

Media Forensics

The 2017 Nimble Challenge Evaluation: Results and Future Directions

CVPR Workshop on Media Forensics July 26, 2017

Jonathan Fiscus

jfiscus@nist.gov

Dr. Haiying Guan ,Dr. Yooyoung Lee, Dr. Amy Yates, <u>Andrew Delgado</u>, Daniel Zhou, David Joy, August Pereira

> Multimodal Information Group Information Access Division Information Technology Laboratory National Institute of Standards and Technology (NIST)

You Will Learn About:

- The motivation behind the Nimble '17 evaluation
- The results of the baseline evaluation for four evaluation tasks
- How the Media Forensics Challenge supports many research goals
- How to participate in the 2018 Media Forensics Challenge

Media Forensics

- Digital media manipulation is entertaining
 - Social media filters
 - CGI/Movies
- Digital media manipulation is nefarious
 - Fraud
 - Disinformation

Media Forensics: Fictitious Insurance Fraud Example

Claim:

Jack's Excavating failed to protect their work site from traffic allowing Mr. Smith to drive his car into the work zone crashing into a ditch on the 12th of December in Clarion, PA.

Translating the Use Case Into Research Tasks

- Is the image manipulated?
- Where do the manipulations spatially occur?
- What operations were performed?
- Is there an original image?
- Are there related images?
- Is the image consistent with the camera?
- Are there known examples of vehicles?
- Is the image consistent with the reported date and location?

The evaluation series strives to support many aspects through <u>detailed annotation and failure analysis</u>

Our Approach to Media Forensics Technology Development

- Develop an expressive <u>manipulation annotation</u> <u>record</u> capable of supporting research and analysis
- Develop <u>evaluation tasks and performance metrics</u> that both explore component and end-to-end technologies
- Develop <u>data sets</u> to support research, development, and evaluations
- Administer a <u>multi-year evaluation</u> series to support long-term research

Manipulation Annotation:

- Manipulation operations are recorded in graphs
 - Graph formalism defined for the Nimble '16 Data set
 - PAR Government Inc. extended the formalism creating manipulation "journals"
- Masks collected for incoming and outgoing links

Manipulation Annotation:

Manipulation Annotation:

7/28/17

7/28/17

Data Set Production Data Flow:

NIS

Nimble Challenge 2017 Tasks and Definitions

- Manipulation Detection and Localization (MDL)
 - Image
 - Video (detection only)
- Splice Detection and Localization (SDL)
- Provenance Filtering (PF)
- Provenance Graph Building (PGB)

Definitions:

<u>Probe</u>: the image or video being forensically analyzed

<u>Detection</u>: determine IF the probe was manipulated

Localization: determine WHERE the probe was manipulated

<u>Filtering</u>: Find imagery 'related' to the probe

<u>Graph Building:</u> construct the phylogeny graph of the probe

Researcher Flexibility: System OptIn and Selective Scoring

Media Forensics techniques often address a specific manipulation type, sources, etc.

- System OptIn Protocol
 - The "OptIn" Protocol allows developer/system to:
 - Determine if a response is appropriate given 'only the imagery and imagery metadata'
 - Communicate which probes were not processed and why
 - Score reporting
 - Trial Response Rate Fraction of probes for which the system responded
 - Performance measures on the subset of trials.
- Selective Scoring two approaches
 - Developer declares the type of operation detected by the system
 - E.g., this is a local blur detection system
 - Performed by NIST as a data analysis technique using metadata to condition analysis, i.e., manipulations of a certain type, etc.

