Tattoo Recognition Technology - Evaluation (Tatt-E)

—>

Tattoo Recognition Technology

Tattoo Recognition Technology - Evaluation (Tatt-E)

Concept, Evaluation Plan, and API
Version 1.0

Mei Ngan and Patrick Grother

NIST

National Institute of
Standards and Technology
U.S. Department of Commerce

December 11, 2017

NIST Concept and Evaluation Plan Page 1 of 24

Tattoo Recognition Technology - Evaluation (Tatt-E)

Status of this Document

This document is intended to be the final specification. Changes are ffiarkediinigreen. Comments
and questions should be submitted to tatt-e@nist.qov.

Timeline of the Tatt-E Activity

API| Development | September 26, 2016 Draft evaluation plan available for public comments
December 1, 2016 Final evaluation plan published

Phase 1 December 1, 2016 Participation starts: Algorithms may be sent to NIST
February March 1, 2017 Last day for submission of algorithms to Phase 1
Mareh April 14, 2017 Interim results released to Phase 1 participants

Phase 2 MayJune, 2017 Last day for submission of algorithms to Phase 2
JunRe July14, 2017 Interim results released to Phase 2 participants

Phase 3 August September 15, 2017 | Last day for submission of algorithms to Phase 3
Q4 2017 Release of final public report

Acknowledgements

The organizers would like to thank the sponsor of this activity, the Federal Bureau of Investigation (FBI)
Biometric Center of Excellence (BCOE) for initiating and progressing this work.

Contact Information

Email: tatt-e@nist.gov
Tatt-E Website:

https://www.nist.gov/programs-projects/tattoo-recognition-technology-evaluation-tatt-e

NIST

Concept and Evaluation Plan Page 2 of 24

https://www.nist.gov/programs-projects/tattoo-recognition-technology-evaluation-tatt-e
mailto:tatt-e@nist.gov

Tattoo Recognition Technology - Evaluation (Tatt-E)

Table of Contents

PR I 1 USSP 4
PR B = 2= Tt (e | {010 o T PSP PP PPP SRR 4
1.2 The Tattoo Recognition Technology Program ... 4
LR TS ToTo o = S PP PP PPPUPP R PPPPP 5
L U T 1= o7 T PP PPPPPPP PSPPI 5
1.5 TraiNiNg Data ...ttt e e e e e e 5
1.6 OffliNe TeS NG oottt e e e e e e s et e e e et e e e e e e s 5
1.7 PRas@d TeSHING. ...ttt e e e e e e e e e et e e et e e e e e e s 5
R T (01 (Y o I =Y 0T i TSRO P PPPPPPRSPPPP 6
(RS T 10T 1 =T oo T £ T PO PP PPPUPP PP 6
1.10 APPHCAtION SCENAIMIOS.ciiiiiiiiiiii ettt e e e e e e s e et e e et e e e e e e s eeeee s 6
111 RUIES fOr PArtiCIPAIONcoiiiiiie e e e e e 7
1.12 Number and schedule of SUDMISSIONS..........ooiiiiiiiiii e 7
1,13 COre @CCUIACY MELIICS ...eiiiiiieiiiiiee ettt ettt e e e e e e e e e s bbbt e e et e e e e e e s e eeree s 7
1.14 Reporting temMPIate SIZE......ccoi i 7
1.15 Reporting computational effiCiENCY...........cooiriiiiii e 8
1.16 Exploring the accuracy-speed trade-SPaceuuuiiiiiiiiiiiiiii e 8
1.17 Hardware SPeCIfiCatiONooiiiiiiiee et 8
1.18 Operating system, compilation, and linking environmentcooeiiii 8
119 RUNLME DENAVIOL ...t e e r et e e e e e e e s 10
1.20 Single-thread ReqUIFEMENT..........ou e 10
L2 B 4T 110 1 S O PPP P PP PPOPP 10
1.22 Ground truth INTEGIITYoooiii e e e e e e e e e 11

2. Data structures supporting the AP ... 12
P2 B D= = IR (U o] (1] (T P PPPPPTPPPTI 12
2.2 File structures for enrolled template COllECHONooiiiiiiiiiiii e 15

3. AP SPECITICALION ...t e e e 16
Tt B =10 L= T T o= o S PP PO 16
K O 1 =T 1= PSP PP OPTT PP 16
3.3 Detection and Localization (Class D)ocoiiiiiiiiieeiieeee e 16
3.4 1dentification (Class I)cooi e a e 18

Annex A Submissions of Implementations t0 Tatt-E ... 23

A.1 Submission of implementations 10 NIST e 23
A2 HOW 10 PArtICIPALE ...t e s 23
A.3 Implementation Validation ... 24

List of Tables

Table 1 — Subtests supported under the Tatt-E actiVity ... 6

Table 2 — Tatt-E classes of partiCipation ... 7

Table 3 — Cumulative total number of algorithmsoeiiii e 7

Table 4 — Implementation library filename CONVENTIONcooiiiiiiiii e 9

Table 5 — Processing time limits (1 core) in seconds, per 640 X 480 iMagecccuvvviiiiiiieiiiiiiieeeeee e 11

Table 6 — Enrollment dataset template manifestooo i 15

Table 7 — Procedural overview of the detection and localization test............ccccoiiii e, 16

Table 8 — Procedural overview of the identification test ..., 18

NIST Concept and Evaluation Plan Page 3 of 24

Tattoo Recognition Technology - Evaluation (Tatt-E)

1. Tatt-E

1.1 Background

Tattoos have been used for many years to assist law enforcement in the identification of criminals and
victims and for investigative research purposes. Historically, law enforcement agencies have followed the
ANSI/NIST-ITL 1-2011" standard to collect and assign keyword labels to tattoos. This keyword labeling
approach comes with drawbacks, which include the limited number of ANSI/NIST standard class labels to
able describe the increasing variety of new tattoo designs, the need for multiple keywords to sufficiently
describe some tattoos, and subjectivity in human annotation as the same tattoo can be labeled differently by
examiners. As such, the shortcomings of keyword-based tattoo image retrieval have driven the need for
automated image-based tattoo recognition capabilities.

1.2 The Tattoo Recognition Technology Program

The Tattoo Recognition Technology Program was initiated by NIST to support an operational need for
image-based tattoo recognition to support law enforcement applications. The program provides quantitative
support for tattoo recognition development and best practice guidelines. Program activities to date are
summarized in Figure 1.

Tattoo Recognition Technology Program

Tatt-C Tatt-BP Tatt-E
“Open-book” challenge with Best practice guidelines and Large-scale sequestered
provided dataset to engage research training material for the collection evaluation of tattoo recognition

community to advance image-based of tattoo images algorithms

tattoo matching technology

2014 - 2015 2015-2016 2016 - 2017

“Open-book” test with

. Best Practice Documents Sequestered Test
provided dataset
Tatt-Q Tatt-A Tatt-L Tatt-S
Automated Tattoo ageing Track public literature of Proposed revisions/additions
image quality assessment tattoo recognition related to standards
publications (e.g. ANSI/NIST)
Future - TBD

Figure 1 — Activities under the Tattoo Recognition Technology Program

e Tatt-C was an initial research challenge that provided operational data and use cases to the
research community to advance research and development into automated image-based tattoo
technologies and to assess the state-of-the-art. NIST hosted a culminating industry workshop and
published a public report on the outcomes and recommendations from the Tatt-C activity. Please
visit https://www.nist.gov/programs-projects/tattoo-recognition-technology-challenge-tatt-c for more
information.

e Tatt-BP provides best practice guidance material for the proper collection of tattoo images to support
image-based tattoo recognition. Recognition failure in Tatt-C was often related to the consistency
and quality of image capture, and Tatt-BP aimed to provide guidelines on improving the quality of
tattoo images collected operationally. Please visit https://www.nist.gov/itl/iad/image-group/tattoo-
recognition-technology-best-practices for more information.

" The latest version of the ANSI/NIST-ITL 1-2011 standard is available at https://www.nist.gov/programs-
projects/ansinist-itl-standard.

NIST Concept and Evaluation Plan Page 4 of 24

https://www.nist.gov/programs
https://www.nist.gov/itl/iad/image-group/tattoo
https://www.nist.gov/programs-projects/tattoo-recognition-technology-challenge-tatt-c
http:examiners.As

Tattoo Recognition Technology - Evaluation (Tatt-E)

e Tatt-E is a sequestered evaluation intended to assess tattoo recognition algorithm accuracy and run-
time performance over a large-scale of operational data. The participation details of Tatt-E are
established in this document, also available for download at https://www.nist.gov/programs-
projects/tattoo-recognition-technology-evaluation-tatt-e.

1.3 Scope

The Tattoo Recognition Technology — Evaluation (Tatt-E) is being conducted to assess and measure the
capability of systems to perform automated image-based tattoo recognition. Both comparative and absolute
accuracy measures are of interest, given the goals to determine which algorithms are most effective and
viable for the following primary operational use-cases:

e Tattoo/Region of Interest Identification — matching different instances of the same tattoo image from
the same subject over time. This includes matching with entire and/or partial regions of a tattoo.

e Tattoo detection/localization — determining whether an image contains a tattoo and if so,
segmentation of the tattoo.

e Sketches — matching sketches to tattoo images.

Out of scope: Areas that are out of scope for this evaluation and will not be studied include: matching of
tattoos based on thematically similar content as the definition of “similarity” is ill-defined; tattoo recognition in
video.

This document establishes a concept of operations and an application programming interface (API) for
evaluation of tattoo recognition implementations submitted to NIST’s Tattoo Recognition Technology —
Evaluation. See https://www.nist.gov/programs-projects/tattoo-recognition-technology-evaluation-tatt-e for all
Tatt-E documentation.

1.4 Audience

Any person or organizations with capabilities in any of the following areas are invited to participation in the
Tatt-E test.

e Tattoo matching implementations.
e Tattoo detection and localization algorithms.
e Algorithms with an ability to match sketches to tattoos.

Participants will need to implement the API defined in this document. Participation is open worldwide. There
is no charge for participation. NIST encourages submission of experimental prototypes as well as those that
could be readily made operational.

1.5 Training Data

None of the test data can be provided to participants. Instead prospective participants should leverage public
domain and proprietary datasets as available.

1.6 Offline Testing

While Tatt-E is intended as much as possible to mimic operational reality, this remains an offline test
executed on databases of images. The intent is to assess the core algorithmic capability of tattoo detection,
localization, and recognition algorithms. Offline testing is attractive because it allows uniform, fair,
repeatable, and efficient evaluation of the underlying technologies. Testing of implementations under a fixed
API allows for a detailed set of performance related parameters to be measured.

1.7 Phased Testing

To support development, Tatt-E will run in multiple phases. The final phase will result in the release of public
reports. Providers should not submit revised algorithms to NIST until NIST provides results for the prior
phase.

NIST Concept and Evaluation Plan Page 5 of 24

https://www.nist.gov/programs-projects/tattoo-recognition-technology-evaluation-tatt-e
https://www.nist.gov/programs

Tattoo Recognition Technology - Evaluation (Tatt-E)

For the schedule and number of algorithms of each class that may be submitted for each class, see section
1.12.

1.8 Interim reports

The performance of each implementation in phase 1 and 2 will be reported in a "report card". This will be
provided to the participant. It is intended to facilitate research and development, not for marketing. Report
cards will: be machine generated (i.e. scripted); be provided to participants with coded identification of their
implementation; include timing, accuracy, and other performance results; include results from other
implementations, but will not identify the other providers; be expanded and modified as revised
implementations are tested and as analyses are implemented; be produced independently of the status of
other providers’ implementations; be regenerated on-the-fly, usually whenever any implementation
completes testing, or when new analysis is added.

1.9 Final reports

NIST will publish one or more final public reports. NIST may also publish: additional supplementary reports
(typically as numbered NIST Interagency Reports); in academic journal articles; in conferences and
workshops (typically PowerPoint).

Our intention is that the final test reports will publish results for the best-performing implementation from
each participant. Because “best” is underdefined (accuracy vs. time, for example), the published reports
may include results for other implementations. The intention is to report results for the most capable
implementations (see section 0 on metrics). Other results may be included (e.g. in appendices) to show, for
example, illustration of progress or tradeoffs.

IMPORTANT: All Phase 3 results will be attributed to the providers, publicly associating performance with
organization name.

1.10 Application scenarios

As described in Table 1, the test is intended to represent:
e Use of tattoo recognition technologies in search applications in which the enrolled dataset could
contain images in the hundreds of thousands.
e Tattoo detection and localization with zero or more tattoos in the sample.

Table 1 — Subtests supported under the Tatt-E activity

| Class label D I

1. |Aspect Detection and Localization 1:N Search

2. |Enrollment dataset None, application to single images |N enrolled subjects

3. |Prior NIST test references |For detection task, see Detection |See Tattoo Identification, Region of
in Tatt-C 20152 Interest, and Mixed Media matching

from Tatt-C 2015°

4. |Example application Database construction and Open-set search of a tattoo/sketch
maintenance of large amounts of |image against a central tattoo
unlabeled, comingled data, e.g. database, e.g. a search of a tattoo,
given a pile of seized media, 1. parts of a tattoo, or a sketch of a
Detect whether/which images tattoo against a tattoo database of
contain tattoos and 2. Segment known criminals.
tattoos as pre-processing step for
search against a database.

5. |Number of images Variable Enroliment gallery: Up to O(1O5)

6. |Number of images per N/A Variable: one or more still tattoo

individual images
7. |Enrollment image types Tattoo and non-tattoo images Tattoos

2 See the Tatt-C test report: NIST Interagency Report 8078, linked from https://www.nist.gov/programs-projects/tattoo-
recognition-technology-challenge-tatt-c

NIST Concept and Evaluation Plan Page 6 of 24

https://www.nist.gov/programs-projects/tattoo

Tattoo Recognition Technology - Evaluation (Tatt-E)

8. | Probe image types 'N/A | Tattoos and sketches

1.11 Rules for participation

There is no charge to participate in Tatt-E. A participant must properly follow, complete, and submit the
Participation Agreement ecentained-in-this-decument published on the Tatt-E website. This must be done
once, after December 1, 2016. It is not necessary to do this for each submitted software library.

e All participants shall submit at least one class D (detection and localization) algorithm.

e Class | (identification) algorithms may be submitted only if at least 1 class D algorithm is also
submitted.

e All submissions shall implement exactly one of the functionalities defined in Table 2. A library shall
not implement the API of more than one class (separate libraries shall be submitted to participate in
separate participation classes).

Table 2 — Tatt-E classes of participation

Function Detection and Localization | Identification
Class label D |
Co-requisite class None D
API requirements 3.3 3.4

1.12 Number and schedule of submissions

The test is conducted in three phases, as scheduled on page 2. The maximum total (i.e. cumulative) number
of submissions is regulated in Table 3. Participation in Phase 1 is not required for algorithm submission in
Phase 2 and 3.

Table 3 — Cumulative total number of algorithms

Phase 1 Total over Phases 1 + 2 | Total over Phases 1+ 2 + 3

All classes of participation |2 4 6 if atleast 1 was successfully
executed by end of Phase 1
2 —otherwise

The numbers above may be increased as resources allow.

1.13 Core accuracy metrics

For identification testing, the test will target open-universe applications such as searching tattoo databases of
known criminals (where the subject may or may not exist in the gallery) and closed-set tasks where subject is
known to be in the database, e.g. in prison or corrections environments. Both score-based and rank-based
metrics will be considered. Rank-based metrics are appropriate for one-to-many applications that employ
human examiners to adjudicate candidate lists. Score based metrics are appropriate for cases where
transaction volumes are too high for human adjudication or when false alarm rates must otherwise be low.
Metrics include, false positive and negative identification rate (FPIR and FNIR) and cumulative match
characteristic that can depend on threshold and rank.

