Step 2: Feature Comparison

- Compares features based mainly on combination of design, wear and size. RAC features play only very small part.
- Score considers combined features inside a Region of Interest

Described in talk later in session.

Step 3: RAC Comparison

Test

Questioned

- RACs marked on test impression by examiner, then transformed to questioned impression after alignment.
- Then corresponding patches are compared.
- No marking of RACs in questioned impression.

Described in talk later in session.

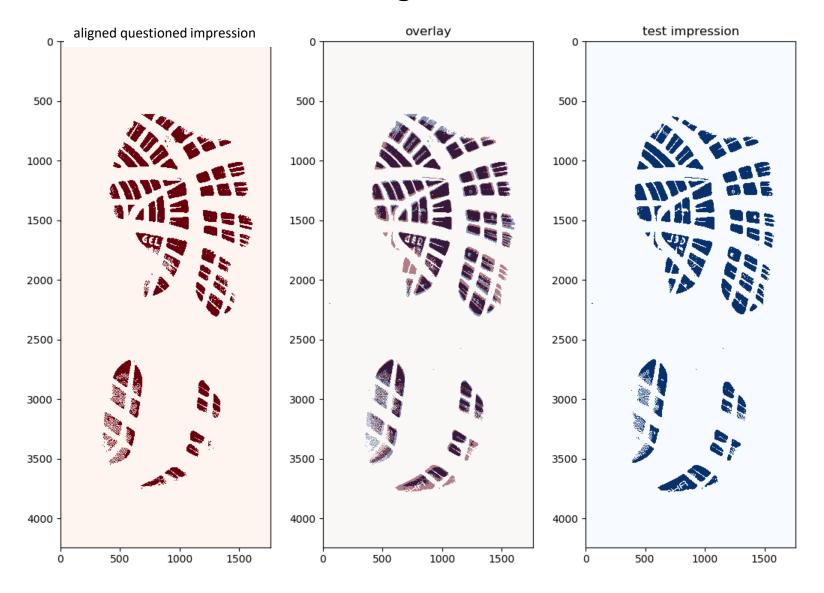
Step4: Computing Final Score

- Final score is combination of feature comparison & RAC comparison scores
 - Goal is to relate the individual feature and RAC scores, plus final score, to SWGTREAD conclusions scale
- The final score is computed using reference dataset of ground-truth-known mates and nonmates.
- Composite RAC score = combined Score-based Likelihood Ratio (SLR) of individual RAC SLRs
- Final score = SLR obtained from bivariate density of composite RAC score and feature score

End-to-End Score Computation: Examples

Example 1

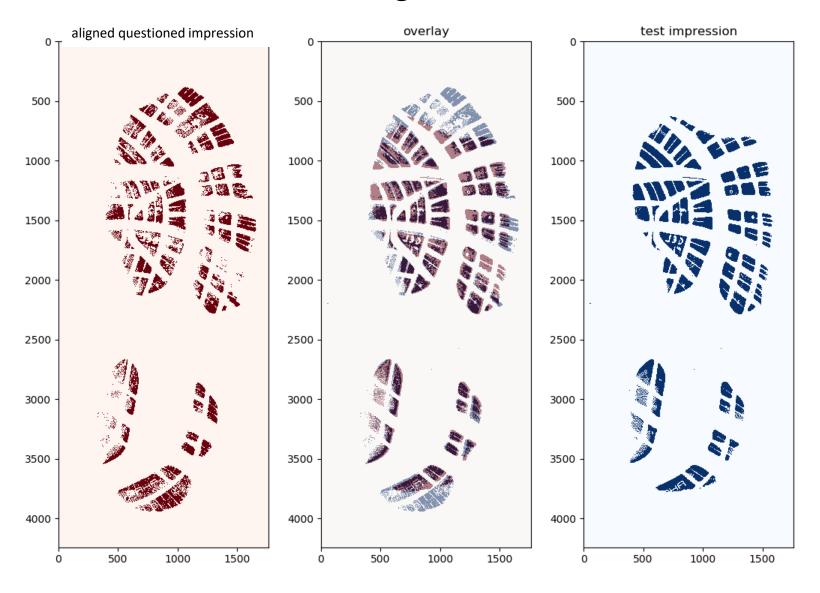
Close Non-Match (left shoe flipped) Everspry EverOS Scanner