2017 Nimble Challenge Participates Overview

Team Abb.	Organization ID	MDL (image/video)	SDL	PF	PG
BIN	Binghamton University	1	-	-	-
FIB	Honeywell ACS Laboratories	1	1	-	-
	Kitware				
	UC Berkeley				
	Dartmouth College				
KIT	University at Albany, SUNY	4 + 1(video)	-	1	-
	MAYACHITRA				
	Naval Air Warfare Center, China Lake				
MAY	UC Riverside	9	-	-	-
	Purdue				
	Politecnico di Milano, Italy				
	University of Siena				
PUR	Univ. of Notre Dame; University of Campinas, Brazil	5	-	5	4
SRI-TA2	SRI International, Princeton (Ajay Divakaran)	1	-	-	-
SRPPRI	SRI International, Princeton (Jeffrey Lubin)	1+1(video)	-	-	-
UMD	University of Maryland, College Park	1	-	-	-
UNIFI	University of Florence, FENCE, Prato, Italy	3	2	-	-
USCISI	University of Southern California, ISI	5	1	1	1
10 teams	19 organizations, 49 systems	31 + 2(video)	4	7	5

Manipulation Detection and Localization **Evaluation Task**

NC17 Image Manipulation Detection Results

7/28/17

Selective Scoring Results: All Operation vs. Crop-Only Probes

7/28/17

Sensitivity Factor Analysis:

Manipulation Detection Performance of Primary All Manipulation Systems

- Journals contain a wealth of information about the manipulations
- Selective Scoring provides the mechanism to study the effect of operations, metadata, etc. on performance
- This study measured the effect (the range of AUC performance across teams) for 25 metadata factors

Factors	Effect
ManipulationCategory	0.089
Operation	0.077
BrowserUnit	0.050
OperationArgument	0.043
Recapture	0.039
SeamCarving	0.026
ImageCompressionTable	0.026
Natural Scene	0.019
SemanticRepurposing	0.018
CompositePixelSize	0.016
AntiforensicApplied	0.016
JournalSource	0.014
AntiforensicNoiseRestoration	0.014
AntiforensicAddCamFingerprintPRNU	0.011
Purpose	0.010
People	0.007
SemanticRestaging	0.003

Video Manipulation Detection: Kitware -- All Manipulations vs. Drop Frame Probes

All operations; AUC = 0.58

Selective Scoring Drop Frame; AUC = 0.64

NC17 Image Manipulation Localization Results (11 teams, 16 systems)

Team	System	All- MMCC	TR- MMCC	Trial Response Rate
BINGHAMTON	p-prnu_1		0.1853	0.1000
FIBBER	p-FourlGH_1		0.0365	0.9886
MAYACHITRA-CI	c-acontrario_3		0.0345	0.9945
MAYACHITRA-Mc	c-resamplingdetector1_3	0.0202		
MAYACHITRA-UcR	c-lstmwithoutresampling_2		0.0035	0.9975
Purdue-11b1	p-MFCN1_1		0.0596	0.9980
SRI-TA2	p-baseline_1	0.0887		
SRIPRI	p-baseline_1		0.0831	0.1870
UMD	p-facesteganalysis_1		0.1876	0.1054
	c-baselineMOD3_1		0.2241	0.0686
UNIFI	c-baselineMOD4_1		0.2237	0.0681
	c-Autoencoder01a_1		0.1893	0.9727
	c-PMcopymove01a_1		0.1317	0.9995
USCISI	c-PMinpainting01a_1		0.1209	0.9995
	c-gradbased01a_1		0.1957	0.2337
	p-Splicebuster01a_1		0.1991	0.9727

Matthews Correlation Coefficient:
(MCC)

$$TP * TN - FP * FN$$

$$TP * FP)(TP + FN)(TN + FP)(TN + FN)$$
• MCC=1 \rightarrow perfect correlation
• MCC=0 \rightarrow no correlation or
no output (by convention)
• MCC=-1 \rightarrow perfect anti-
correlation
Maximum MCC=
 $argmax_{\Theta}$ (MCC(Θ))

- <u>All-MMCC</u> Maximum MCC average over all true manipulations
- <u>TR-MMCC</u> Maximum MCC average over Opted In true manipulations

NC17 Image Manipulation Localization - All operation example (1)