For detection and localization, assessments of overlap between detected and examiner-determined tattoo
area will be considered along with score-based metrics including false positive and negative detection rate.

1.14 Reporting template size

Because template size is influential on storage requirements and computational efficiency, this API supports
measurement of template size. NIST will report statistics on the actual sizes of templates produced by tattoo
recognition implementations submitted to Tatt-E. NIST may also report statistics on runtime memory and
other compute-performance characteristics.

NIST Concept and Evaluation Plan Page 7 of 24

Tattoo Recognition Technology - Evaluation (Tatt-E)

1.15 Reporting computational efficiency

As with other tests, NIST will compute and report accuracy. In addition, NIST will also report timing statistics
for all core functions of the submitted API implementations. This includes feature extraction and 1:N
matching. For an example of how efficiency might be reported, see the final report of the FRVT 2013 test®.

1.16 Exploring the accuracy-speed trade-space

NIST will explore the accuracy vs. speed tradeoff for tattoo recognition algorithms running on a fixed
platform. NIST will report both accuracy and speed of the implementations tested. While NIST cannot force
submission of "fast vs. slow" variants, participants may choose to submit variants on some other axis (e.g.
"experimental vs. mature") implementations.

1.17 Hardware specification
NIST intends to support highly optimized algorithms by specifying the runtime hardware. There are several
types of computers that may be used in the testing. The following list gives some details about possible
compute architectures:

e Dual Intel Xeon X5680 3.3 GHz CPUs (6 cores each)

e Dual Intel Xeon X7560 2.3 GHz CPUs (8 cores each)

e Dual Intel Xeon E5-2695 3.3 GHz CPUs (14 cores each; 56 logical CPUs total) with Dual NVIDIA
Tesla K40 GPUs

Each CPU has 512K cache. The bus runs at 667 Mhz. The main memory is 192 GB Memory as 24 8GB
modules. We anticipate that 16 processes can be run without time slicing, though NIST will handle all
multiprocessing work via fork (). Participant-initiated multiprocessing is not permitted.

NIST is requiring use of 64-bit implementations throughout. This will support large memory allocation to
support 1:N identification tasks. Note that while the API allows read access of the disk during the 1:N
search, the disk is relatively slow, and 1/0 will be included in your run time.

All GPU-enabled machines will be running CUDA version 7.5. cuDNN v5 for CUDA 7.5 will also be installed
on these machines. Implementations that use GPUs will only be run on GPU-enabled machines.

1.18 Operating system, compilation, and linking environment

The operating system that the submitted implementations shall run on will be released as a downloadable file
accessible from http://nigos.nist.gov:8080/evaluations/CentOS-7-x86 64-Everything-1511.iso, which is the
64-bit version of CentOS 7.2 running Linux kernel 3.10.0.

For this test, Windows machines will not be used. Windows-compiled libraries are not permitted. All software
must run under CentOS 7.2.

NIST will link the provided library file(s) to our C++ language test drivers. Participants are required to provide
their library in a format that is dynamically-linkable using the C++11 compiler, g++ version 4.8.5.

A typical link line might be
g++ -std=c++11 -I. -Wall -m64 -o tatte tatte.cpp -L. —ltatte_Company_D_ 07

The Standard C++ library should be used for development. The prototypes from this document will be
written to a file "tatte.h" which will be included via

#include <tatte.h> |

The header files will be made available to implementers via https://github.com/usnistgov/tattoo.

All compilation and testing will be performed on x86_64 platforms. Thus, participants are strongly advised to
verify library-level compatibility with g++ (on an equivalent platform) prior to submitting their software to NIST
to avoid linkage problems later on (e.g. symbol name and calling convention mismatches, incorrect binary file
formats, etc.).

® See the FRVT 2013 test report: NIST Interagency Report 8009, linked from http://face.nist.gov/frvt

NIST Concept and Evaluation Plan Page 8 of 24

http://nigos.nist.gov:8080/evaluations/CentOS-7-x86_64-Everything-1511.iso

Tattoo Recognition Technology - Evaluation (Tatt-E)

Any and all dependencies on external dynamic/shared libraries not provided by CentOS 7.2 as part of the
built-in “development” package must be provided as a part of the submission to NIST.

1.18.1 Library and Platform Requirements

Participants shall provide NIST with binary code only (i.e. no source code). The implementation should be
submitted in the form of a dynamically-linked library file.

The core library shall be named according to Table 4. Additional dynamic libraries may be submitted that
support this “core” library file (i.e. the “core” library file may have dependencies implemented in these other
libraries).

Intel Integrated Performance Primitives (IPP) ® libraries are permitted if they are delivered as a part of the
developer-supplied library package. It is the provider’'s responsibility to establish proper licensing of all
libraries. The use of IPP libraries shall not prevent run on CPUs that do not support IPP. Please take note
that some IPP functions are multithreaded and threaded implementations are prohibited.

NIST will report the size of the supplied libraries.

Table 4 — Implementation library filename convention

Form libTattE_provider_class_sequence.ending
Underscore libTattE provider class sequence ending
delimited parts of
the filename
Description First part of the Single word name | Function classes | A two digit decimal .SO
name, required to | of the main supported in Table | identifier to start at 00
be this. provider 2. and increment by 1
EXAMPLE: Choice | EXAMPLE: D every time a library is
sent to NIST.
EXAMPLE: 07
Example libTattE_Choice_D_07.so
1.18.2 Configuration and developer-defined data

The implementation under test may be supplied with configuration files and supporting data files. NIST will
report the size of the supplied configuration files.

1.18.3 Submission folder hierarchy

Participant submissions should contain the following folders at the top level
e lib/ - contains all participant-supplied software libraries
e config/ - contains all configuration and developer-defined data
e doc/ - contains any participant-provided documentation regarding the submission
e validation/ - contains validation output

1.18.4 Installation and Usage

The implementation shall be installable using simple file copy methods. It shall not require the use of a
separate installation program and shall be executable on any number of machines without requiring
additional machine-specific license control procedures or activation. The implementation shall not use nor
enforce any usage controls or limits based on licenses, number of executions, presence of temporary files,
etc. It shall remain operable with no expiration date.

Hardware (e.g. USB) activation dongles are not acceptable.

NIST Concept and Evaluation Plan Page 9 of 24

http:methods.It

Tattoo Recognition Technology - Evaluation (Tatt-E)

1.18.5 Modes of operation

Implementations shall not require NIST to switch “modes” of operation or algorithm parameters. For
example, the use of two different feature extractors must either operate automatically or be split across two
separate library submissions.

1.19 Runtime behavior

1.191 Interactive behavior, stdout, logging

The implementation will be tested in non-interactive “batch” mode (i.e. without terminal support). Thus, the
submitted library shall:

— Not use any interactive functions such as graphical user interface (GUI) calls, or any other calls,
which require terminal interaction e.g. reads from “standard input”.

— Run quietly, i.e. it should not write messages to "standard error" and shall not write to “standard
output”.

— Only if requested by NIST for debugging, include a logging facility in which debugging messages are
written to a log file whose name includes the provider and library identifiers and the process PID.
Please do not enable this by default.

1.19.2 Exception Handling

The application should include error/exception handling so that in the case of a fatal error, the return code is
still provided to the calling application.

1.19.3 External communication

Processes running on NIST hosts shall not affect the runtime environment in any manner, except for memory
allocation and release. Implementations shall not write any data to external resource (e.g. server, file,
connection, or other process), nor read from such. If detected, NIST will take appropriate steps, including but
not limited to, cessation of evaluation of all implementations from the supplier, notification to the provider,
and documentation of the activity in published reports.

1.19.4 Stateless behavior

All components in this test shall be stateless. Thus, all functions should give identical output, for a given
input, independent of the runtime history. NIST will institute appropriate tests to detect stateful behavior. If
detected, NIST will take appropriate steps, including but not limited to, cessation of evaluation of all
implementations from the supplier, notification to the provider, and documentation of the activity in published
reports.

1.20 Single-thread Requirement

Implementations must run in single-threaded mode, because NIST will parallelize the test by dividing the
workload across many cores and many machines simultaneously.

1.21 Time limits

The elemental functions of the implementations shall execute under the time constraints of Table 5. These
time limits apply to the function call invocations defined in Table 5. Assuming the times are random
variables, NIST cannot regulate the maximum value, so the time limits are 90-th percentiles. This means
that 90% of all operations should take less than the identified duration.

The time limits apply per image. When K tattoo images of a subject are present, the time limits shall be
increased by a factor K. To allow for diversity of algorithms, the time limit to conduct a search has been
increased (see table below). NIST will explore the accuracy vs. speed tradeoff for tattoo recognition
algorithms running on a fixed platform. Both accuracy and speed of the implementations tested will be

NIST Concept and Evaluation Plan Page 10 of 24

http:behavior.If
http:Runquietly,i.e.it

Tattoo Recognition Technology - Evaluation (Tatt-E)

F

Table 5 — Processing time limits (1 core) in seconds, per 640 x 480 image

D |

Function Detection and 1:N identification
Localization

Feature extraction for enrollment and 5
identification
Identification of one search template against 5 l
100,000 single-image tattoo records.
Enroliment finalization of 100,000 single-image 720
tattoo records (including disk IO time)

1.22 Ground truth integrity

Some of the test data is derived from operational systems and may contain ground truth errors in which
— asingle tattoo is present under two different identifiers, or

— two different tattoos are present under one identifier, or

— in which a tattoo is not present in the image.

If these errors are detected, they will be removed. NIST will use aberrant scores (high impostor scores, low
genuine scores) to detect such errors. This process will be imperfect, and residual errors are likely. For
comparative testing, identical datasets will be used and the presence of errors should give an additive
increment to all error rates. For very accurate implementations this will dominate the error rate. NIST
intends to attach appropriate caveats to the accuracy results. For prediction of operational performance, the
presence of errors gives incorrect estimates of performance.

4 Jégou, H., Douze, M., & Schmid, C. (2011). Product quantization for nearest neighbor search. In IEEE PAMI.

NIST Concept and Evaluation Plan Page 11 of 24

http:search.In

Tattoo Recognition Technology - Evaluation (Tatt-E)

2. Data structures supporting the API
21 Data structures

211 Overview
In this test, a tattoo is represented by K > 1 two-dimensional tattoo images.

21.2 Data structures for encapsulating multiple images

Some of the proposed datasets includes K > 2 same tattoo images per person for some persons. This
affords the possibility to model a recognition scenario in which a new image of a tattoo is compared against
all prior images. Use of multiple images per person has been shown to elevate accuracy over a single image
for other biometric modalities.

For tattoo recognition in this test, NIST will enroll K > 1 images for each unique tattoo. Both enrolled gallery
and probe samples may consist of multiple images such that a template is the result of applying feature
extraction to a set of K> 1 images and then integrating information from them. An algorithm might fuse K
feature sets into a single model or might simply maintain them separately. In any case the resulting
proprietary template is contained in a contiguous block of data. All identification functions operate on such
multi-image templates.

The number of images per unique tattoo will vary, and images may not be acquired uniformly over time.
NIST currently estimates that the number of images K will never exceed 100. For the Tatt-E API, K of the
same tattoo images of an individual are contained in data structure of Section 2.1.2.2.

21.21 TattE::Image Struct Reference
Struct representing a single image.

Public Member Functions
e Image ()
e Image (uint16_t widthin, uint16_t heightin, uint8_t depthin, ImageType typein,
std::shared_ptr<uint8_t> datain)

Public Attributes

e uint16_t width
Number of pixels horizontally.
e uint16_t height
Number of pixels vertically.
e uint16_t depth
Number of bits per pixel. Legal values are 8 and 24.
e ImageType imageType
Label describing the type of image.
e std::shared_ptr<uint8_t> data
Managed pointer to raster scanned data. Either RGB color or intensity. If image_depth == 24
this points to 3WH bytes RGBRGBRGB... Ifimage_depth == 8 this points to WH bytes IllIIII.

21.2.2 TattE::MultiTattoo Typedef Reference
typedef std::vector< Image > MultiTattoo
Data structure representing a set of the same tattoo images from a single person.

2.1.3 Data Structure for detected tattoo
Implementations shall return bounding box coordinates of each detected tattoo in an image.

NIST Concept and Evaluation Plan Page 12 of 24

21.31

Tattoo Recognition Technology - Evaluation (Tatt-E)

TattE::BoundingBox Struct Reference

Structure for bounding box around a detected tattoo.

Public Member Functions

BoundingBox ()
BoundingBox (uint16_t xin, uint16_t yin, uint16_t widthin, uint16_t heightin, double confin)

Public Attributes

214

21.41

uint16_t x
X-coordinate of top-left corner of bounding box around tattoo.
uint16_ty
Y-coordinate of top-left corner of bounding box around tattoo.
uint16_t width
Width, in pixels, of bounding box around tattoo.
uint16_t height
Height, in pixels, of bounding box around tattoo.
double confidence
Certainty that this region contains a tattoo. This value shall be on [0, 1]. The higher the
value, the more certain.

Class for representing a tattoo in a MultiTattoo

TattE::TattooRep Class Reference

Class representing a tattoo or sketch template from image(s)

Public Member Functions

TattooRep ()
Default Constructor.

void addBoundingBox (const BoundingBox &bb)
This function should be used to add bounding box entries for each input image provided to
the implementation for template generation. If there are 4 images in the MultiTattoo vector,
then the size of boundingBoxes shall be 4. boundingBoxes[i] is associated with
MultiTattoo[i].

std::shared_ptr< uint8_t > resizeTemplate (uint64_t size)
This function takes a size parameter and allocates memory of size and returns a managed
pointer to the newly allocated memory for implementation manipulation. This class will take
care of all memory allocation and de-allocation of its own memory. The implementation shall
not de-allocate memory created by this class.

const std::shared_ptr< uint8_t > getTattooTemplatePtr () const

uint64_t getTemplateSize () const
This function returns the size of the template data.

std::vector< BoundingBox > getBoundingBoxes () const
This function returns the bounding boxes for detected tattoos associated with the input
images.

Private Attributes

NIST

std::shared_ptr< uint8_t > tattooTemplate
Proprietary template data representing a tattoo in images(s)
uint64_t templateSize
Size of template.
std::vector< BoundingBox > boundingBoxes
Data structure for capturing bounding boxes around the detected tattoo(s)

Concept and Evaluation Plan Page 13 of 24

Tattoo Recognition Technology - Evaluation (Tatt-E)

21.5 Data structure for result of an identification search

All identification searches shall return a candidate list of a NIST-specified length. The list shall be sorted with
the most similar matching entries listed first with lowest rank.

2.1.51 TattE::Candidate Struct Reference
Data structure for result of an identification search.

Public Member Functions

e Candidate ()
e Candidate (bool assignedin, std::string idin, double scorein)

Public Attributes

e bool isAssigned
If the candidate is valid, this should be set to true. If the candidate computation failed, this
should be set to false.

e std::string templateld
The template ID from the enrollment database manifest.

e double similarityScore
Measure of similarity between the identification template and the enrolled candidate. Higher
scores mean more likelihood that the samples are of the same person. An algorithm is free
to assign any value to a candidate. The distribution of values will have an impact on the
appearance of a plot of false-negative and false-positive identification rates.

