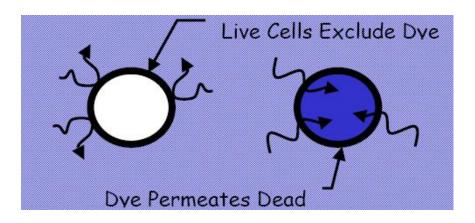


Lena Lee Global Product Manager – Vi-CELL

- Introduction
- Case studies
- Recommendations
- Beckman Coulter Life Sciences

Vi-CELL XR

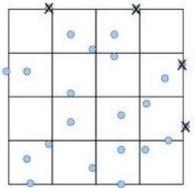
Fully automated, computer-operated image analyzer that uses the Trypan Blue Dye Exclusion Method for Viability, Cell Counting and Total Cell Concentration.


Who are our Vi-CELL XR customers?

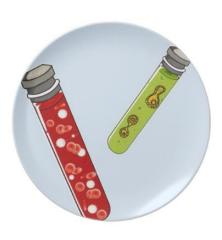
- Tissue Culture Facilities: user may be growing many types of cells and needs accurate knowledge of count and viability.
- Biopharma Lab: user performs cell based assays and needs accurate count and viability to quantify results from assays.
- Biopharma Production Facilities: utilizing yeast, insect cells and animal cells to produce biological therapies. User needs to monitor cell health for maximum production and harvest time.
- Clinical Research Labs: isolating cells from human or non-human samples.
 - Blood
 - Bone Marrow (Stem Cells)
 - Spleen
 - Lymph Node

Trypan Blue Dye Exclusion Method

- Trypan blue is a vital stain used to selectively color dead tissues or cells blue.
- The trypan blue dye exclusion test is used to determine the number of viable cells present in a cell suspension. It is based on the principle that live cells possess intact cell membranes that exclude certain dyes, such as trypan blue, whereas dead cells do not. A viable cell will be clear in the center whereas a nonviable cell will have a blue center.

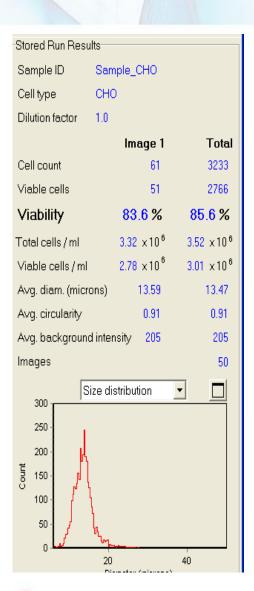


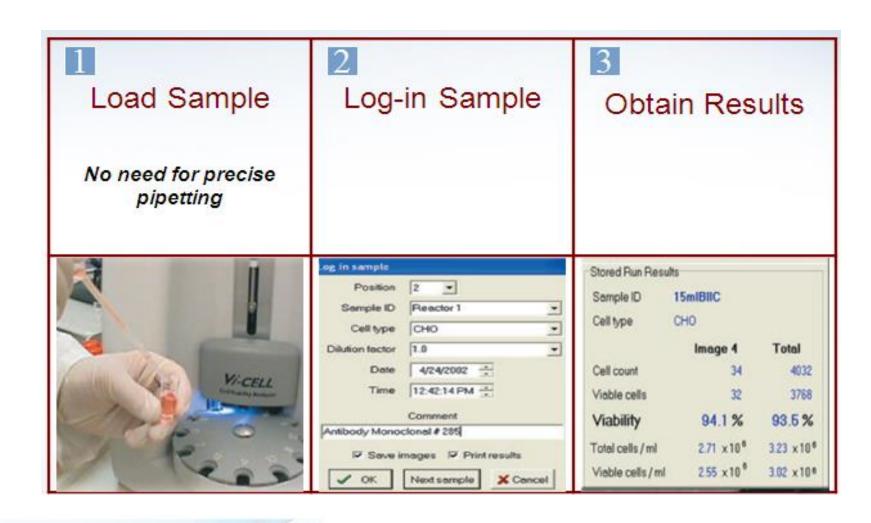
Traditional Method


- Cell viability (Trypan Blue Dye Exclusion Method)
 determinations traditionally have been performed using a light
 microscope and hemacytometer.
- Unfortunately, this technique has numerous major shortcomings.
 - The hemacytometer has a significant repeatability error.
 - Different technicians analyzing the same cell sample obtain variations in results.
 - Manual method is tedious and quite time consuming for today's busy laboratory environment.