	 Black – Manipulation Yellow - No-Score 	 Green - Tru Red - False White - Tru Blue - False 	ue Positives Alarm. ue Negative e Negative
Composite	Binarized Reference	SystemID1	SystemID2
21a1b6501b9c0d84fa46ad6eddf8bbe4		MMCC: 0.87	MMCC: 0.57
fb8785800546e9602ef35c7ee0cee8b7		MMCC: 0.84	MMCC: 0
	•	Invariant to size	†

Splice Detection and Localization Evaluation Task

7/28/17

NC17 Splice Manipulation Results Detection ROC and Localization MaxMCC

		Donor TRR	Donor trMMCC	Probe TRR	Probe trMMCC	
UNIFI	c-baselineMOD4_1	0.0907	0.1010	0.0910	0.1940	– Ontin
	p-baselineMOD3_1	0.0918	0.0998	0.0921	0.1916	Optim
USCISI	p-baseline_1	1.000	0.1862	1.0000	0.1740	

Provenance Filtering Evaluation Task

Recall Metric Comparison by Depth of Retrieval

Provenance Graph Building Evaluation Task

Metrics

Graph Similarity

Generalized F-measure:

- Sim(nodes)
- Sim (links)
- Sim(nodes+links)

Provenance Graph Building Task Evaluation Metrics

- Graph Similarity and Generalized F-measure
 - Overlap of nodes: $sim_{NO}(G_r, G_s) = 2 \frac{|V_r \cap V_s|}{|V_r| + |V_s|}$

• Overlap of links:
$$sim_{LO}(G_r, G_s) = 2 \frac{|E_r \cap E_s|}{|E_r| + |E_s|}$$

• Overlap of node and links: $sim_{NLO}(G_r, G_s) = 2 \frac{|V_r \cap V_s| + |E_r \cap E_s|}{|V_r| + |V_s| + |E_r| + |E_s|}$

MeanNodeRecall	From Provenance Filtering
MeanSimNO	Similarity of Node Overlap for a Provenance Graph - Eval Plan Section 7.0
MeanSimLO	Similarity of Link Overlap for a Provenance Graph - Eval Plan Section 7.0
MeanSimNLO	Similarity of Link+Node Overlap for a Provenance Graph - Eval Plan Section 7.0

NC2017 Provenance Graph Building Eval. Results

• 2 teams/organizations, 5 systems (end-to-end)

Team/System			Mean Similarity				
		Niean Node Recall	Node Overlap	Link Overlan	Node and Link Overlan		
	c-contrast1_1	0.5249	0.5913	0.1812	0.3875		
	c-contrast2_1	0.5228	0.6124	0.2189	0.4170		
NDPURDUE	c-contrast3_1	0.5246	0.5909	0.1809	0.3872		
	p-baseline_1	0.5230	0.6127	0.2085	0.4124		
USCISI	p-baseline_1	0.4786	0.4146	0.0776	0.2674		

Provenance Graph Evaluation Example: ND-Purdue, Baseline System

Translating the Use Case Into Research Tasks

- Is the image manipulated?
 - Where do the manipulations spatially occur?
 - What operations were performed?
 - Is there an original image?
 - Are there related images?
 - Is the image consistent with the camera?
 - Are there known examples of vehicles?
 - Is the image consistent with the reported date and location?

'17

7/28/17

Media Forensics Challenge '18: Sign Me Up!

https://www.nist.gov/itl/iad/mig/media-forensics-challenge-2018

- Step 1: Complete agreements
- Step 2: Get data
- Step 3: Get evaluation tools
- Step 4: Build a system
- Step 5: Participate in the MFC '18 evaluation
- Step 6: Keep researching for MFC '19