Questioned 1

Test1

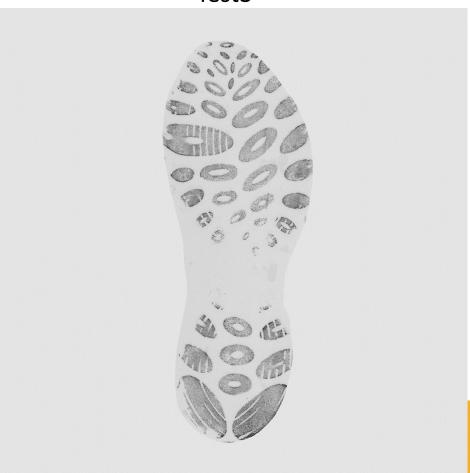
Alignment

Example 2

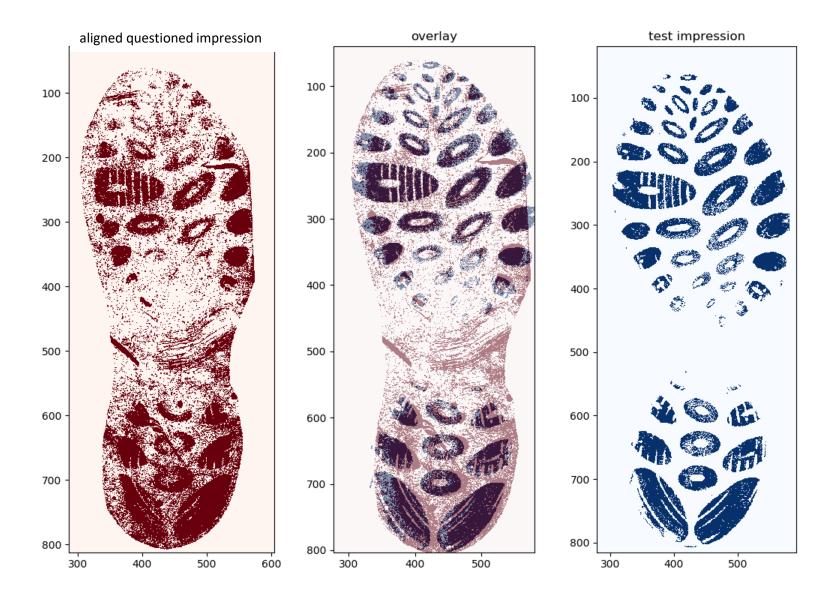

Known Match

Questioned 2

Alignment


Example 3

Known Match
Dust Impression (Jacqueline Speir, WVU)


Questioned 3

Test3

Alignment

Comparison Scores

Feature Comparison Scores

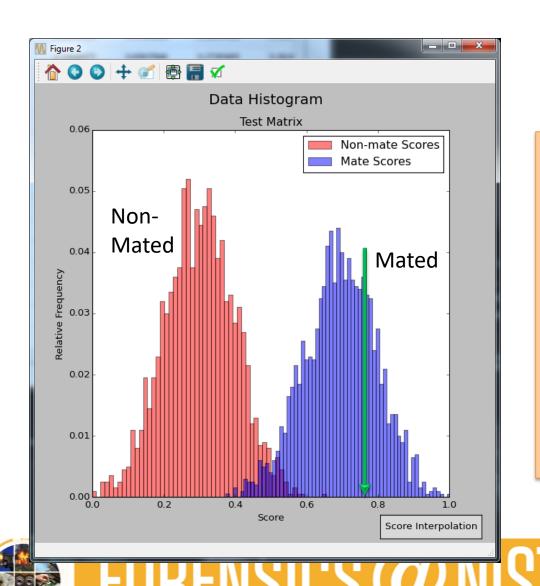
Q1 vs	Q2 vs	Q3 vs
Test1	Test1	Test3
0.8771	0.8009	0.8760

Close non-match score is greater than match score. But scores are very close.