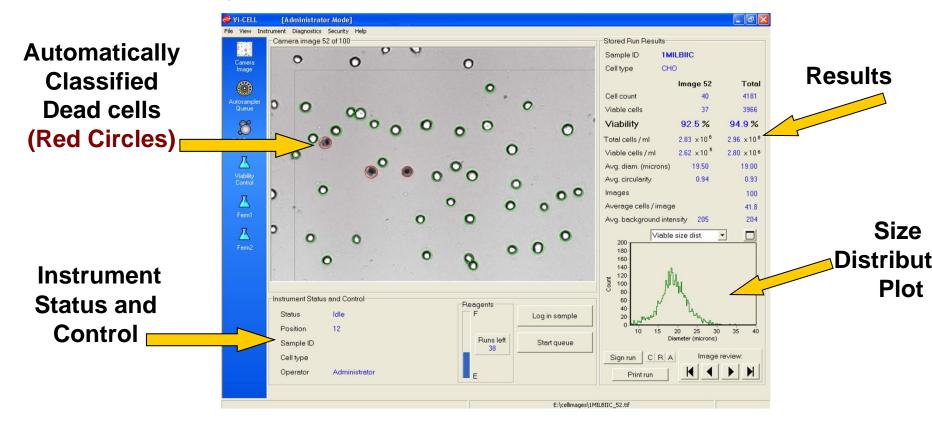
Applications in Research and Manufacturing

- Vi-CELL XR analyzes majority of mammalian cell types, insect cells and yeast.
 - Cells in the range of 2-70 microns.



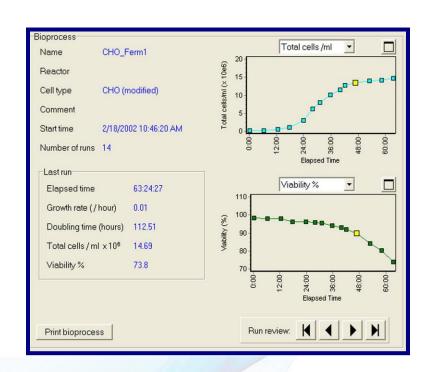

Features

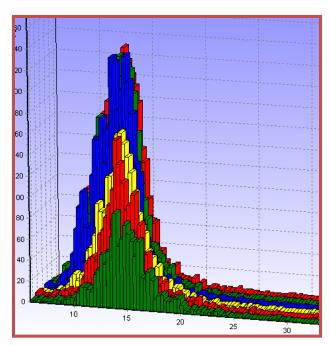
- Automation of the Trypan Blue Assay Method
- % Viability
- Total Cell Concentration
- Total Viable Cell Concentration
- Mean Cell Size
- Real Time Cellular Images
- Calculates Bio-process Growth Rate and Doubling Time
- Convenient Reagent Packs
- Validated Reagents
- Reanalyze data



Easy to Use

Vi-CELL Software Main Window


Automatically Classifies Live Cells (Green Circles)



Bioprocess Feature

- On the Vi-CELL XR, the user can monitor a bioprocess over time.
 - Excellent for characterizing growth rate and doubling time
- Individual runs are automatically appended together.

Reagent Pack

- Contains all reagents required to run samples and clean system.
- System monitors reagent consumption.

Green: Buffer Solution

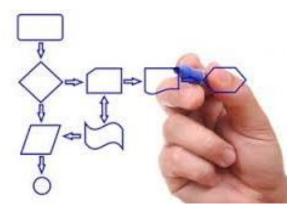
Red: Disinfectant

Yellow: Cleaning Agent

Blue: Trypan Blue Reagent

Reagent Pack

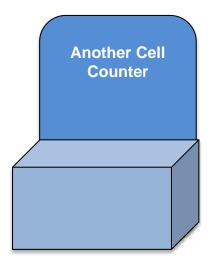
Concentration Control


- Beckman Coulter Vi-CELL concentration control standards are beads used to confirm the overall system performance.
 - Control is recommended to be run daily