2.1.6 Data Structure for return value of API function calls

2.1.6.1 TattE::ReturnStatus Struct Reference

A structure to contain information about the success/failure by the software under test. An object of this
class allows the software to return some information from a function call. The string within this object can be
optionally set to provide more information for debugging etc. The status code will be set by the function to
Success on success, or one of the other codes on failure.

Public Member Functions

e ReturnStatus ()
¢ ReturnStatus (const TattE::ReturnCode code, const std::string info="")
Create a ReturnStatus object.

Public Attributes

e TattE::ReturnCode code
Return status code.
e std:string info
Optional information string.

2.1.7 Enumeration Type Documentation

21.71 enum TattE::ReturnCode[strong]
Return codes for the functions specified by this API.
Enumerator
Success Success
ConfigError Error reading configuration files
ImageTypeNotSupported Image type, e.g., sketches, is not supported by the implementation
Refuselnput Elective refusal to process the input

NIST Concept and Evaluation Plan Page 14 of 24

Tattoo Recognition Technology - Evaluation (Tatt-E)

ExtractError Involuntary failure to process the image

ParseError Cannot parse the input data

TemplateCreationError Elective refusal to produce a template

EnrolIDirError An operation on the enrollment directory failed (e.g. permission, space)
NumbDataError The implementation cannot support the number of input images
TemplateFormatError One or more template files are in an incorrect format or defective
InputLocationError Cannot locate the input data - the input files or names seem incorrect
VendorError Vendor-defined failure

21.7.2 enum TattE::TemplateRole[strong]

Labels describing the type/role of the template to be generated (provided as input to template
generation)

Enumerator
Enrollment Enrollment template used to enroll into gallery
Identification ldentification template used for search

21.7.3 enum TattE::ImageType[strong]
Labels describing the image type.
Enumerator

Tattoo Tattoo image

Sketch Sketch of tattoo
Unknown Unknown or unspecified

2.2 File structures for enrolled template collection

An implementation converts a MultiTattoo into a template, using, for example the createTemplate() function
of section 3.4.1.5.2. To support the Class | identification functions of Table 2, NIST will concatenate
enrollment templates into a single large file, the EDB (for enroliment database). The EDB is a simple binary
concatenation of proprietary templates. There is no header. There are no delimiters. The EDB may be
hundreds of gigabytes in length.

This file will be accompanied by a manifest; this is an ASCII text file documenting the contents of the EDB.
The manifest has the format shown as an example in Table 6. If the EDB contains N templates, the manifest
will contain N lines. The fields are space (ASCIlI decimal 32) delimited. There are three fields. Strictly
speaking, the third column is redundant.

Important: If a call to the template generation function fails, or does not return a template, NIST will include
the Template ID in the manifest with size 0. Implementations must handle this appropriately.

Table 6 — Enroliment dataset template manifest

Field name Template ID Template Length Position of first byte in
EDB

Datatype required std::string Unsigned decimal Unsigned decimal integer

integer

Example lines of a manifest file 90201744 1024 0

appear to the right. Lines 1, 2, 3 Tattoo01 1536 1024

and N appear. 7456433 512 2560

Tattoo12 1024 307200000

The EDB scheme avoids the file system overhead associated with storing millions of individual files.

NIST Concept and Evaluation Plan Page 15 of 24

Tattoo Recognition Technology - Evaluation (Tatt-E)

3. API Specification

The function prototypes from this document and any other supporting code will be provided in a "tatte.h" file
made available to implementers via https://github.com/usnistgov/tattoo.

31

3.2

Namespace
All data structures and API interfaces/function calls will be declared in the TattE namespace.

Overview

This section describes separate APIs for the core tattoo applications described in section 1.10. All
submissions to Tatt-E shall implement the functions required by the rules for participation listed before Table
2. Tatt-E participants shall implement the relevant C++ prototyped interfaces in this section. C++ was
chosen in order to make use of some object-oriented features.

3.3 Detection and Localization (Class D)

This section defines an API for algorithms that can solely perform tattoo detection and localization. The
detection task requires the implementation to detect whether an image contains a tattoo or not, and
localization requires identifying the location of the tattoo within the image. Given an image, an
implementation should

For detection, classify whether a tattoo was detected in the image or not and provide a real-valued
measure of detection confidence on [0,1], with 1 indicating absolute certainty that the image
contains a tattoo and 0 indicating absolute certainty that the image does not contain a tattoo.

For localization, report location(s) of one or more tattoos on different body locations in the form of a
bounding box.

Table 7 — Procedural overview of the detection and localization test

9 | Name Description Performance Metrics to be
2 reported by NIST
o
Initialization | initialize()
Give the implementation the name of a directory where any
provider-supplied configuration data will have been placed by
NIST. This location will otherwise be empty. The implementation
is permitted read-only access to the configuration directory.
Detection detectTattoo() Statistics of detection times.
c For each of N images, pass single images to the implementation .
% for tattoo detection. The implementation will set a boolean Accuracy metrics.
N indicating whether a tattoo was detected or not and a detection The incidence of where the
s certainty confidence score. implementation failed to
o .
9 L . C perform detection (non-
- Multlple instances of the cglllng application may run . successful return code).
S simultaneously or sequentially. These may be executing on
S different computers.
2
% Localization |localizeTattoos() Statistics of the time needed
&) For each of N tattoo images, pass single images to the for this operation.
implementation for t.attoo Iocgllzatlon. The |mplemgntat|on will Accuracy metrics.
populate a vector with bounding boxes corresponding to the
tattoos detected from the input image. The incidence of where the
implementation failed to
Multiple instances of the calling application may run perform localization.
simultaneously or sequentially. These may be executing on
different computers.
NIST Concept and Evaluation Plan Page 16 of 24

http:ThissectiondescribesseparateAPIsforthecoretattooapplicationsdescribedinsection1.10
https://github.com/usnistgov/tattoo

Tattoo Recognition Technology - Evaluation (Tatt-E)

3.3.1 TattE::DetectAndLocalizelnterface Class Reference
The interface to Class D implementations.

3.3.11 Public Member Functions

e virtual ~DetectAndLocalizelnterface ()
e virtual ReturnStatus initialize (const std::string &configurationLocation)=0
This function initializes the implementation under test. It will be called by the NIST
application before any call to the functions detectTattoo and localize Tattoos().
e virtual ReturnStatus detectTattoo (const Image &inputimage, bool &tattooDetected, double
&confidence)=0
This function takes an Image as input and indicates whether a tattoo was detected in the
image or not.
e virtual ReturnStatus localizeTattoos(const Image &inputimage, std::vector< BoundingBox >
&boundingBoxes)=0
This function takes an Image as input, and populates a vector of BoundingBox with the
number of tattoos detected on different body locations from the input image.

3.3.1.2 Static Public Member Functions

o static std::shared_ptr< DetectAndLocalizelnterface > getimplementation ()
Factory method to return a managed pointer to the DetectAndLocalizelnterface
object. This function is implemented by the submitted library and must return a managed
pointer to the DetectAndLocalizelnterface object.

3.31.3 Detailed Description
The interface to Class D implementations.

The class D detection and localization software under test must implement the interface
DetectAndLocalizelnterface by subclassing this class and implementing each method specified therein.

3.314 Constructor & Destructor Documentation
e virtual TattE::DetectAndLocalizelnterface::DetectAndLocalizelnterface ()[inline], [virtual]
3.3.1.5 Member Function Documentation

3.3.1.5.1 virtual ReturnStatus TattE::DetectAndLocalizelnterface::initialize (const std::string &
configurationLocation)[pure virtual]

This function initializes the implementation under test. It will be called by the NIST application before any call
to the functions detectTattoo and localizeTattoos.

Parameters:

in configurationLocation A read-only directory containing any developer-supplied configuration parameters or
run-time data. The name of this directory is assigned by NIST, not hardwired by the
provider. The names of the files in this directory are hardwired in the implementation
and are unrestricted.

3.3.1.5.2 virtual ReturnStatus TattE::DetectAndLocalizelnterface::detectTattoo (const Image &
inputimage, bool & tattooDetected, double & confidence)[pure virtual]

This function takes an Image as input and indicates whether a tattoo was detected in the image or not.

Parameters:
in inputlmage An instance of an Image struct representing a single image
out tattooDetected true if a tattoo is detected in the image; false otherwise

NIST Concept and Evaluation Plan Page 17 of 24

http:Thisfunctioninitializestheimplementationundertest.It
http:undertest.It

Tattoo Recognition Technology - Evaluation (Tatt-E)

out confidence A real-valued measure of tattoo detection confidence on [0,1]. A value of 1 indicates
certainty that the image contains a tattoo, and a value of 0 indicates certainty that the
image does not contain a tattoo.

3.3.1.5.3 virtual ReturnStatus TattE::DetectAndLocalizelnterface::localizeTattoos(const Image &
inputimage, std::vector< BoundingBox > & boundingBoxes, std::vector< BodyLocation >
& bodyLocations)[pure virtual]

This function takes an Image as input, and populates a vector of BoundingBox with the number of tattoos
detected on different body locations from the input image.

Parameters:
in inputlmage An instance of an Image struct representing a single image
out boundingBoxes For each tattoo detected in the image, the function shall create a BoundingBox,
populate it with a confidence score, the X, y, width, height of the bounding box, and
add it to the vector.
3.3.1.6 static std::shared_ptr<DetectAndLocalizelnterface>

TattE::DetectAndLocalizelnterface::getimplementation ()[static]
Factory method to return a managed pointer to the DetectAndLocalizelnterface object.

This function is implemented by the submitted library and must return a managed pointer to the
DetectAndLocalizelnterface object.

Note:
A possible implementation might be: return (std: :make shared<ImplementationD>());

3.4 Identification (Class 1)

The 1:N application proceeds in two phases, enroliment and identification. The identification phase includes
separate pre-search feature extraction stage, and a search stage.

The design reflects the following testing objectives for 1:N implementations.

— support distributed enrollment on multiple machines, with multiple processes running in parallel
— allow recovery after a fatal exception, and measure the number of occurrences

— allow NIST to copy enroliment data onto many machines to support parallel testing

— respect the black-box nature of biometric templates

— extend complete freedom to the provider to use arbitrary algorithms

— support measurement of duration of core function calls

— support measurement of template size

Table 8 — Procedural overview of the identification test

|Name Description Performance Metrics to be
reported by NIST

E1 | Initialization | initializeEnrolimentSession()

Give the implementation the name of a directory where any
provider-supplied configuration data will have been placed by
NIST. This location will otherwise be empty.

Enrollment | Phase

NIST Concept and Evaluation Plan Page 18 of 24

Tattoo Recognition Technology - Evaluation (Tatt-E)

E2 | Parallel createTemplate(TemplateRole=Enroliment) Statistics of the times needed
Enrollment | The input will be one or more of the same tattoo image. This to enroll a tattoo.

B el [Comerson e, Statsics o tn sizes o
a single tempiate. € implementatio e P created templates.
calling application.
NIST's calling application will be responsible for storing all ;IZ:E llr;(igi(e;p:aeﬁgfngalled
templates as binary files. These will not be available to the P ’
implementation during this enroliment phase.
Multiple instances of the calling application may run
simultaneously or sequentially. These may be executing on
different computers. The same tattoo will not be enrolled twice.

E3 | Finalization |finalizeEnrollment() Size of the enroliment
Permanently finalize the enroliment directory. This supports, for database as a function of
example, adaptation of the image-processing functions, adaptation | population size N and the
of the representation, writing of a manifest, indexing, and number of images.
computation of statistical information over the enroliment dataset. Duration of this operation.
The implementation is permitted read-write-delete access to the | The time needed to execute
enrollment directory during this phase. this function shall be reported

with the preceding enrollment
times.

S1 | Initialization |initializeProbeTemplateSession() Statistics of the time needed
Tell the implementation the location of an enrollment directory. for this operation.
Implementation iniiaiize n praparation for search emplate Statistics of the fima neaded

ple prep P for this operation.
creation.
5 The implementation is permitted read-only access to the
g enrollment directory during this phase.
® | S2 | Template createTemplate(TemplateRole=Identification) Statistics of the time needed
&’ preparation |For each probe, create a template from a set of input tattoo(s) or a | for this operation.
sketch image. Th[s opergtlon will generally be conducted in a Statistics of the size of the
separate process invocation to step S3.
search template.
The implementation is permitted no access to the enrollment
directory during this phase.
The result of this step is a search template.
S3 | Initialization | initializeldentificationSession() Statistics of the time needed
Tell the implementation the location of an enrollment directory. for this operation.
The implementation should read all or some of the enrolled data
into main memory, so that searches can commence.
= The implementation is permitted read-only access to the
s enroliment directory during this phase.
& |s4|Search identifyTemplate() Statistics of the time needed
A template is searched against the enroliment database. for this operation.
The implementation is permitted read-only access to the Accuracy metrics - Type | + |l
enrollment directory during this phase. error rates.
Failure rates.
3.4.1 TattE::ldentificationIinterface Class Reference
3411 Public Member Functions
e virtual ~ldentificationInterface ()
e virtual ReturnStatus initializeEnrollmentSession (const std::string &configurationLocation)=0
This function initializes the implementation under test and sets all needed parameters.
e virtual ReturnStatus createTemplate (const MultiTattoo &inputTattoos, const TemplateRole
&templateType, TattooRep &tattooTemplate, std:ivecior<double> &quality)=0
NIST Concept and Evaluation Plan Page 19 of 24

3.41.2

3.4.1.3

Tattoo Recognition Technology - Evaluation (Tatt-E)

This function takes a MultiTattoo and outputs a TattooRep object (essentially a template).
virtual ReturnStatus finalizeEnrollment (const std::string &enrollmentDirectory, const std::string
&edbName, const std::string &edbManifestName)=0

This function will be called after all enrollment templates have been created and freezes the

enrollment data. After this call the enrollment dataset will be forever read-only.
virtual ReturnStatus initializeProbeTemplateSession (const std::string &configurationLocation,
const std::string &enrollmentDirectory)=0

Before MultiTattoos are sent to the search template creation function, the test harness will

call this initialization function.
virtual ReturnStatus initializeldentificationSession (const std::string &configurationLocation, const
std::string &enrollmentDirectory)=0

This function will be called once prior to one or more calls to identifyTemplate. The function

might set static internal variables so that the enrollment database is available to the

subsequent identification searches.
virtual ReturnStatus identifyTemplate (const TattooRep &idTemplate, const uint32_t
candidateListLength, std::vector< Candidate > &candidateList)=0

This function searches an identification template against the enrollment set, and outputs a

vector containing candidateListLength Candidates.

Static Public Member Functions

static std::shared_ptr< IdentificationInterface > getimplementation ()
Factory method to return a managed pointer to the Identificationinterface object.

Detailed Description

The interface to Class | implementations.

The Class | submission software under test will implement this interface by subclassing this class and
implementing each method therein.

3414

3.4.1.5

Constructor & Destructor Documentation

virtual TattE::ldentificationInterface::~ldentificationinterface ()[inline], [virtual]

Member Function Documentation

3.4.1.5.1 virtual ReturnStatus TattE::ldentificationinterface::initializeEnrolimentSession (const

std::string & configurationLocation)[pure virtual]

This function initializes the implementation under test and sets all needed parameters.

This function will be called N=1 times by the NIST application, prior to parallelizing M >= 1 calls to
createTemplate() via fork().

Parameters:

in

configurationLocation A read-only directory containing any developer-supplied configuration parameters or
run-time data files.

3.4.1.5.2 virtual ReturnStatus TattE::ldentificationinterface::createTemplate (const MultiTattoo &

inputTattoos, const TemplateRole & templateType, TattooRep & tattooTemplate,
std::vector<double> & quality)[pure virtual]

This function takes a MultiTattoo and outputs a TattooRep object (essentially a template) and a vector of
quality values associated with each tattoo image.

