4th Atlas/NIST Workshop on Photovoltaic Materials Durability

Fragmentation test for crack propensity evaluation of PV backsheets

Jae Hyun Kim, Yadong Lyu, Andrew Fairbrother, Chen-An Wang, Xiaohong Gu

> NIST Gaithersburg, Maryland

Backsheet cracking in the field modules

*Microcracks in polyamide backsheet (Western China)

 $30 \ \mu m$

**Hairline cracks in polyamide backsheet (China, humid subtropical)

 Various sizes in backsheets

engineering

***Cracks in polyester based backsheet (Eastern Spain)

National Institute of Standards and Tech

Standards and Technology U.S. Department of Commerce *Felder et al. SPIE (2014), **Fairbrother et al. SPIE (2017), ***Gambogi et al. EUPVSC (2013)

Backsheet cracking from Indoor and outdoor tests

engineering

C	Dutdoor
Field modules	 Yellowing Cracking of Outer layer Delamination of Outer layer

- Backsheet cracking in field modules
 - ✓ Loss of physical protection
 - ✓ Electrical insulation

National Institute of Standards and Technology U.S. Department of Commerce

UV exposure of backsheet	Yellowing
Damp Heat of backsheet	Yellowing
Damp Heat of modules	Cracking
UV/Thermal cycling of modules	YellowingCracking

• Backsheet cracking within the modules in hot environment

Gambogi et al. IEEE J. Photovoltaics, 935 (2014)

*Strain level for cell gap width during thermo-Mechanical Test of PV Modules

engineering

*U. Eitner et al. (2011) Book chapter in Shell-like structures

Key research objectives

- Develop test methodology to understand cracking behaviors for PV backsheets, and extend to address backsheet failure in field PV modules
 - ✓ First step: Measuring crack formation in accelerated test conditions (time, temperature, mechanical elongation)

Accelerated tests (UV, Humidity, Temp.) With mechanical stress

With mechanical stress **simultaneously**

Loading Jig

UV exposure under mechanical stress

engineering

UV exposed PET film at 23 °C (Confocal microscopy)

tension

With tension $(\approx 2\% \text{ strain})$

Experimental conditions

Material: Polyamide backsheet

Aging conditions: Xenon arc with 65 °C/20%RH for 250 h, 500 h, 1000 h, 2000 h, 4000 h

Mechanical measurements:

- Fragmentation test for backsheet
- AFM (DMT modulus)

Spectroscopic measurements:

- FT-IR (oxidation index)
- Fluorescence (visual inspection)

National Institute of

Standards and Technology U.S. Department of Commerce

Fragmentation test results for UV exposed Polyamide backsheets

 Lower number of cracks for the 2000 h sample at the saturation strain compared to 500 h and 1000 h samples

engineering

 Lower critical strain (the first crack formation) for the 2000 h sample compared to the 500 h and 1000 h samples

Depth profiles in the cross-section of Polyamide backsheets

Fluorescence images

engineering

Confocal microscopic images

 Spectral changes of fluorescence on the exposed surfaces become deeper with times (i.e. deeper crack)

Depth profiles in the cross-section of Polyamide backsheets (Oxidation & Stiffness)

U.S. Department of Commerce

 Higher oxidation on the exposed sides of the cross-sections (suggesting chain scissions) engineering

For the UV exposed side of the cross-sections,

- Higher oxidation
- Higher fluorescence intensity
- Higher modulus

Similar oxygen diffusion rates between 2000 h and 4000 h

Using fragmentation data for polyamide backsheets (Strength and Crack density for degraded layer

Confocal microscope images

Film strength (σ_{str}) in film/substrate systems

$$\sigma_{str} = \frac{E_f}{(1 - v_f)} \left[\frac{(1 - v_f v_s) \dot{\varepsilon}_c}{(1 + v_f)} \right]$$

 E_f : Film modulus, v_f : Poisson ratio of film v_f :Poisson ratio of substrate ε_c : Critical strain (strain for the first crack)

National Institute of

Standards and Technology U.S. Department of Commerce

Crack density at a strain in film/substrate systems

 $1 e^{2\alpha l} - e^{-2\alpha l} + 4\alpha l$

$$\frac{\varepsilon_a}{\varepsilon_c} = \sqrt{\frac{3}{2R}}$$
$$\Rightarrow \varepsilon_c = 4 \tanh\left(\frac{\alpha l}{\alpha}\right) - \frac{e^{\alpha l} - e^{-\alpha l} + 2\alpha l}{1 + 2\alpha l} - 2 \tanh(\alpha l) + \frac{1}{2\alpha l} + \frac$$

Where,
$$\alpha l = \left[\frac{2}{3\beta(1+v_s)}\left(\frac{1}{\beta} + \frac{(1-v_f^2)E_s}{(1-v_fv_s)E_f}\right)\right]^{1/2} \times \frac{1}{t}$$
 and $\beta = \frac{s}{t}$

t: thickness of the exposed layer s: effective substrate thickness ε_c : Critical strain (strain for the first crack) \overline{l} : average space between the cracks

[Hsueh and Yanaka, J. Mater. Sci. pp1809 (2003)]

- Lower strengths than the bulk backsheet strengths
- Strength reductions on the exposed surface compared to the bulk backsheet strengths

Standards and Technology U.S. Department of Commerce No significant change for the bulk backsheet strengths

Applications of fragmentation data for polyamide backsheets (Crack density predictions for degraded layer)

- Measured crack densities ≈
 Predicted crack densities
- Lower crack density for the 2000 h sample (possibly due to deeper crack formations through the thickness)

Summary

- Critical strains of the polyamide backsheets showing the first cracks decreased with increasing the exposure times
- Strengths and crack densities of the exposed surface layers decreased with increasing the exposure times
- Highest oxidation indexes, fluorescence intensities, and modulus on the exposed sides were observed, and gradually decreased with the thickness of the depth