 Note: Viability standards are available through Bangs Laboratory


Reasons to Change

- Processes rarely remain the same over time.
- Many factors drive change
 - Obsolescence of equipment or materials
 - Increased throughput
 - Need to decrease variation
 - Process Improvement


Change sometimes requires Studies and Validation

Changing the Cell Counting Process

Typical Criteria for new Method

- Correlate to previous method
 - More important to have the same answer than an accurate answer
- Reliability
- Repeatability

Case Study

- Dr. Iveta Bottova is a Process Development Specialist at SOTIO, a biotechnology company developing a next generation Active Cellular Immunotherapy drug.
- Share SOTIO's Validation study to change from the manual counting process of dendritic cells to an automated counting process using the Vi-CELL XR.

Dendritic Cells (DC)

- Dendritic cells are antigen-presenting cells of the mammalian immune system. Their main function is to process antigen material and present it on the cell surface to the T cells of the immune system.
- SOTIO develops new medical therapies using an immunotherapy platform based on activated dendritic cells
- The correct cell count and adequate viability of DC are one of the quality control criteria for the final product release.

Validation Study

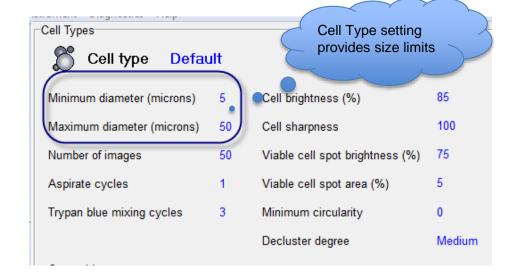
- Evaluated Accuracy and Precision against manual method using beads.
 - Two Operators
 - Concentration Control (latex beads) 1x10^6 beads/mL
 - Triplicate measurements
 - Side by Side

BURKER	Number of beads [x10 ⁶]		CV % intra	
Op1 average	1.03		1.12	
Op2 average	0.99		6.44	
Op1-2 average	1.01		3.78	
SD Op1-2	0.028			
CV % inter Op1-2	2.81		Vi	

Vi-CELL Number of beads [x10⁶ Pretty good repeatability
Op1 average 1.03
Op2 average 1.02
Op1-2 average 1.02
SD Op1-2
CV % inter Op1-2

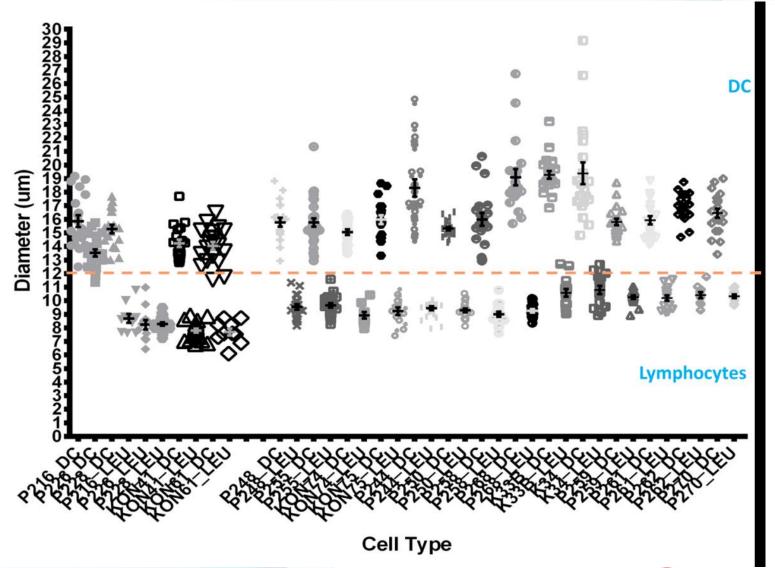
Number of beads [x10⁶ Pretty good repeatability
0.005