For enroliment templates: If the function executes correctly (i.e. returns a successful exit status), the NIST
calling application will store the template. The NIST application will concatenate the templates and pass the
result to the enrollment finalization function. When the implementation fails to produce a template, it shall still

NIST

Concept and Evaluation Plan Page 20 of 24

Tattoo Recognition Technology - Evaluation (Tatt-E)

return a blank template (which can be zero bytes in length). The template will be included in the enroliment
database/manifest like all other enroliment templates, but is not expected to contain any feature information.

For identification templates: If the function returns a non-successful return status, the output template will be
not be used in subsequent search operations.

Parameters:

in inputTattoos An instance of a MultiTattoo structure. Implementations must alter their behavior
according to the type and number of images/type of image contained in the structure.
The input image type could be a tattoo or a sketch image. The MultiTattoo will always
contain the same type of imagery, i.e., no mixing of tattoos and sketch images will
occur. Note that implementation support for sketch images is OPTIONAL.
Implementation shall return TattE::ImageType::ImageTypeNotSupported if they
do not support sketch images. All algorithms must support tattoo images.

in template Type A value from the TemplateRole enumeration that indicates the intended usage of the
template to be generated. In this case, either an enrollment template used for gallery
enrollment or an identification template used for search.

out tattooTemplate Tattoo template object. For each tattoo detected in the MultiTattoo, the function shall
provide the bounding box coordinates in each image. The bounding boxes shall be
captured in the TattooRep.boundingBoxes variable, which is a vector of
BoundingBox objects. If there are 4 images in the MultiTattoo vector, then the size
of boundingBoxes shall be 4. boundingBoxes]i] is associated with MultiTattoo[i].

out quality A vector of quality values, one for each input tattoo image. This will be an empty
vector when passed into this function, and the implementation shall populate a
quality value corresponding to each input image. quality[i] shall correspond to
inputTattoos|i]. /A measure of tattoo quality on [0,1] is indicative of expected utility to
the matcher, or matchability. This value could measure tattoo
distinctiveness/information richness, and would be an indicator of how well the tattoo
would be expected to match. A value of 1 indicates high quality and that the tattoo
would be expected to match well, and a value of 0 means low quality, indicative that
tattoo would not match well.

3.4.1.5.3 virtual ReturnStatus TattE::ldentificationinterface::finalizeEnrollment (const std::string &
enrollmentDirectory, const std::string & edbName, const std::string &
edbManifestName)[pure virtual]

This function will be called after all enroliment templates have been created and freezes the enroliment data.
After this call the enrollment dataset will be forever read-only.

This function allows the implementation to conduct, for example, statistical processing of the feature data,
indexing and data re-organization. The function may create its own data structure. It may increase or
decrease the size of the stored data. No output is expected from this function, except a return code. The
function will generally be called in a separate process after all the enrollment processes are complete.
NOTE: Implementations shall not move the input data. Implementations shall not point to the input data.
Implementations should not assume the input data would be readable after the call. Implementations must,
at a minimum, copy the input data or otherwise extract what is needed for search.

Parameters:
in enrollmentDirectory The top-level directory in which enroliment data was placed. This variable allows an
implementation to locate any private initialization data it elected to place in the
directory.
in edbName The name of a single file containing concatenated templates, i.e. the EDB described

in Data Structures Supporting the API. While the file will have read-write-delete
permission, the implementation should only alter the file if it preserves the necessary
content, in other files for example. The file may be opened directly. It is not necessary
to prepend a directory name. This is a NIST-provided input - implementers shall not
internally hard-code or assume any values.

in edbManifestName The name of a single file containing the EDB manifest described in Data Structures
Supporting the API . The file may be opened directly. It is not necessary to prepend a
directory name. This is a NIST-provided input - implementers shall not internally
hard-code or assume any values.

NIST Concept and Evaluation Plan Page 21 of 24

Tattoo Recognition Technology - Evaluation (Tatt-E)

3.4.1.5.4 virtual ReturnStatus TattE::ldentificationlnterface::initializeProbeTemplateSession (const
std::string & configurationLocation, const std::string & enrollmentDirectory)[pure virtual]

Before MultiTattoos are sent to the search template creation function, the test harness will call this
initialization function.

This function initializes the implementation under test and sets all needed parameters. This function will be
called N=1 times by the NIST application, prior to parallelizing M >= 1 calls to createTemplate() via fork().
Caution: The implementation should tolerate execution of P > 1 processes on the one or more machines
each of which may be reading from this same enrollment directory in parallel. The implementation has read-
only access to its prior enroliment data.

Parameters:
in configurationLocation A read-only directory containing any developer-supplied configuration parameters or
run-time data files.
in enrollmentDirectory The read-only top-level directory in which enroliment data was placed and then
finalized by the implementation. The implementation can parameterize subsequent
template production on the basis of the enrolled dataset.

3.4.1.5.5 virtual ReturnStatus TattE::ldentificationlnterface::initializeldentificationSession (const
std::string & configurationLocation, const std::string & enrollmentDirectory)[pure virtual]

This function will be called once prior to one or more calls to identifyTemplate. The function might set static
internal variables so that the enroliment database is available to the subsequent identification searches.

Parameters:
in configurationLocation A read-only directory containing any developer-supplied configuration parameters or
run-time data files.
in enrollmentDirectory The read-only top-level directory in which enroliment data was placed.

3.4.1.5.6 virtual ReturnStatus TattE::ldentificationinterface::identifyTemplate (const TattooRep &
idTemplate, const uint32_t candidateListLength, std::vector< Candidate > &
candidateList)[pure virtual]

This function searches an identification template against the enroliment set, and outputs a vector containing
candidateListLength Candidates.

Each candidate shall be populated by the implementation and added to candidateList. Note that
candidateList will be an empty vector when passed into this function. The candidates shall appear in
descending order of similarity score - i.e. most similar entries appear first.

Parameters:
in idTemplate A template from createTemplate(). If the value returned by that function was non-
successful, the contents of idTemplate will not be used, and this function will not be
called.
in candidateListLength The number of candidates the search should return.
out candidateList Each candidate shall be populated by the implementation. The candidates shall
appear in descending order of similarity score - i.e. most similar entries appear first.

3.4.1.5.7 static std::shared_ptr<identificationInterface>
TattE::ldentificationIinterface::getimplementation ()[static]

Factory method to return a managed pointer to the IdentificationIinterface object.

This function is implemented by the submitted library and must return a managed pointer to the
IdentificationIinterface object.

Note:
A possible implementation might be: return (std::make shared<ImplementationI>());

NIST Concept and Evaluation Plan Page 22 of 24

Tattoo Recognition Technology - Evaluation (Tatt-E)

Annex A
Submissions of Implementations to Tatt-E

A1 Submission of implementations to NIST

NIST requires that all software, data and configuration files submitted by the participants be signed and
encrypted. Signing is done with the participant's private key, and encryption is done with the NIST public
key. The detailed commands for signing and encrypting are given here: https://www.nist.gov/itl/iad/image-
group/products-and-services/encrypting-softwaredata-transmission-nist.

NIST will validate all submitted materials using the participant's public key, and the authenticity of that key
will be verified using the key fingerprint. This fingerprint must be submitted to NIST by writing it on the
signed [Tatt-E Participation Agreement that is published on the Tatt-E website -
https://www.nist.gov/programs-projects/tattoo-recognition-technology-evaluation-tatt-e.

By encrypting the submissions, we ensure privacy; by signing the submission, we ensure authenticity (the
software actually belongs to the submitter). NIST will reject any submission that is not signed and encrypted.
NIST accepts no responsibility for anything that is transmitted to NIST that is not signed and encrypted with
the NIST public key.

A.2 How to participate

Those wishing to participate in Tatt-E testing must do all of the following, on the schedule listed on Page 2.

— IMPORTANT: Follow the instructions for cryptographic protection of your software and data here -
https://www.nist.gov/itl/iad/image-group/products-and-services/encrypting-softwaredata-transmission-nist

— Send a signed and fully completed copy of the Application to Participate in the Tattoo Recognition
Technology - Evaluation (Tatt-E) centained-in-this-document that is published on the Tatt-E website.
This must identify, and include signatures from, the Responsible Parties as defined in the application.
The properly signed Tatt-E Application to Participate shall be sent to NIST as a PDF.

— Provide a software library that complies with the API (Application Programmer Interface) specified in this
document.

e Encrypted data and libraries below 20MB can be emailed to NIST at tatt-e@nist.gov.
e Encrypted data and libraries above 20MB shall be
EITHER

= Splitinto sections AFTER the encryption step. Use the unix "split" commands to make
9MB chunks, and then rename to include the flename extension need for passage
through the NIST firewall.

= you% split—a 3 —d —b 9000000 libTattE_Choice_D_07.tgz.gpg

= you% Is-1x7???|xargs —iQ mv Q libTattE_Choice_D_07_Q.tgz.gpg
= Email each part in a separate email. Upon receipt NIST will

= nist% cat tatte_choice_DO07_*.tgz.gpg > libTattE_Choice_D_07.tgz.gpg

OR
= Made available as a file.zip.gpg or file.zip.asc download from a generic http webserver’,
OR
= Mailed as a file.zip.gpg or file.zip.asc on CD / DVD to NIST at this address:
Tatt-E Test Liaison (A210) In cases where a courier needs a phone number,
100 Bureau Drive please use NIST shipping and handling on: 301 --
A210/Tech225/Stop 8940 975 -- 6296.
NIST

® NIST will not register, or establish any kind of membership, on the provided website.

NIST Concept and Evaluation Plan Page 23 of 24

mailto:tatt-e@nist.gov
https://www.nist.gov/itl/iad/image-group/products-and-services/encrypting-softwaredata-transmission-nist
https://www.nist.gov/programs-projects/tattoo-recognition-technology-evaluation-tatt-e
https://www.nist.gov/itl/iad/image

744

745
746
747

748
749

750
751

752
753

754

755
756
757
758
759
760
761
762

763

764

Tattoo Recognition Technology - Evaluation (Tatt-E)

Gaithersburg, MD 20899-8940
USA

A3 Implementation validation

Registered Participants will be provided with a small validation dataset and test program _

The validation test programs shall be compiled by the provider. The output of these programs shall be
submitted to NIST.

Prior to submission of the software library and validation data, the Participant must verify that their software
executes on the validation images and produces correct scores and templates.

Software submitted shall implement the Tatt-E API Specification as detailed in the body of this document.

Upon receipt of the software library and validation output, NIST will attempt to reproduce the same output by
executing the software on the validation imagery, using a NIST computer. In the event of disagreement in
the output, or other difficulties, the Participant will be notified.

NIST Concept and Evaluation Plan Page 24 of 24

https://github.com/usnistgov/tattoo
mailto:tatt-e@nist.gov

	Structure Bookmarks
	Tatt
	Tatt
	2 3 4 5 6 7
	8
	Tattoo Recognition Technology -Evaluation (Tatt-E) APublic Evaluation ofTattooRecognition Algorithms Concept, Evaluation Plan, andAPI Version 1.0
	9
	10
	11
	12
	13
	14
	MeiNgan andPatrickGrother
	Figure
	December11,2017
	15 16 17 18
	19 20 21
	22 23 24
	Status of this Document
	This document is intended to be the final specification. Changes aremarkedin green. Comments andquestions shouldbe submitted to tatt-e@nist.gov.
	Timeline of the Tatt-E Activity
	Timeline of the Tatt-E Activity
	API Development
	API Development
	September 26, 2016
	Draftevaluation plan available for public comments

	December 1, 2016
	December 1, 2016
	Final evaluation plan published

	Phase 1
	Phase 1
	December 1, 2016
	Participation starts: Algorithms maybe sentto NIST

	TR
	FebruaryMarch1, 2017
	Last day for submission of algorithms to Phase 1

	TR
	MarchApril14, 2017
	Interim results released to Phase 1 participants

	Phase 2
	Phase 2
	MayJune 1, 2017
	Last day for submission of algorithms to Phase 2

	TR
	June July 14, 2017
	Interim results released to Phase 2 participants

	Phase 3
	Phase 3
	AugustSeptember 15, 2017
	Last day for submission of algorithms to Phase 3

	Q4 2017
	Q4 2017
	Release offinalpublic report

	25 26

	27 Acknowledgements
	27 Acknowledgements
	28 Theorganizerswouldliketothankthesponsorofthisactivity, the Federal Bureau of Investigation (FBI) 29 BiometricCenter ofExcellence(BCOE)forinitiating andprogressingthis work.
	30
	31 ContactInformation 32 Email: 33 Tatt-EWebsite: 34
	tatt-e@nist.gov
	tatt-e@nist.gov

	https://www.nist.gov/programs-projects/tattoo-recognition-technology-evaluation-tatt-e
	https://www.nist.gov/programs-projects/tattoo-recognition-technology-evaluation-tatt-e

	35
	36
	36
	36
	Table of Contents

	37
	37
	1. Tatt-E
	...
	4

	38
	38
	1.1 Background

	4

	39
	39
	1.2 TheTattooRecognitionTechnologyProgram

	4

	40
	40
	1.3 Scope
	...
	5

	41
	41
	1.4 Audience
	...
	5

	42
	42
	1.5 TrainingData
	..
	5

	43
	43
	1.6 OfflineTesting
	..
	5

	44
	44
	1.7 PhasedTesting

	5

	45
	45
	1.8 Interim reports
	..
	6

	46
	46
	1.9 Final reports

	6

	47
	47
	1.10 Application scenarios
	..
	6

	48
	48
	1.11 Rulesforparticipation
	...
	7

	49
	49
	1.12 Number and schedule of submissions
	..
	7

	50
	50
	1.13 Core accuracy metrics

	7

	51
	51
	1.14 Reportingtemplatesize

	7

	52
	52
	1.15 Reporting computational efficiency
	...
	8

	53
	53
	1.16 Exploringtheaccuracy-speedtrade-space
	..
	8

	54
	54
	1.17 Hardware specification

	8

	55
	55
	1.18 Operating system, compilation, andlinking environment

	8

	56
	56
	1.19 Runtimebehavior
	...
	10

	57
	57
	1.20 Single-thread Requirement

	10

	58
	58
	1.21 Timelimits

	10

	59
	59
	1.22 Groundtruthintegrity
	..
	11

	60
	60
	2. DatastructuressupportingtheAPI
	..
	12

	61
	61
	2.1 Datastructures

	12

	62
	62
	2.2 Filestructuresforenrolledtemplatecollection
	...
	15

	63
	63
	3. APISpecification
	..
	16

	64
	64
	3.1 Namespace

	16

	65
	65
	3.2 Overview
	...
	16

	66
	66
	3.3 DetectionandLocalization(ClassD)