RAC Comparison Scores

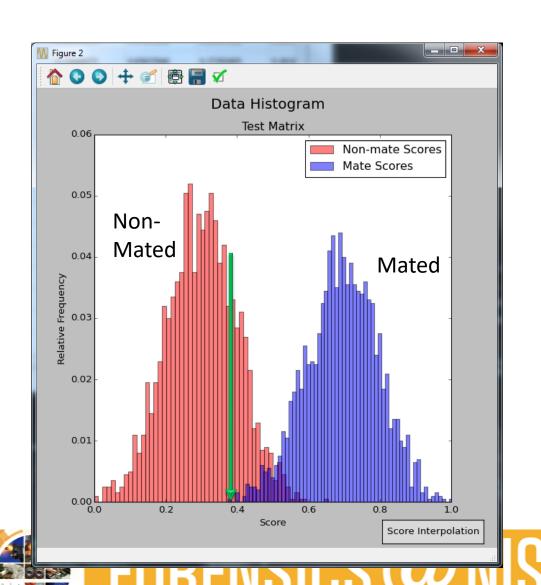
	Q1 v	Q2 v	
Rac No.		Test1	Q3 v
	Test1	163(1	Test3
1	0.0141	0.6002	0.2173
2	0.2042	0.5177	0.4651
3	0.0467	0.1392	0.3483
4	0.2992	0.5813	
5	0.5409	0.8777	
6	0.1849	0.2387	
7	0.5997	0.6835	
8	0.0938	0.7494	
9	0.0272	0.7950	
10	0.3495	0.7741	
11	0.3681	0.7558	
12	0.1567	0.6828	
13	0.4892	0.6302	

Final Comparison Scores

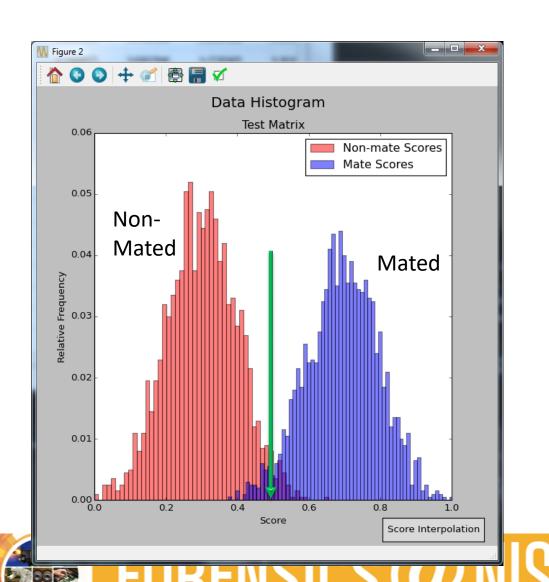

Q1 vs	Q2 vs	Q3 vs
Test1	Test1	Test3
0.3831	0.6540	

Final scores for illustration only. Chosen without reference score distributions.

- How do we determine what significance to give to any particular score?
- Answer: evaluate the score in the context of groundtruth-known mated and non-mated pairs that are representative of impressions obtained under conditions similar to the current crime scene.
 - E.g., same quality and quantity of information
- Provide context for
 - 1. Feature comparison score size, design, wear
 - RAC score
 - Final score



FORENSICS@NIST



- A score that lies mainly within mated pair scores indicates strong support for a match proposition.

#NISTForensics

- A score that lies mainly within mated pair scores indicates strong support for a match proposition.
- A score that lies mainly within nonmated pair scores indicates strong support for a non-match proposition.

- A score that lies mainly within mated pair scores indicates strong support for a match proposition.
- A score that lies mainly within nonmated pair scores indicates strong support for a non-match proposition.
- A score that occurs nearly equally often among mated and non-mated pairs does not provide support for either proposition.

#NISTForensics

Thank You

martin.herman@nist.gov