Validation Study

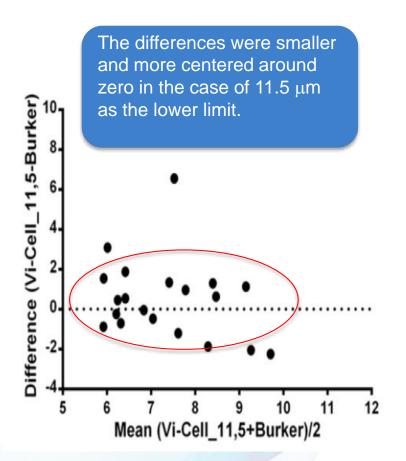

- Assessed the cell diameter for optimal DC measurement
 - SOTIO product contains DC and lymphocytes.
 - Evaluate whether Vi-CELL can use size to identify DC and ignore lymphocytes

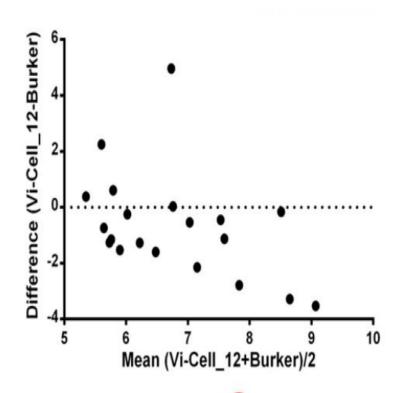
• DC size $11 - 30 \mu m$ and lymphocytes $5 - 12.5 \mu m$, partial overlapping but

only ~4%


19 Lots used in study

Note: Size determined on 20X microscope and Vi-CELL


Size plot of 40 analyses with different size cut-off



Comparison against manual method with DC

• Compared Vi-CELL analysis of 11.5 or 12 μ m as the lower size limit against manual counts.

Validation Conclusion

- The Vi-CELL method was found to be accurate and suitable for DC counting and comparable to the currently used quality control method Bürker chamber (manual method).
- There was no significant difference between DC counts values obtained by Vi-CELL and by Bürker chamber, moreover the size range 11.5-30µm is important for DC recognition in the Vi-CELL.

OTHER REAL EXAMPLES

Dilution Study

- Dilution Study to move from Manual to Vi-CELL
 - Customer was concerned about high variance from expected result.

Volume of concentration control stock (uL)	Volume of diluent (uL)	Reported Total cells/ml (x 10^6)	Diff from expected conc	Reported Total cells/ml (x 10^6)	Diff from expected conc	Dilution factor
		Set 1		Set 2		٦
20	980	1.7135	69.8%	1.4772	42.4%	50
50	950	1.5363	52.2%	1.489	43.5%	20
100	900	1.1935	18.3%	1.4063	35.5%	10
500	500	1.1038	9.4%	1.0612	2.3%	2
500	0	1.0092		1.0376		1

Dilution Study

Dilution Study Problem

 Concentration of starting material is too low for the dilution study or dilution factors are not appropriate for the sample being used.

Volume of concentration control stock (uL)	Volume of diluent (uL)	· •	Diff from expected conc	Reported Total cells/ml (x 10^6)	Diff from expected conc	Dilution factor	Estimated total bead count	Count per image
		Set 1		Set 2				
20	980	1.7135	69.8%	1.4772	42.4%	50	20	0.4
50	950	1.5363	52.2%	1.489	43.5%	20	50	1
100	900	1.1935	18.3%	1.4063	35.5%	10	100	2
500	500	1.1038	9.4%	1.0612	2.3%	2	500	10
500	0	1.0092		1.0376		1	1000	20