	16

	67
	67
	3.4 Identification (Class I)
	...
	18

	68
	68
	AnnexA SubmissionsofImplementationstoTatt-E
	...
	23

	69
	69
	A.1 SubmissionofimplementationstoNIST
	...
	23

	70
	70
	A.2 How toparticipate

	23

	71
	71
	A.3 Implementation validation

	24

	72
	72

	73
	73
	List of Tables

	74
	74
	Table1 –Subtestssupported undertheTatt-E activity
	..
	6

	75
	75
	Table2 –Tatt-E classesofparticipation

	7

	76
	76
	Table3 –Cumulativetotal numberof algorithms
	..
	7

	77
	77
	Table4 –Implementation library filename convention

	9

	78
	78
	Table5 –Processingtimelimits(1 core)inseconds,per640 x480image
	...
	11

	79
	79
	Table6 –Enrollmentdatasettemplate manifest
	...
	15

	80
	80
	Table7 –Procedural overviewofthedetectionandlocalizationtest
	..
	16

	81
	81
	Table8 –Procedural overviewoftheidentificationtest
	..
	18

	82
	82

	83 1. Tatt-E
	83 1. Tatt-E
	84 1.1 Background 85 Tattooshavebeen usedfor manyyearsto assistlaw enforcementintheidentification ofcriminals and 86 victims andforinvestigative research purposes. Historically,law enforcement agencieshavefollowedthe 87 ANSI/NIST-ITL 1-2011standardto collectand assignkeywordlabels totattoos.This keywordlabeling 88 approach comeswith drawbacks, which include the limitednumberofANSI/NISTstandardclass labels to 89 able describe the increasing varietyof newtattoo designs,the need formultiple keywordsto sufficie
	1
	examiners.As such,theshortcomings ofkeyword-based tattoo image retrieval have driven the need for

	93 1.2 TheTattooRecognitionTechnologyProgram 94 TheTattooRecognitionTechnologyProgramwasinitiatedbyNIST tosupport an operational need for 95 image-based tattoo recognition to supportlaw enforcement applications. The programprovides quantitative
	96 supportfortattoo recognitiondevelopment andbestpracticeguidelines. Program activities todate are 97 summarizedin Figure1.
	Tattoo Recognition Technology Program Tatt-C “Open-book” challenge with provided dataset to engage research community to advance image-based tattoo matching technology Tatt-BP Best practice guidelines and training material for the collection of tattoo images Tatt-E Large-scale sequestered evaluation of tattoo recognition algorithms 2014 -2015 2015 -2016 2016 -2017 “Open-book” test with provided dataset Best Practice Documents Sequestered Test Tatt-Q Automated image quality assessment Future -TBD Tatt-L Trac
	99 Figure1 –ActivitiesundertheTattooRecognitionTechnologyProgram 100 101 • Tatt-C was aninitial research challengethatprovided operationaldata and use casestothe 102 researchcommunityto advance research anddevelopmentintoautomatedimage-based tattoo 103 technologies and to assess the state-of-the-art. NISThosted a culminating industry workshop and 104 published a publicreport on the outcomes and recommendations from the Tatt-C activity. Please 105 visit for more 106 information. 107 108 • Tatt-BP provides be
	https://www.nist.gov/programs-projects/tattoo-recognition-technology-challenge-tatt-c
	https://www.nist.gov/programs-projects/tattoo-recognition-technology-challenge-tatt-c

	https://www.nist.gov/itl/iad/image-group/tattoo
	https://www.nist.gov/itl/iad/image-group/tattoo
	-

	recognition-technology-best-practices

	T-ITL 1-2011 standard isavailable at .
	1
	The latest version ofthe ANSI/NIS
	-projects/ansinist-itl-standard
	https://www.nist.gov/programs

	113 114 • Tatt-E isasequestered evaluationintendedto assesstattoo recognition algorithm accuracyand run115 time performance over a large-scaleofoperationaldata. TheparticipationdetailsofTatt-E are 116 established in this document, also available for download at 117 .
	-
	https://www.nist.gov/programs
	https://www.nist.gov/programs
	-

	projects/tattoo-recognition-technology-evaluation-tatt-e

	118 1.3 Scope 119 TheTattooRecognitionTechnology –Evaluation(Tatt-E)isbeing conductedtoassessand measurethe 120 capability ofsystems toperformautomatedimage-based tattoo recognition. Both comparative and absolute 121 accuracy measuresare ofinterest,given the goalsto determine which algorithmsare mosteffective and 122 viableforthefollowingprimary operational use-cases: 123 124 • Tattoo/RegionofInterestIdentification – matchingdifferentinstancesofthesametattooimagefrom 125 the same subject overtime. Thisinclu
	https://www.nist.gov/programs-projects/tattoo-recognition-technology-evaluation-tatt-e
	https://www.nist.gov/programs-projects/tattoo-recognition-technology-evaluation-tatt-e

	138 1.4 Audience 139 Anyperson or organizationswith capabilitiesin anyofthe following areas are invited to participation in the 140 Tatt-E test.
	141 • Tattoo matching implementations.
	142 • Tattoodetection and localizationalgorithms.
	143 • Algorithms with an abilityto match sketchestotattoos.
	144 ParticipantswillneedtoimplementtheAPIdefinedinthisdocument. Participationisopenworldwide.There 145 isnochargeforparticipation. NIST encouragessubmissionof experimentalprototypes aswell asthose that 146 couldbe readily made operational.
	147 1.5 TrainingData 148 None ofthetestdata canbeprovidedtoparticipants.Insteadprospectiveparticipants shouldleveragepublic 149 domain and proprietary datasets as available.
	150 1.6 OfflineTesting 151 WhileTatt-E isintended as much aspossibleto mimic operationalreality,this remains an offlinetest 152 executed on databasesofimages.The intentisto assessthe core algorithmiccapabilityoftattoodetection, 153 localization, and recognitionalgorithms. Offlinetestingisattractivebecauseitallowsuniform,fair, 154 repeatable, andefficientevaluation ofthe underlyingtechnologies. Testingofimplementations under afixed 155 APIallowsforadetailed set ofperformancerelatedparameterstobe measured.
	156 1.7 PhasedTesting 157 Tosupportdevelopment,Tatt-E will runinmultiplephases. Thefinalphasewillresultinthereleaseofpublic 158 reports.Providersshould notsubmitrevisedalgorithmstoNISTuntilNISTprovides resultsfor theprior 159 phase.
	160 Forthescheduleand numberofalgorithmsofeach classthat maybesubmittedfor eachclass, see section 161 1.12.
	162 1.8 Interim reports 163 Theperformanceof eachimplementationinphase 1 and 2willbereportedina "reportcard".Thiswillbe 164 provided to the participant. Itisintended to facilitate research and development, notformarketing. Report 165 cards will:bemachinegenerated(i.e. scripted);beprovidedtoparticipants with codedidentificationoftheir 166 implementation; includetiming,accuracy, and otherperformance results; includeresultsfromother 167 implementations,butwill notidentifythe otherproviders;be expanded and modi
	171 1.9 Finalreports 172 NISTwillpublish oneormorefinalpublicreports. NIST may alsopublish: additionalsupplementary reports 173 (typicallyasnumberedNISTInteragencyReports);inacademicjournalarticles; in conferences and 174 workshops(typicallyPowerPoint).
	175 Ourintentionisthatthefinaltest reports willpublish resultsforthebest-performing implementation from 176 each participant. Because “best”is underdefined (accuracyvs.time,forexample),thepublished reports 177 mayincluderesultsforotherimplementations. Theintentionistoreport resultsforthemostcapable 178 implementations(seesection0 on metrics). Other results may be included (e.g. in appendices)to show,for 179 example,illustrationofprogress ortradeoffs.
	180 IMPORTANT: All Phase 3 results will be attributed to the providers, publicly associating performance with 181 organization name.
	182 1.10 Application scenarios 183 AsdescribedinTable1, the test is intended to represent: 184 • Useoftattoorecognitiontechnologiesin search applicationsin which the enrolled datasetcould 185 containimages inthehundreds ofthousands. 186 • Tattoodetection and localization with zero ormore tattoosin the sample. 187
	188 Table1 –Subtestssupported undertheTatt-E activity
	#
	#
	#
	Class label
	D
	I

	1.
	1.
	Aspect
	Detection andLocalization
	1:NSearch

	2.
	2.
	Enrollmentdataset
	None, application to single images
	N enrolled subjects

	3.
	3.
	Prior NIST test references
	For detection task, see Detection in Tatt-C 20152
	See Tattoo Identification, Region of Interest, and Mixed Media matching from Tatt-C 20152

	4.
	4.
	Example application
	Database construction and maintenance oflarge amounts of unlabeled, comingled data, e.g. given a pile of seized media, 1. Detectwhether/whichimages contain tattoos and2. Segment tattoos as pre-processing step for search against a database.
	Open-setsearch of a tattoo/sketch image against a central tattoo database, e.g. a search of a tattoo, parts of a tattoo, or a sketchof a tattoo against a tattoo database of known criminals.

	5.
	5.
	Number ofimages
	Variable
	Enrollmentgallery:Upto O(105)

	6.
	6.
	Number ofimages per individual
	N/A
	Variable: one or more stilltattoo images

	7.
	7.
	Enrollmentimage types
	Tattoo and non-tattoo images
	Tattoos

	8.
	8.
	Probe image types
	N/A
	Tattoos and sketches

	SeetheTatt-C testreport:NISTInteragencyReport8078,linkedfrom
	2
	recognition-technology-challenge-tatt-c
	https://www.nist.gov/programs-projects/tattoo
	-

	189
	190 1.11 Rules forparticipation 191 ThereisnochargetoparticipateinTatt-E. A participant mustproperlyfollow,complete, and submitthe 192 193 once,afterDecember1, 2016. It is not necessary to do this for each submitted softwarelibrary. 194 • Allparticipantsshall submitatleast one class D(detectionandlocalization) algorithm.
	Participation Agreement containedin this documentpublished on the Tatt-E website. This must be done
	195 • ClassI(identification)algorithmsmay be submitted onlyifatleast1 classDalgorithmisalso 196 submitted.
	197 • All submissionsshallimplement exactly oneofthefunctionalitiesdefinedinTable2. A library shall 198 notimplementthe APIofmore than one class(separate librariesshallbe submitted to participate in 199 separateparticipation classes).
	200 Table2 –Tatt-Eclasses ofparticipation
	200 Table2 –Tatt-Eclasses ofparticipation
	Function
	Function
	Function
	Detection andLocalization
	Identification

	Class label
	Class label
	D
	I

	Co-requisite class
	Co-requisite class
	None
	D

	API requirements
	API requirements
	3.3
	3.4

	201 202 203 204 205 206
	1.12 Number andschedule of submissions The testis conductedin three phases, as scheduled on page 2. The maximum total (i.e. cumulative) number of submissions is regulated in Table 3. Participation in Phase 1is not requiredfor algorithm submission in Phase 2and 3.
	Table 3 – Cumulative total number of algorithms
	# Phase 1 Total over Phases 1 + 2 Total over Phases 1 + 2 + 3 Allclasses ofparticipation 2 4 6 if at least 1 was successfully executed by end of Phase 1 2 otherwise
	207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
	The numbers above maybe increased as resources allow.
	For identification testing, the test willtargetopen-universe applications such as searchingtattoo databases of
	1.13 Core accuracy metrics
	known criminals (where the subject may or may not exist in the gallery) and closed-set tasks where subject is known to be in the database, e.g. in prison or corrections environments. Both score-based and rank-based metrics will be considered. Rank-based metrics are appropriate for one-to-many applications that employ human examiners to adjudicate candidate lists. Score based metrics are appropriate for cases where transaction volumes are too high for human adjudicati
	1.14 Reporting template size
	Because template size is influential on storage requirements and computational efficiency, this API supports measurement of template size. NIST will report statistics on the actual sizes of templates produced by tattoo recognition implementations submitted to Tatt-E. NIST may also report statistics on runtime memory and other compute-performance characteristics.
	225 1.15 Reportingcomputational efficiency 226 Aswith othertests,NIST will compute and report accuracy. In addition, NIST will also report timing statistics 227 for all core functions of the submittedAPIimplementations.Thisincludesfeatureextractionand1:N 228 matching. For an example of how efficiencymightbe reported,see the finalreportofthe FRVT 2013test.
	3

	229 1.16 Exploringthe accuracy-speedtrade-space 230 NISTwill exploretheaccuracy vs.speedtradeofffortattoo recognitionalgorithms runningonafixed 231 platform. NISTwillreportboth accuracyand speed ofthe implementationstested.While NIST cannotforce 232 submissionof "fast vs.slow" variants,participants may chooseto submitvariants on someotheraxis (e.g. 233 "experimentalvs. mature") implementations.
	234 1.17 Hardwarespecification 235 NISTintendstosupporthighlyoptimizedalgorithmsby specifying the runtime hardware.There are several 236 types of computers that may be used in the testing. The following list gives somedetailsaboutpossible 237 compute architectures: 238 • DualIntelXeonX56803.3GHz CPUs(6 cores each)
	239 • DualIntelXeonX75602.3GHz CPUs(8 cores each)
	240 • DualIntelXeonE5-2695 3.3 GHzCPUs(14 cores each; 56 logicalCPUstotal) with DualNVIDIA 241 TeslaK40GPUs
	242 EachCPUhas512K cache.Thebus runs at667Mhz. The main memoryis192GB Memoryas248GB 243 modules.Weanticipatethat16processescanberunwithouttimeslicing, though NIST will handle all 244 multiprocessing workvia fork(). Participant-initiated multiprocessingisnotpermitted.
	245 NISTis requiring use of64-bitimplementationsthroughout. This willsupportlarge memoryallocation to 246 support1:Nidentificationtasks. NotethatwhiletheAPIallowsread accessofthediskduringthe1:N 247 search,thediskis relativelyslow, and I/O will be included in your runtime.
	248 AllGPU-enabled machineswillbe running CUDA version 7.5. cuDNN v5 forCUDA7.5 willalso be installed 249 on these machines. Implementations that use GPUs will only be run on GPU-enabled machines.

