CMM Automation from MBD:

A case study of optimized Model Based Inspection

Mark Nielsen TechAzul 310-729-6275 mark@techazul.com Bryan Bergsma Raytheon MS 520-794-0021 bergsma@raytheon.com

Daniel Campbell Capvidia 415-738-7366 dc@capvidia.com

Model Based Definition, Manufacturing & Inspection

Each Process has been evolving

Good News / Bad News about CMMs

- The good news about CMMs:
- They are extremely versatile 💽

- The bad news about CMMs:
- They are extremely versatile .
- Many different interdependent measurands
- Almost unlimited measurement conditions, including:
 - the CMM being used,
 - workpiece location/orientation,
 - probe/stylus type and configuration,
 - environment,
 - sampling strategy,

Overview: Model-Based CMM Measurement

Current CMM processes are highly manual and expensive

- Highly manual process, risking transcription and interpretation errors
- Resulting quality of CMM program depends on skill, experience, and practices of CMM programmer

Automation and optimization are possible with MBE

- Process can be automated, massively decreasing time spent to create the program
- Resulting program can be optimized for the job based on measurement resource availability and measurement uncertainty requirements

Technology is ready and already showing ROI

- Off-the-shelf software applications can carry out this workflow
- Workflow demonstration: how does it work?
- Workflow automation results: time saved

CMM Programming: Current State

Issues with current Computer Aided Inspection Process

- Manual transcription of GD&T / PMI into inspection software can lead to conflicts and inaccuracies
- High risk of CAD translation or interpretation errors with GD&T
- Requires a skilled CMM technician with expert knowledge of GD&T, CAD and measurement
- Personnel and machine dependent
- Labor intensive can take weeks to program a single part

Enterprise measurement data is siloed:

- Multiple, proprietary data formats are used
- Not linked to "single source of truth" the design model and PLM

Overall proposed workflow

Video of workflow

Simplified pilot workflow

Raytheon PTC Creo

 MBDVidia for Creo Plugin

- Starting point: MBD model in Creo
- Export to Quality Information Framework (QIF) standard using "MBDVidia for Creo" plugin (Capvidia)

Less than 1 minute

MBDVidia

- 1. Load the QIF MBD model
- Check and heal the PMI – make sure that it is machine readable

5 minutes (but can be automated)

4. Clean up and verify

Less than 3 hours – pilot processed can be drastically streamlined from this baseline effort

Semantic PMI – Machine Readable PMI

Why does **machine-readable PMI** matter?

The human eye can understand complex annotations in the context of 3D. Software needs more explicit information:

- What surface needs to be measured?
- If this is a pattern, which features?
- What type of tolerance?
- Tolerance value?
- Datums?
- Material condition modifiers?
- Other GD&T flags?
- Etc., etc.

Value of MBD Measurement

Reduce inspection costs

Inspection planning is a laborious task involving skilled technicians – automation decreases its cost significantly

Faster time-toinspection

Faster product delivery. Inspection is typically a bottleneck in production – this approach can streamline manufacturing processes

Increase inspection quality

- Utilize measurement
 uncertainty simulation
- Implement organizational guidelines — rely on corporate process, not personnel

Bring measurement data into the digital thread

Measurement data has immense value – don't use it for PASS/FAIL inspection and then discard. MBD traceable data is ready for analytics

Lower risk for transcription & interpretation errors

Software automation lowers the risk of transcription or interpretation errors of data, and creates opportunities for validation of data

Simple ROI Analysis

Current Workflow					
Total hours, existing manual workflow	16 Hours				
New MBD Workflow					
MBDVidia	5 Minutes				
FormatWorks import of Creo file	5 Minutes				
Checkmate Setup Parameters	5 Minutes				
Checkmate Auto Programming					
Accessibility	15 Minutes				
Sorting for dependencies	1 Minutes				
Auto Coordinate Systems	1 Minutes				
Probe moves/rotations	1 Minutes				
Collision detection	20 Minutes				
Manual editing (estimate)	120 Minutes	_			
Post process program	5 Minutes	R			
Total, New MBD Workflow	178 Minutes				
Total, New MBD Workflow	3.0 Hours				

81% Reduction in Time

Today's traditional, manual workflow for this part is estimated at about 16 hours.

The MBD pilot workflow took less than 3 hours.

ROI Analysis

Time reduction			
MBD Workflow time vs. Manual Workflow Time	19%		
MBD Workflow decreases total time by:	81%		

ROI Analysis

Engineer fully burdened cost per hour	\$	150
Hours saved on MBD Workflow	•	13 (
		13.0
Labor cost saved per part program	\$	1,955
Number of parts programmed per year		52
Cost savings per year, labor	\$1	01,660

Comments, thoughts?

• fin