			Search NIST Q	≡ NIST MEN	
nformation Technology Laborator	y / Information Access				
MULTIMODAL INFO	RMATION GROU	IP			
Tools	Media F	orensics Challen	ge 2018		
Past HLT Evaluation Projects	f 8+ 🛩		-		
Staff	The Media Forensic: advance the state of of manipulations in evaluation is curren support for the follo	Challenge 2018 (MFC2018) Evaluation is the the art for image and video forensics techn imagery (image/video data) and the phylog tly being designed building of off experience wing tasks:	e second annual evaluation to support reso ologies – technologies that determine the enic process that modified the imagery. Th from the <u>NC2017 Evaluation</u> . We expect t	earch and help region and type ne MFC2018 to continue	
	 Image Manipulation Detection and Localization (Image SDL)- Given a single probe image, detect if the probe was manipulated and provide localization mask(s) indicating where the image was modified. 				
	 Splice Detection and Localization (Image MDL) - Given two images, detect if a region of a donor image has been spliced into a probe image and, if so, provide two masks indicating the region(s) of the donor image that were spliced into the probe and the region(s) of the probe image that were spliced from the donor. 				
	 Provenance Filtering (PF) - Given a probe image and a set of images representing a world (i.e., large 5M+ images), return the top N images from the world data set which contributed to creating a probe image. 				
	Provenance	araph Building (PGB)- Produce a phylogeny	graph for a probe image		
	○ Variati (5M+ i	on 1: End-to-End Provenance - Provenance nages) of images.	output produced by processing the large v	vorld data set	
	 Variation 2: Oracle Filter Provenance - Provenance output produced from a NIST-provided small (200 image) collection of images. 				
	 Video Manipu 	lation Detection (Video MDL) - Detect if the	probe video was manipulated.		
	Prospective MFC participants can subscribe to the MFC mailing list for announcements by sending a request to the contact below and can take part in the evaluation by completing the registration and license agreements below.				
	There are many exciting changes being planned for the evaluation cycle: more development resources, a scoring server with a leader-board style evaluation, manipulation operation-specific system evaluations to allow manipulation type- specific research, and detailed, automatic diagnostics of system success/failures.				
	Tentative Sch	edule			
	Dates	Development Resources			
	Now	 NC 2017 Data Resources avail 	lable		

List of Data Sets Available to Participants

Data Set Type	Data Set Name	Number of Forensic Probes	World Data Set Size	Data Size	Reference Annotations	Supported Tasks
Development	NC2016 – Both Nimble Science and Nimble Web	624	N/A	4GB	Full	MDL
	NC'17 Development Image Data	3,500	100,000	379 GB	Full	MDL, VMD, SDL,
	NC'17 Development Video Data	213				Prov
	NC'18 Development Image and Video Data	TBD	TBD	TBD	Full	TBD
Past Evaluations	NC'17 Evaluation Images	10,000	1,000,000	3.5TB	Full for 1/3 subset	MDL, SDL, Prov
	NC'17 Evaluation Videos	1,000		117GB	Full for 1/3 Subset	VMD
NC '18 Evaluation	NC'18 Evaluation Images	50,0000	5,000,000	~		MDL, SDL, Prov
	NC'18 Evaluation Videos	5,000		~600GB		VMD

MDL: Manipulation Detection and Localization SDL: Splice Detection and Localization Prov: Provenance Filtering and Graph Building VMD: Video Manipulation Detection

MFC 2018 Changes

- Evaluation Task Changes
 - Provenance graphs with link operations
- New data resources
 - 2 additional development releases: Sept 30, Dec 31
 - Bigger evaluation collection
- Metric changes
 - Localization Object/operation/sub-unit/region level scoring
 - Detection metrics focused on low false alarm
- Scoring Server
 - Leaderboard and blind evaluations
 - Developer-controlled selective scoring
 - Statistical system comparisons
- Semantic Integrity
 - Dave Doermann will present this later today

Thank You for Your Attention!

NIST MediFor Team: medifor-nist@nist.gov

MFC '18 Web Site: https://www.nist.gov/itl/iad/mig/media-forensics-challenge-2018

Disclaimer

Any mention of commercial products or reference to commercial organizations in this report is for information only; it does not imply recommendation or endorsement by NIST nor does it imply that the products mentioned are necessarily the best available for the purpose.