	250 1.18 Operatingsystem, compilation, andlinkingenvironment
	250 1.18 Operatingsystem, compilation, andlinkingenvironment
	251 The operating systemthatthe submittedimplementations shall run on willbe released as adownloadablefile 252 accessible from , which is the 253 64-bitversion ofCentOS7.2 running Linuxkernel3.10.0.
	http://nigos.nist.gov:8080/evaluations/CentOS-7-x86_64-Everything-1511.iso
	http://nigos.nist.gov:8080/evaluations/CentOS-7-x86_64-Everything-1511.iso

	254 Forthistest,Windowsmachineswillnotbeused.Windows-compiledlibraries arenotpermitted. Allsoftware 255 must run under CentOS7.2.
	256 NISTwilllinktheprovidedlibraryfile(s)to our C++languagetestdrivers. Participants are requiredtoprovide 257 their libraryinaformatthatisdynamically-linkableusingtheC++11 compiler,g++ version4.8.5.
	258 A typicallinkline mightbe
	259 g++ -std=c++11 -I. -Wall -m64 -o tatte tatte.cpp -L. –ltatte_Company_D_07
	260 TheStandardC++ library shouldbeusedfor development. The prototypesfromthis documentwillbe 261 writtentoafile "tatte.h" which will be included via
	#include <tatte.h>
	262 263 264 265 266
	The header files will be made available to implementers via https://github.com/usnistgov/tattoo. All compilation and testing will be performed on x86_64 platforms. Thus, participants are strongly advised to verify library-level compatibility with g++ (on an equivalent platform) prior to submitting their software to NIST to avoid linkage problems later on (e.g. symbol name and calling convention mismatches, incorrect binary file formats, etc.).
	3 See the FRVT 2013 test report: NIST Interagency Report 8009, linked from http://face.nist.gov/frvt
	267 Anyand alldependenciesonexternaldynamic/sharedlibrariesnotprovidedbyCentOS7.2 aspart ofthe 268 built-in “development”package mustbeprovided asapart ofthe submissiontoNIST.
	269 1.18.1 Libraryand PlatformRequirements 270 ParticipantsshallprovideNISTwithbinary codeonly(i.e.nosourcecode). Theimplementationshouldbe 271 submittedintheformof adynamically-linkedlibraryfile.
	272 Thecorelibrary shallbenamed accordingtoTable4. Additionaldynamiclibrariesmaybesubmittedthat 273 supportthis “core”library file(i.e.the “core”library filemayhavedependenciesimplementedintheseother 274 libraries).
	275 Intel Integrated Performance Primitives (IPP)®librariesarepermittedifthey aredeliveredasapartofthe 276 developer-suppliedlibrary package.Itis theprovider’s responsibility to establishproperlicensing of all 277 libraries.TheuseofIPPlibrariesshall notpreventrunonCPUsthatdonotsupportIPP. Please take note 278 that some IPP functions are multithreaded and threaded implementations are prohibited.
	279 NISTwill reportthe size ofthe suppliedlibraries.
	280
	281 Table4 –Implementation library filename convention
	Form
	Form
	Form
	libTattE_provider_class_sequence.ending

	Underscore delimited parts of the filename
	Underscore delimited parts of the filename
	libTattE
	provider
	class
	sequence
	ending

	Description
	Description
	Firstpartof the name, required to be this.
	Single word name of the main provider EXAMPLE: Choice
	Function classes supportedin Table 2. EXAMPLE: D
	A two digitdecimal identifier to start at 00 and increment by 1 everytime a libraryis sentto NIST. EXAMPLE: 07
	.so

	Example
	Example
	libTattE_Choice_D_07.so

	282
	283 1.18.2 Configurationanddeveloper-defined data 284 Theimplementation undertest maybe supplied with configurationfiles and supportingdatafiles. NIST will 285 reportthe size ofthe supplied configuration files.
	286 1.18.3 Submissionfolderhierarchy 287 Participantsubmissions should containthefollowingfolders atthetoplevel 288 • lib/ -contains allparticipant-supplied softwarelibraries 289 • config/ -contains allconfigurationanddeveloper-defined data 290 • doc/ -contains anyparticipant-provided documentation regarding the submission 291 • validation/ -contains validation output
	292 1.18.4 Installation and Usage 293 Theimplementation shallbeinstallable using simplefile copy shall not requirethe use of a 294 separateinstallationprogram and shallbe executable on any numberofmachineswithoutrequiring 295 additionalmachine-specific license controlprocedures oractivation. Theimplementationshallnot usenor 296 enforce any usage controls orlimits based on licenses, numberof executions,presenceoftemporary files, 297 etc. It shallremain operable with no expiration date.
	methods.It

	298 Hardware(e.g. USB) activationdongles are notacceptable.
	299 1.18.5 Modes of operation 300 Implementations shall not require NIST to switch “modes” of operation or algorithm parameters.For 301 example,the use oftwo differentfeature extractorsmusteither operate automatically orbe split acrosstwo 302 separatelibrary submissions.
	303 1.19 Runtimebehavior
	303 1.19 Runtimebehavior
	304 1.19.1 Interactive behavior, stdout, logging 305 Theimplementation willbetestedin non-interactive “batch” mode (i.e. withoutterminalsupport).Thus,the 306 submittedlibrary shall:
	307 -Not use anyinteractivefunctions such asgraphical userinterface(GUI) calls, or any other calls, 308 which require terminalinteraction e.g.readsfrom “standard input”.
	309 -should notwritemessagesto "standard error"and shallnotwriteto “standard 310 output”.
	Runquietly,i.e.it

	311 -, include a logging facility in which debugging messages are 312 writtentoalogfilewhosenameincludesthe provider and libraryidentifiers and the processPID. 313 Pleasedo notenablethisbydefault.
	Onlyif requested by NIST for debugging

	314 1.19.2 ExceptionHandling 315 The application shouldinclude error/exceptionhandling sothatinthe case ofafatalerror,the return codeis 316 stillprovidedtothe callingapplication.
	317 1.19.3 External communication 318 Processesrunning onNISThostsshall not affectthe runtime environment in any manner, except for memory 319 allocation and release. Implementationsshallnotwrite any data to externalresource (e.g.server,file, 320 connection,orotherprocess), norread fromsuch.Ifdetected,NIST willtake appropriate steps,including but 321 notlimited to,cessation ofevaluation ofallimplementationsfromthe supplier, notification to the provider, 322 and documentation ofthe activityinpublishedreports
	323 1.19.4 Statelessbehavior 324 All componentsinthistestshallbe stateless. Thus, allfunctions shouldgiveidentical output,for agiven 325 input,independent oftheruntimehistory. NIST326 detected,NIST willtake appropriate steps,including but notlimited to,cessation ofevaluation ofall 327 implementationsfromthe supplier, notificationtotheprovider, anddocumentation ofthe activityinpublished 328 reports.
	will instituteappropriateteststodetectstateful behavior.If

	329 1.20 Single-threadRequirement 330 Implementations must run in single-threaded mode, because NIST willparallelize the testbydividing the 331 workload across many cores andmany machines simultaneously.
	332 1.21 Timelimits 333 Theelementalfunctionsoftheimplementationsshallexecuteunderthe time constraintsofTable5. These 334 time limits apply to the function call invocations defined inTable5. Assuming the times are random 335 variables,NIST cannot regulatethemaximum value, sothetimelimits are90-th percentiles. This means 336 that 90% of all operations should take less than the identified duration.
	The time limits applyper image. When Ktattoo images ofa subject are present, the time limits shallbe 337 increasedbya factor K. To allow for diversityof algorithms, the time limit to conduct a searchhas been 338
	339 increased(seetablebelow). NISTwillexploretheaccuracy vs.speedtradeofffortattoorecognition 340 algorithmsrunning onafixedplatform. Bothaccuracyand speed ofthe implementationstestedwillbe
	reported. A number ofmethods on performing efficientsearch are available in the literature4, and sub-linear 341 search implementations are encouraged. 342
	343 Table5 –Processingtimelimits(1 core)in seconds, per 640 x 480 image
	D I Function Detection and Localization 1:Nidentification Feature extraction for enrollment and identification 5 5 Identification of one searchtemplate against 100,000 single-image tattoo records. 16 300 Enrollmentfinalization of100,000 single-image tattoo records (including disk IO time) 720
	344 1.22 Groundtruthintegrity 345 Some ofthetestdataisderivedfrom operational systems and may containgroundtruth errorsin which
	346 ― a single tattooispresentundertwodifferentidentifiers, or
	347 ― twodifferenttattoos are present under one identifier, or
	348 ― inwhich atattoois notpresentin the image.
	349 If these errors are detected, they will be removed. NIST will use aberrant scores (high impostor scores, low 350 genuine scores)to detect such errors. Thisprocesswillbe imperfect, and residual errors are likely.For 351 comparative testing, identical datasets will be used and the presence of errors should give an additive 352 incrementto all error rates. For very accurate implementationsthis will dominatethe error rate. NIST 353 intendstoattachappropriatecaveatstotheaccuracy results. Forprediction of op
	355
	4 Jégou, H., Douze, M., & Schmid, C. (2011). Product quantization for nearest neighbor search. In IEEE PAMI.
	4 Jégou, H., Douze, M., & Schmid, C. (2011). Product quantization for nearest neighbor search. In IEEE PAMI.
	Link

	356 2. DatastructuressupportingtheAPI
	356 2. DatastructuressupportingtheAPI
	357 2.1 Datastructures
	357 2.1 Datastructures
	358 2.1.1 Overview
	358 2.1.1 Overview
	359 In this test, a tattoo is represented by K ³ 1 two-dimensionaltattoo images.
	360 2.1.2 Datastructuresforencapsulatingmultipleimages 361 SomeoftheproposeddatasetsincludesK >2 sametattoo images per person for some persons. This 362 affordsthe possibilityto modela recognition scenario in which a newimage ofa tattooiscompared against 363 allpriorimages. Use ofmultiple images per person has been shown to elevate accuracyover a single image 364 for other biometric modalities.
	365 Fortattoo recognitioninthistest,NIST will enrollK ³ 1 imagesfor each unique tattoo. Both enrolled gallery 366 and probe samplesmayconsistofmultiple imagessuch that a template isthe resultof applying feature 367 extraction to a setofK ³ 1 images and then integrating information fromthem. An algorithmmightfuse K 368 feature sets into a single model or might simply maintain themseparately. In anycase the resulting 369 proprietarytemplate iscontained in a contiguousblockof data. Allidentification functions
	371 Thenumberofimagesper unique tattoowillvary, andimagesmaynot be acquired uniformly overtime. 372 NIST currently estimatesthatthenumberofimagesKwillneverexceed100.FortheTatt-E API,K ofthe 373 same tattoo images of an individual are contained in data structure of Section 2.1.2.2.
	374 2.1.2.1 TattE::ImageStructReference 375 Structrepresenting a singleimage.
	374 2.1.2.1 TattE::ImageStructReference 375 Structrepresenting a singleimage.
	376 PublicMemberFunctions
	376 PublicMemberFunctions
	377 • Image () 378 • Image (uint16_twidthin,uint16_theightin,uint8_tdepthin,ImageType typein, 379 std::shared_ptr<uint8_t>datain)
	380 PublicAttributes
	380 PublicAttributes
	381 • uint16_t width 382 Number ofpixelshorizontally. 383 • uint16_t height 384 Number ofpixels vertically. 385 • uint16_t depth 386 Number ofbitsperpixel.Legal values are8 and24. 387 • ImageType imageType
	388 Label describing the type of image.
	389 • std::shared_ptr<uint8_t> data 390 Managed pointerto rasterscanned data.EitherRGB color orintensity.Ifimage_depth == 24 391 this points to 3WH bytes RGBRGBRGB... If image_depth == 8 this points to WH bytes IIIIIII.
	392 2.1.2.2 TattE::MultiTattooTypedefReference 393 typedef std::vector< Image > MultiTattoo 394 Data structure representing a set ofthe sametattooimagesfrom a singleperson.
	395 2.1.3 DataStructurefordetectedtattoo 396 Implementations shall return bounding box coordinates of each detected tattoo in an image.
	397 2.1.3.1 TattE::BoundingBoxStructReference 398 Structureforboundingbox around adetectedtattoo.
	399 PublicMemberFunctions
	399 PublicMemberFunctions
	400 • BoundingBox () 401 • BoundingBox (uint16_txin, uint16_tyin, uint16_twidthin, uint16_theightin,double confin)
	402 PublicAttributes
	402 PublicAttributes
	403 • uint16_t x 404 X-coordinate oftop-leftcorner ofboundingbox aroundtattoo. 405 • uint16_t y 406 Y-coordinate oftop-leftcorner ofboundingbox aroundtattoo. 407 • uint16_t width 408 Width,inpixels, ofboundingbox aroundtattoo. 409 • uint16_t height 410 Height,inpixels, ofboundingbox around tattoo. 411 • double confidence 412 Certainty thatthisregioncontainsatattoo. Thisvalueshallbeon[0,1]. Thehigherthe 413 value,themore certain.

	414 2.1.4 ClassforrepresentingatattooinaMultiTattoo
	414 2.1.4 ClassforrepresentingatattooinaMultiTattoo
	415 2.1.4.1 TattE::TattooRep ClassReference 416 Classrepresenting atattoo orsketch templatefrom image(s)
	417 PublicMemberFunctions
	417 PublicMemberFunctions
	418 • TattooRep () 419 DefaultConstructor. 420 • void addBoundingBox (const BoundingBox &bb) 421 Thisfunction shouldbe used to addboundingbox entriesfor eachinputimageprovided to 422 theimplementationfortemplategeneration. If thereare4imagesintheMultiTattoovector, 423 then the size of boundingBoxes shall be 4. boundingBoxes[i] is associated with 424 MultiTattoo[i]. 425 • std::shared_ptr< uint8_t> resizeTemplate (uint64_t size) 426 Thisfunctiontakesasizeparameterand allocates memory of sizeand returnsa manag
	436 PrivateAttributes
	436 PrivateAttributes
	437 • std::shared_ptr< uint8_t> tattooTemplate 438 Proprietarytemplatedata representing atattooinimages(s) 439 • uint64_t templateSize 440 Size oftemplate. 441 • std::vector< BoundingBox > boundingBoxes 442 Data structurefor capturingboundingboxes aroundthedetectedtattoo(s)
	443 2.1.5 Datastructureforresultofanidentificationsearch 444 Allidentificationsearchesshallreturnacandidatelistof aNIST-specifiedlength. Thelistshallbe sortedwith 445 the most similar matching entries listed first with lowest rank.
	446 2.1.5.1 TattE::CandidateStructReference 447 Data structurefor result of anidentification search.
	448 PublicMemberFunctions
	448 PublicMemberFunctions
	449 • Candidate () 450 • Candidate (boolassignedin, std::stringidin,double scorein)
	451 PublicAttributes
	451 PublicAttributes
	452 • bool isAssigned 453 If thecandidateisvalid, thisshouldbeset totrue. If thecandidatecomputationfailed, this 454 shouldbe settofalse. 455 • std::string templateId 456 ThetemplateIDfromthe enrollmentdatabase manifest. 457 • double similarityScore 458 Measure of similaritybetween theidentification template and the enrolled candidate.Higher 459 scores meanmorelikelihood thatthe samples areof the sameperson.Analgorithmis free 460 to assign any value to a candidate. The distribution of values will have an im

	462 2.1.6 DataStructureforreturnvalueofAPIfunctioncalls
	462 2.1.6 DataStructureforreturnvalueofAPIfunctioncalls
	463 2.1.6.1 TattE::ReturnStatusStructReference 464 A structure to contain information about the success/failure by the software under test. An object of this 465 class allows the softwaretoreturn someinformationfromafunction call.Thestring withinthis object canbe 466 optionally setto provide more informationfordebugging etc.Thestatuscodewillbesetby thefunctionto 467 Success on success, or one ofthe other codes onfailure.
	468 PublicMemberFunctions
	468 PublicMemberFunctions
	469 • ReturnStatus () 470 • ReturnStatus (constTattE::ReturnCode code, const std::string info="") 471 Create a ReturnStatus object.
	472 PublicAttributes
	472 PublicAttributes
	473 • TattE::ReturnCode code 474 Return status code. 475 • std::string info 476 Optionalinformation string.

	477 2.1.7 EnumerationTypeDocumentation
	477 2.1.7 EnumerationTypeDocumentation
	478 2.1.7.1 enumTattE::ReturnCode[strong] 479 Return codesforthefunctions specifiedbythisAPI.
	480 Enumerator
	480 Enumerator
	481 Success Success
	482 ConfigError Error reading configurationfiles
	483 ImageTypeNotSupported Image type, e.g., sketches, is not supported by the implementation 484 RefuseInput Elective refusaltoprocesstheinput
	483 ImageTypeNotSupported Image type, e.g., sketches, is not supported by the implementation 484 RefuseInput Elective refusaltoprocesstheinput
	485 ExtractError Involuntary failure to process the image 486 ParseError Cannotparsetheinputdata

	487 TemplateCreationError Elective refusaltoproduce atemplate 488 EnrollDirError An operation onthe enrollmentdirectoryfailed(e.g.permission, space)
	489 NumDataError The implementation cannotsupportthe number ofinputimages 490 TemplateFormatError One or moretemplatefiles arein anincorrectformatordefective 491 InputLocationError Cannotlocatetheinputdata -the input files or names seem incorrect
	492 VendorError Vendor-defined failure
	493 2.1.7.2 enumTattE::TemplateRole[strong] 494 Labels describing the type/role of the template to be generated (provided as input to template 495 generation)
	496 Enumerator
	496 Enumerator
	497 Enrollment Enrollmenttemplate usedto enrollintogallery 498 Identification Identification template used for search

	499 2.1.7.3 enumTattE::ImageType[strong] 500 Labels describing the image type.
	499 2.1.7.3 enumTattE::ImageType[strong] 500 Labels describing the image type.
	501 Enumerator
	501 Enumerator
	502 Tattoo Tattooimage
	503 Sketch Sketch oftattoo 504 Unknown Unknown or unspecified
	505 2.2 File structures for enrolledtemplate collection 506 Animplementation converts a MultiTattoo into atemplate, using,for examplethe createTemplate() function 507 ofsection3.4.1.5.2. To support the Class I identification functions of Table2, NIST will concatenate 508 enrollmenttemplatesinto a single large file,the EDB(for enrollmentdatabase). TheEDBisasimplebinary 509 concatenation ofproprietary templates. Thereis noheader.There are nodelimiters.TheEDB may be 510 hundreds of gigabytesin length.
	511 Thisfile willbe accompaniedby a manifest;thisis anASCIItextfiledocumenting the contents ofthe EDB. 512 Themanifesthastheformat shownasanexampleinTable6. If the EDB contains N templates, the manifest 513 will containN lines.Thefields are space (ASCII decimal 32) delimited. There are three fields. Strictly 514 speaking,thethird columnis redundant.
	515 Important: If a call to the template generation function fails, or does not return a template, NIST will include 516 the Template ID in the manifest with size 0.Implementationsmusthandle thisappropriately.
	517 Table6 –Enrollmentdatasettemplatemanifest
	517 Table6 –Enrollmentdatasettemplatemanifest
	Field name
	Field name
	Field name
	Template ID
	Template Length
	Position offirstbyte in EDB

	Datatype required
	Datatype required
	std::string
	Unsigneddecimal integer
	Unsigneddecimalinteger

	Example lines ofa manifestfile appear to the right. Lines 1, 2, 3 and Nappear.
	Example lines ofa manifestfile appear to the right. Lines 1, 2, 3 and Nappear.
	90201744
	1024
	0

	Tattoo01
	Tattoo01
	1536
	1024

	7456433
	7456433
	512
	2560

	...
	...

	Tattoo12
	Tattoo12
	1024
	307200000

	518 519 TheEDB schemeavoidsthefilesystem overhead associated with storing millionsofindividualfiles.
	520

	521 3. APISpecification
	521 3. APISpecification
	522 Thefunctionprototypesfromthisdocumentandanyothersupporting code willbeprovided in a "tatte.h"file 523 made available to implementers via .
	https://github.com/usnistgov/tattoo
	https://github.com/usnistgov/tattoo

	524 3.1 Namespace 525 AlldatastructuresandAPIinterfaces/functioncallswillbedeclaredinthe TattE namespace.
	526 3.2 Overview 527 . All 528 submissions toTatt-E shallimplementthefunctionsrequiredbythe rulesfor participation listed before Table 529 2. Tatt-E participantsshallimplementtherelevantC++prototypedinterfacesinthissection. C++ was 530 choseninordertomakeuseof someobject-oriented features.
	ThissectiondescribesseparateAPIsforthecoretattooapplicationsdescribedinsection1.10

	531 3.3 DetectionandLocalization(ClassD) 532 ThissectiondefinesanAPIforalgorithmsthat can solely performtattoo detection and localization. The 533 detection taskrequirestheimplementationto detectwhetheranimagecontainsatattooornot,and 534 localization requiresidentifyingthelocationofthetattoowithintheimage. Givenanimage,an 535 implementation should
	536 • Fordetection, classify whetheratattoowasdetectedintheimageornot andprovide a real-valued 537 measureofdetectionconfidenceon[0,1],with1indicatingabsolute certainty thattheimage 538 contains atattooand0indicatingabsolute certainty thattheimagedoes not containatattoo.
	539 • Forlocalization, reportlocation(s) ofone ormore tattoos ondifferent bodylocationsintheformof a 540 bounding box.
	541 Table7 –Procedural overviewofthedetectionandlocalizationtest
	Phase
	Phase
	Phase
	Name
	Description
	Performance Metrics to be reportedbyNIST

	Detection and Localization
	Detection and Localization
	Initialization
	initialize() Give the implementation the name of a directorywhere any provider-supplied configuration data willhave been placedby NIST. This location willotherwise be empty. The implementation is permitted read-only access to the configuration directory.

	Detection
	Detection
	detectTattoo() For each of Nimages, pass single images to the implementation for tattoo detection. The implementation will set a boolean indicating whether a tattoo was detected or not and a detection certainty confidence score. Multiple instances ofthe callingapplication may run simultaneously or sequentially. These may be executing on different computers.
	Statistics ofdetection times. Accuracymetrics. The incidence of where the implementation failed to perform detection (non-successful return code).

	Localization
	Localization
	localizeTattoos() For each of Ntattoo images, pass single images to the implementation for tattoo localization. The implementation will populate a vector with bounding boxes corresponding to the tattoos detected from the input image. Multiple instances ofthe callingapplication may run simultaneously or sequentially. These may be executing on different computers.
	Statistics ofthe time needed for this operation. Accuracymetrics. The incidence of where the implementation failed to perform localization.

	543 3.3.1 TattE::DetectAndLocalizeInterfaceClassReference 544 TheinterfacetoClassDimplementations.
	543 3.3.1 TattE::DetectAndLocalizeInterfaceClassReference 544 TheinterfacetoClassDimplementations.
	545 3.3.1.1 PublicMember Functions
	545 3.3.1.1 PublicMember Functions
	546 • virtual ~DetectAndLocalizeInterface () 547 • virtual ReturnStatus initialize (conststd::string&configurationLocation)=0 548 willbe calledbytheNIST 549 application before anycallto the functions detectTattoo and localizeTattoos(). 550 • virtual ReturnStatus detectTattoo (const Image &inputImage,bool&tattooDetected,double 551 &confidence)=0 552 Thisfunctiontakes an Image asinput and indicateswhether a tattoo was detected in the 553 image or not. 554 • virtual ReturnStatus localizeTattoos(const Image &in
	Thisfunctioninitializestheimplementation undertest.It

	558 3.3.1.2 StaticPublicMemberFunctions
	558 3.3.1.2 StaticPublicMemberFunctions
	559 • static std::shared_ptr< DetectAndLocalizeInterface > getImplementation () 560 Factory methodto return a managedpointertothe DetectAndLocalizeInterface 561 object. Thisfunctionisimplementedbythesubmittedlibrary and must returnamanaged 562 pointerto the DetectAndLocalizeInterface object.
	563 3.3.1.3 DetailedDescription 564 TheinterfacetoClassDimplementations. 565 TheclassDdetectionandlocalizationsoftwareundertest must implement the interface
	566 DetectAndLocalizeInterface bysubclassing thisclass and implementing each method specified therein.
	567 3.3.1.4 Constructor & Destructor Documentation
	567 3.3.1.4 Constructor & Destructor Documentation
	568 • virtualTattE::DetectAndLocalizeInterface::DetectAndLocalizeInterface ()[inline],[virtual]
	568 • virtualTattE::DetectAndLocalizeInterface::DetectAndLocalizeInterface ()[inline],[virtual]

	569 3.3.1.5 MemberFunctionDocumentation
	569 3.3.1.5 MemberFunctionDocumentation
	570 3.3.1.5.1 virtualReturnStatus TattE::DetectAndLocalizeInterface::initialize (const std::string& 571 configurationLocation)[pure virtual]
	570 3.3.1.5.1 virtualReturnStatus TattE::DetectAndLocalizeInterface::initialize (const std::string& 571 configurationLocation)[pure virtual]
	572 willbecalledbytheNIST application before anycall 573 to the functions detectTattoo and localizeTattoos.
	Thisfunctioninitializestheimplementationundertest.It

	574
	575 Parameters:
	in
	in
	in
	configurationLocation
	A read-onlydirectory containing any developer-supplied configuration parameters or run-time data. The name of this directory is assigned by NIST, not hardwired by the provider. The names of the files in this directoryare hardwired in the implementation and are unrestricted.

	576 3.3.1.5.2 virtualReturnStatus TattE::DetectAndLocalizeInterface::detectTattoo(constImage & 577 inputImage, bool & tattooDetected, double & confidence)[pure virtual] 578 Thisfunctiontakes an Image asinput and indicateswhether a tattoo was detected in the image or not. 579
	580 Parameters:
	580 Parameters:
	580 Parameters:
	581 3.3.1.5.3 virtualReturnStatus TattE::DetectAndLocalizeInterface::localizeTattoos(const Image& 582 inputImage, std::vector< BoundingBox > & boundingBoxes, std::vector< BodyLocation > 583 & bodyLocations)[pure virtual]

	in
	in
	in
	inputImage
	An instance ofan Image struct representing a single image

	out
	out
	tattooDetected
	true if a tattoo is detected in the image; false otherwise

	out
	out
	confidence
	A real-valued measure oftattoo detection confidence on [0,1]. A value of1indicates certainty thatthe image contains a tattoo, and a value of0indicates certainty thatthe image does not contain a tattoo.

	584 Thisfunctiontakes an Image asinput, and populates a vectorof BoundingBox withthe number oftattoos 585 detected on different bodylocationsfromthe inputimage. 586
	584 Thisfunctiontakes an Image asinput, and populates a vectorof BoundingBox withthe number oftattoos 585 detected on different bodylocationsfromthe inputimage. 586
	587 Parameters:
	587 Parameters:
	in out
	in out
	in out
	inputImage boundingBoxes
	An instance ofan Image struct representing a single image For each tattoo detected in the image, the function shall create a BoundingBox, populate it with a confidence score, the x, y, width, height of the bounding box, and add itto the vector.

	588 3.3.1.6 static std::shared_ptr<DetectAndLocalizeInterface> 589 TattE::DetectAndLocalizeInterface::getImplementation ()[static]
	588 3.3.1.6 static std::shared_ptr<DetectAndLocalizeInterface> 589 TattE::DetectAndLocalizeInterface::getImplementation ()[static]
	590 Factory methodto return a managedpointertothe DetectAndLocalizeInterface object. 591 This function is implemented by the submitted library and must return a managed pointer to the 592 DetectAndLocalizeInterface object.
	593 Note: 594 A possibleimplementation mightbe: return(std::make_shared<ImplementationD>());
	595 3.4 Identification(ClassI) 596 The1:N applicationproceedsintwophases, enrollment andidentification. Theidentificationphaseincludes 597 separatepre-searchfeatureextractionstage, and a searchstage.
	598 Thedesign reflectsthefollowing testing objectivesfor 1:Nimplementations. -supportdistributed enrollment on multiple machines, with multipleprocesses runninginparallel -allowrecoveryafter a fatal exception, and measure the numberof occurrences -allowNISTto copy enrollment data onto manymachinesto supportparalleltesting -respecttheblack-box nature ofbiometrictemplates -extend complete freedomto the providerto use arbitrary algorithms -support measurementofdurationof corefunction calls -support measurement
	599 Table8 –Proceduraloverviewoftheidentificationtest
	Phase
	Phase
	Phase
	#
	Name
	Description
	Performance Metrics to be reportedbyNIST

	Enrollment
	Enrollment
	E1
	Initialization
	initializeEnrollmentSession() Give the implementation the name of a directorywhere any provider-supplied configuration data willhave been placedby NIST. This location willotherwise be empty.

	TR
	E2
	Parallel Enrollment
	createTemplate(TemplateRole=Enrollment) The input willbe one or more of the same tattoo image. This function will pass the input to the implementation for conversion to a single template. The implementation will return a template to the callingapplication. NIST's calling application willbe responsible for storing all templates as binary files. These will not be available to the implementation during this enrollment phase. Multiple instances ofthe callingapplication may run simultaneously or sequentially.
	Statistics ofthe times needed to enroll a tattoo. Statistics ofthe sizes of createdtemplates. The incidence of failed template creations.

	E3
	E3
	Finalization
	finalizeEnrollment() Permanentlyfinalize the enrollmentdirectory. This supports, for example, adaptation of the image-processing functions, adaptation of the representation, writing of a manifest, indexing, and computation ofstatisticalinformation over the enrollment dataset. The implementation is permitted read-write-delete access to the enrollment directoryduring this phase.
	Size ofthe enrollment database as a function of population size Nand the number of images. Duration ofthis operation. The time needed to execute this function shall be reported withthe preceding enrollment times.

	Pre-search
	Pre-search
	S1
	Initialization
	initializeProbeTemplateSession() Tellthe implementation the location of an enrollment directory. The implementation couldlook atthe enrollmentdata. Implementation initialize in preparation for search template creation. The implementation is permitted read-only access to the enrollment directoryduring this phase.
	Statistics ofthe time needed for this operation. Statistics of the time needed for this operation.

	S2
	S2
	Template preparation
	createTemplate(TemplateRole=Identification) For each probe, create a template from a set of input tattoo(s) or a sketch image. This operation will generally be conducted in a separate process invocation to stepS3. The implementation is permitted no access to the enrollment directoryduring this phase. The resultof this step is a search template.
	Statistics ofthe time needed for this operation. Statistics ofthe size ofthe search template.

	Search
	Search
	S3
	Initialization
	initializeIdentificationSession() Tellthe implementation the location of an enrollment directory. The implementation should read allor some of the enrolled data into main memory, so that searches can commence. The implementation is permitted read-only access to the enrollment directoryduring this phase.
	Statistics ofthe time needed for this operation.

	S4
	S4
	Search
	identifyTemplate()A template is searched againstthe enrollmentdatabase. The implementation is permitted read-only access to the enrollment directoryduring this phase.
	Statistics ofthe time needed for this operation. Accuracymetrics -Type I+ II error rates. Failure rates.

	600
	601 3.4.1 TattE::IdentificationInterfaceClassReference
	601 3.4.1 TattE::IdentificationInterfaceClassReference
	602 3.4.1.1 PublicMemberFunctions
	603 • virtual ~IdentificationInterface () 604 • virtual ReturnStatus initializeEnrollmentSession (const std::string&configurationLocation)=0 605 Thisfunctioninitializestheimplementation undertest and sets all neededparameters. 606 • virtual ReturnStatus createTemplate (const MultiTattoo &inputTattoos, const TemplateRole 607 &templateType, TattooRep &tattooTemplate, std::vector<double> &quality)=0
	608 Thisfunctiontakes aMultiTattoo and outputs a TattooRep object(essentially a template). 609 • virtual ReturnStatus finalizeEnrollment (conststd::string&enrollmentDirectory, conststd::string 610 &edbName, const std::string&edbManifestName)=0 611 Thisfunction willbe called after all enrollment templateshavebeen created andfreezes the 612 enrollment data.Afterthiscallthe enrollment datasetwillbe foreverread-only. 613 • virtual ReturnStatus initializeProbeTemplateSession (conststd::string&configurationLocati
	626 3.4.1.2 Static PublicMemberFunctions
	626 3.4.1.2 Static PublicMemberFunctions
	627 • static std::shared_ptr< IdentificationInterface > getImplementation () 628 Factory methodto return a managedpointertothe IdentificationInterface object. 629
	630 3.4.1.3 DetailedDescription 631 TheinterfacetoClassIimplementations. 632 The Class I submission software under test will implement this interface by subclassing this class and
	633 implementing eachmethodtherein.
	634 3.4.1.4 Constructor & Destructor Documentation
	634 3.4.1.4 Constructor & Destructor Documentation
	635 • virtual TattE::IdentificationInterface::~IdentificationInterface()[inline],[virtual]
	635 • virtual TattE::IdentificationInterface::~IdentificationInterface()[inline],[virtual]
	636

	637 3.4.1.5 MemberFunctionDocumentation
	637 3.4.1.5 MemberFunctionDocumentation
	638 3.4.1.5.1 virtualReturnStatus TattE::IdentificationInterface::initializeEnrollmentSession(const 639 std::string& configurationLocation)[pure virtual]
	638 3.4.1.5.1 virtualReturnStatus TattE::IdentificationInterface::initializeEnrollmentSession(const 639 std::string& configurationLocation)[pure virtual]
	640 Thisfunction initializesthe implementation undertestand setsallneeded parameters. 641 This function will be called N=1 times by the NIST application, prior to parallelizing M >= 1 calls to 642 createTemplate()viafork().
	643 Parameters:
	643 Parameters:
	in configurationLocation A read-onlydirectory containing any developer-supplied configuration parameters or run-time data files.

	644 3.4.1.5.2 virtualReturnStatus TattE::IdentificationInterface::createTemplate (constMultiTattoo& 645 inputTattoos, const TemplateRole & templateType, TattooRep & tattooTemplate, 646 std::vector<double>&quality)[pure virtual]
	644 3.4.1.5.2 virtualReturnStatus TattE::IdentificationInterface::createTemplate (constMultiTattoo& 645 inputTattoos, const TemplateRole & templateType, TattooRep & tattooTemplate, 646 std::vector<double>&quality)[pure virtual]
	647 This function takes a MultiTattoo and outputs a TattooRep object(essentially a template) and a vectorof 648 quality values associated with each tattoo image.
	649 For enrollment templates:If the function executes correctly(i.e. returns a successful exit status), the NIST 650 calling applicationwill storethetemplate.TheNIST applicationwill concatenatethetemplates andpass the 651 resulttotheenrollmentfinalization function.When the implementation failsto produce a template,it shall still
	649 For enrollment templates:If the function executes correctly(i.e. returns a successful exit status), the NIST 650 calling applicationwill storethetemplate.TheNIST applicationwill concatenatethetemplates andpass the 651 resulttotheenrollmentfinalization function.When the implementation failsto produce a template,it shall still
	652 return ablank template (which canbe zerobytesinlength).The template willbeincludedin the enrollment

	653 database/manifestlike allother enrollmenttemplates,butisnotexpected to contain anyfeature information. 654 Foridentificationtemplates:Ifthefunctionreturnsanon-successful return status,theoutputtemplatewillbe 655 not be used in subsequentsearch operations.
	656 Parameters:
	656 Parameters:
	in inputTattoos AninstanceofaMultiTattoo structure. Implementations must alter their behavior according to the type and numberofimages/type ofimage contained in the structure. The inputimage type could be a tattoo or a sketch image. The MultiTattoo willalways containthe sametypeofimagery, i.e., no mixing of tattoos and sketch images will occur. Notethatimplementation supportfor sketchimagesis OPTIONAL.Implementation shall return TattE::ImageType::ImageTypeNotSupported if theydo not supportsketch images.Alla
	in templateType A valuefromtheTemplateRole enumerationthatindicatestheintended usage ofthe template to be generated. In this case, either an enrollment template used for gallery enrollment or an identification template used forsearch.
	out tattooTemplate Tattoo template object. For each tattoo detected in the MultiTattoo,the function shall provide the bounding boxcoordinatesin each image. The bounding boxesshallbe capturedintheTattooRep.boundingBoxes variable, whichis a vectorof BoundingBox objects.Ifthereare4images intheMultiTattoo vector,thenthesize of boundingBoxesshallbe 4. boundingBoxes[i]is associated with MultiTattoo[i].
	out quality
	A vector ofquality values, one for eachinputtattoo image. This willbe an empty vector when passedinto this function, andthe implementation shallpopulate a
	qualityvalue correspondingto eachinputimage. quality[i]shallcorrespondto inputTattoos[i]. A measureoftattooquality on[0,1]isindicative of expected utility to the matcher, or matchability. This value could measure tattoo distinctiveness/information richness, and would be an indicatorof howwellthe tattoo wouldbeexpectedtomatch. A valueof1indicateshighquality andthatthetattoo wouldbeexpectedto match well, and a value of 0meanslow quality,indicative that tattoo would notmatch well.
	P

	657 3.4.1.5.3 virtualReturnStatus TattE::IdentificationInterface::finalizeEnrollment(const std::string& 658 enrollmentDirectory, const std::string & edbName, const std::string & 659 edbManifestName)[pure virtual]
	657 3.4.1.5.3 virtualReturnStatus TattE::IdentificationInterface::finalizeEnrollment(const std::string& 658 enrollmentDirectory, const std::string & edbName, const std::string & 659 edbManifestName)[pure virtual]
	660 Thisfunction willbe called after all enrollmenttemplateshavebeen created andfreezesthe enrollmentdata.
	661 Afterthis callthe enrollmentdataset willbeforever read-only. 662 Thisfunction allowstheimplementationtoconduct,forexample,statisticalprocessing of thefeaturedata, 663 indexing and data re-organization. The function may create its own data structure. It may increase or 664 decrease the size of the stored data. No output is expected from this function, except a return code. The 665 function will generally be called in a separate process after all the enrollment processes are complete. 666 NOTE: Implementa
	669 Parameters:
	669 Parameters:
	669 Parameters:
	670 3.4.1.5.4 virtualReturnStatus TattE::IdentificationInterface::initializeProbeTemplateSession (const

	in
	in
	in
	enrollmentDirectory
	The top-level directory in which enrollmentdata was placed. This variable allows an implementation to locate any private initialization data it elected to place in the directory.

	in
	in
	edbName
	The name of a single file containing concatenated templates, i.e. the EDBdescribed in Data Structures Supportingthe API. While the file will have read-write-delete permission, the implementation should onlyalter the file ifitpreserves the necessary content, in other files for example. The file may be opened directly. Itis not necessary to prepend a directory name. This is a NIST-provided input -implementers shall not internally hard-code or assume any values.

	in
	in
	edbManifestName
	The name of a single file containing the EDB manifestdescribed in Data Structures Supportingthe API . The file may be opened directly. It is not necessary to prepend a directoryname. This is a NIST-provided input -implementers shall not internally hard-code or assume any values.

	671 std::string& configurationLocation, const std::string & enrollmentDirectory)[pure virtual] 672 Before MultiTattoos are sent to the search template creation function, the test harness will call this 673 initializationfunction.
	671 std::string& configurationLocation, const std::string & enrollmentDirectory)[pure virtual] 672 Before MultiTattoos are sent to the search template creation function, the test harness will call this 673 initializationfunction.
	674 Thisfunctioninitializestheimplementationundertest and setsall neededparameters. Thisfunctionwillbe 675 called N=1 times by the NIST application, prior to parallelizing M >= 1 calls to createTemplate()via fork(). 676 Caution: The implementation should tolerate execution of P > 1 processes on the one or more machines 677 each ofwhich maybe reading fromthissame enrollmentdirectoryinparallel.Theimplementationhasread678 only accessto itsprior enrollment data.
	-

	679 Parameters:
	679 Parameters:
	in
	in
	in
	configurationLocation
	A read-onlydirectory containing any developer-supplied configuration parameters or run-time data files.

	in
	in
	enrollmentDirectory
	The read-onlytop-level directory in which enrollment data was placed and then finalized by the implementation. The implementation can parameterize subsequent template production on the basis of the enrolled dataset.

	680 3.4.1.5.5 virtualReturnStatus TattE::IdentificationInterface::initializeIdentificationSession(const
	680 3.4.1.5.5 virtualReturnStatus TattE::IdentificationInterface::initializeIdentificationSession(const
	681 std::string& configurationLocation, const std::string & enrollmentDirectory)[pure virtual] 682 Thisfunctionwillbecalled oncepriortooneormorecallstoidentifyTemplate. Thefunctionmight set static 683 internal variables sothatthe enrollmentdatabase is availabletothe subsequentidentification searches.
	684 Parameters:
	684 Parameters:
	in
	in
	in
	configurationLocation
	A read-onlydirectory containing any developer-supplied configuration parameters or run-time data files.

	in
	in
	enrollmentDirectory
	The read-onlytop-level directory in which enrollment data was placed.

	685 3.4.1.5.6 virtualReturnStatus TattE::IdentificationInterface::identifyTemplate (constTattooRep& 686 idTemplate, const uint32_t candidateListLength, std::vector< Candidate > & 687 candidateList)[pure virtual]
	685 3.4.1.5.6 virtualReturnStatus TattE::IdentificationInterface::identifyTemplate (constTattooRep& 686 idTemplate, const uint32_t candidateListLength, std::vector< Candidate > & 687 candidateList)[pure virtual]
	688 Thisfunction searches anidentification template against the enrollment set, and outputs a vector containing
	689 candidateListLengthCandidates. 690 Each candidate shall be populated by the implementation and added to candidateList. Note that 691 candidateList will be an empty vector when passed into this function. The candidates shall appear in 692 descending orderofsimilarity score -i.e.mostsimilarentriesappearfirst.
	693 Parameters:
	in
	in
	in
	idTemplate
	A template from createTemplate(). If the value returned by that function was non-successful, the contents ofidTemplate will notbe used, andthis function willnotbe called.

	in
	in
	candidateListLength
	The number of candidates the search should return.

	out
	out
	candidateList
	Each candidate shallbe populatedbythe implementation. The candidates shall appear in descending order of similarity score -i.e. most similar entries appear first.

	694 3.4.1.5.7 static std::shared_ptr<IdentificationInterface> 695 TattE::IdentificationInterface::getImplementation ()[static] 696
	694 3.4.1.5.7 static std::shared_ptr<IdentificationInterface> 695 TattE::IdentificationInterface::getImplementation ()[static] 696
	697 Factory methodto return a managedpointertothe IdentificationInterface object. 698 This function is implemented by the submitted library and must return a managed pointer to the 699 IdentificationInterface object.
	700 Note: 701 A possibleimplementation mightbe: return (std::make_shared<ImplementationI>()); 702
	703
	704

	 NIST will not register, or establish any kind of membership, on the provided website.
	 NIST will not register, or establish any kind of membership, on the provided website.
	705 AnnexA 706 Submissions ofImplementationsto Tatt-E
	707 A.1 Submissionof implementations toNIST
	707 A.1 Submissionof implementations toNIST
	708 NIST requiresthat allsoftware,data andconfigurationfiles submittedbytheparticipantsbe signed and 709 encrypted.Signing is done with the participant'sprivate key, and encryption is done with the NISTpublic 710 key.Thedetailed commands forsigning and encrypting are given here: 711 .
	https://www.nist.gov/itl/iad/image
	https://www.nist.gov/itl/iad/image
	-

	group/products-and-services/encrypting-softwaredata-transmission-nist

	712 NISTwill validate allsubmitted materials usingtheparticipant'spublickey, andthe authenticity ofthatkey
	willbe verified usingthe keyfingerprint. This fingerprintmustbe submittedto NISTby writingiton the 713 signedTatt-EParticipation Agreement that is published on the Tatt-E website -714
	715
	.
	https://www.nist.gov/programs-projects/tattoo-recognition-technology-evaluation-tatt-e

	716 By encryptingthe submissions, we ensure privacy; by signing the submission, we ensure authenticity (the 717 softwareactually belongs tothe submitter). NISTwill rejectany submissionthatis notsigned and encrypted. 718 NIST acceptsnoresponsibilityforanythingthatistransmitted to NIST that is not signed and encrypted with 719 the NIST public key.
	720 A.2 How toparticipate
	720 A.2 How toparticipate
	721 Thosewishingtoparticipatein Tatt-E testing mustdoallofthefollowing, ontheschedulelisted onPage2.
	722 ― IMPORTANT: Follow the instructions for cryptographic protection of your software and data here 723 724 ― Senda signed andfully completed copy ofthe Applicationto ParticipateintheTattooRecognition
	-
	https://www.nist.gov/itl/iad/image-group/products-and-services/encrypting-softwaredata-transmission-nist
	https://www.nist.gov/itl/iad/image-group/products-and-services/encrypting-softwaredata-transmission-nist

	725 Technology -Evaluation(Tatt-E) that is published on the Tatt-E website. 726 This mustidentify, andinclude signaturesfrom,theResponsibleParties asdefinedinthe application. 727 Theproperly signedTatt-E ApplicationtoParticipateshallbesenttoNISTasaPDF.
	containedinthis document

	728 ― Provideasoftware librarythatcomplies withtheAPI(ApplicationProgrammerInterface)specifiedinthis 729 document. 730 • Encrypteddataandlibraries below 20MB can be emailed to NISTat . 731 • Encrypteddataand libraries above 20MB shallbe
	tatt-e@nist.gov
	tatt-e@nist.gov

	732 EITHER 733 SplitintosectionsAFTERtheencryptionstep. Usetheunix"split"commandstomake 734 9MB chunks, and then rename to include the filename extension need for passage 735 through the NIST firewall.
	§

	736 you% split –a 3 –d –b 9000000 libTattE_Choice_D_07.tgz.gpg 737 you% ls -1 x??? |xargs –iQ mv Q libTattE_Choice_D_07_Q.tgz.gpg 738 Emaileachpartin a separate email.Upon receiptNIST will 739 nist% cat tatte_choice_D07_*.tgz.gpg > libTattE_Choice_D_07.tgz.gpg 740 OR 741 Madeavailableas a file.zip.gpg orfile.zip.asc download from a generichttp webserver, 742 OR 743 Mailed as afile.zip.gpg orfile.zip.asc onCD/DVDtoNIST atthis address:
	§
	§
	§
	§
	§
	5
	§

	Tatt-E TestLiaison (A210) 100 Bureau Drive A210/Tech225/Stop 8940 NIST
	Tatt-E TestLiaison (A210) 100 Bureau Drive A210/Tech225/Stop 8940 NIST
	Tatt-E TestLiaison (A210) 100 Bureau Drive A210/Tech225/Stop 8940 NIST
	In cases where a courier needs a phone number, please use NIST shipping and handling on: 301 -975 --6296.
	-

	Gaithersburg, MD 20899-8940 USA
	Gaithersburg, MD 20899-8940 USA

	744 A.3 Implementation validation
	744 A.3 Implementation validation
	745 RegisteredParticipantswillbeprovidedwith asmall validationdataset andtestprogram upon NIST receipt 746 ofeithera signedParticipationAgreementor an emailto indicatingparticipationintentions. 747 Instructions on obtaining the validation package will be emailed to participants thereafter.
	tatt-e@nist.gov
	tatt-e@nist.gov

	748 749
	via
	https://github.com/usnistgov/tattoo
	https://github.com/usnistgov/tattoo

	shortly afterthefinal evaluationplanis released. Anannouncement
	willbe made ontheTatt-E website whenthe validationpackageis available.

	750 Thevalidationtestprogramsshallbe compiled bythe provider. The outputofthese programsshallbe 751 submittedtoNIST.
	752 Priortosubmissionofthe software libraryand validation data,the Participantmust verifythattheirsoftware 753 executes on the validation images and producescorrectscores and templates.
	754 Softwaresubmitted shallimplementtheTatt-E APISpecificationasdetailedinthebodyofthisdocument.
	755 Uponreceiptofthesoftwarelibraryand validation output,NIST willattemptto reproduce the same outputby 756 executing the software on the validation imagery, using a NIST computer. In the eventofdisagreementin 757 the output, or other difficulties, the Participant will be notified. 758
	759 Pleasenotethattheprovided validationsoftwareandimageryismeantonlyforvalidation purposes and 760 does notreflecthowNIST willperform actualtesting.The validation images are notrepresentative ofthe 761 actualtestdata thatwillbe used to evaluate implementations. 762
	763
	764