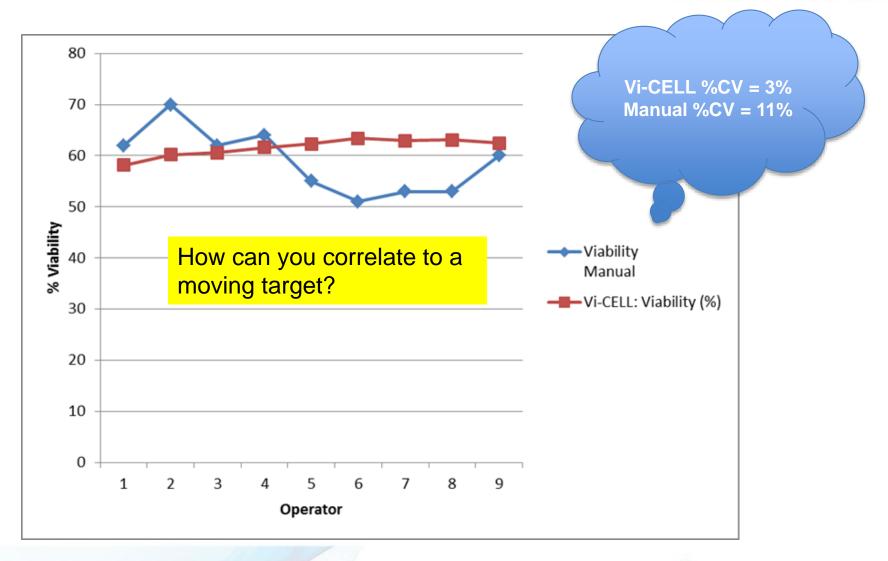
Bridge Study

- Count Comparison to move from Manual to Vi-CELL
 - Customer was concerned that Vi-CELL VCD had high variance with their manual method.

Summary						
Vi-Cell	(N Std)	Ma	nual	۷i-Cell ۱	s manual	
	Viable cells / ml (x10^6)	,	Viable cells / ml (x10^6)	Difference in Viab	Difference in VCD	
98.3	3.98	98	3.16	0.3%	21%	
97.7	4.20	96	3.01	1.7%	28%	
71.9	2.40	73.5	1.78	-2.2%	26%	
56.6	1.75	53	1.10	6.4%	37%	
41.2	1.21	37.5	0.70	8.9%	42%	

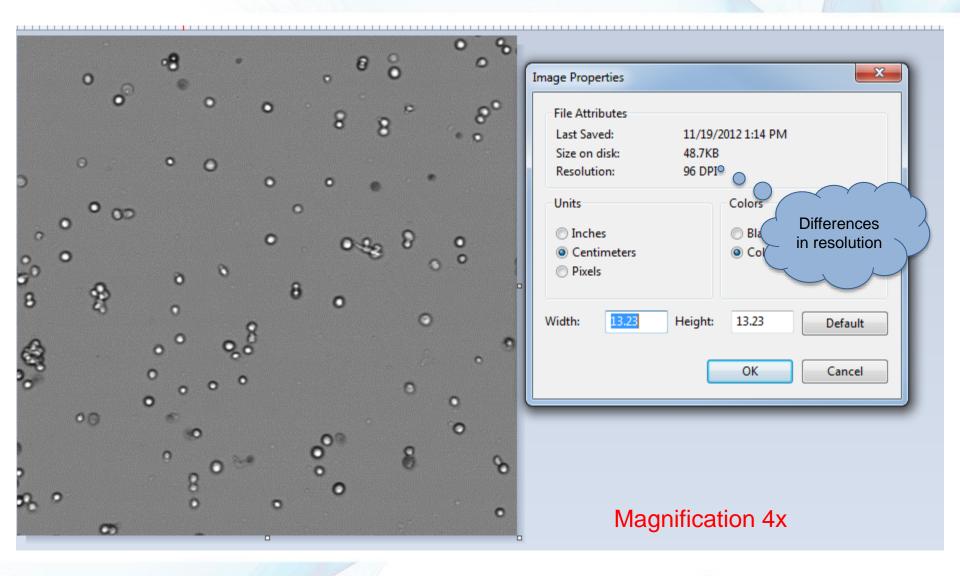
Bridge Study

Count Comparison


Operator	Viability Manual	VCD Manual
А	62	1.12
В	70	1.31
С	62	1.42
D	64	1.51
E	55	0.97
F	51	1.43
G	53	1.2
Н	53	0.97
I	60	1.59
Average	59	1.28
SD	6.3	0.228
RSD	10.7%	17.8%
Min	51	0.97
Max	70	1.59

	Vi-CELL:	Total cells /	Viable cells/
Sample	Viability (%)	ml (x10^6)	ml (x10^6)
1	58.1	3.85	2.24
2	60.1	3.99	2.40
3	60.6	3.98	2.41
4	61.6	4.12	2.54
5	62.3	3.63	2.26
6	63.4	3.75	2.38
7	62.9	4.04	2.54
8	63.1	3.61	2.27
9	62.4	3.70	2.31
Average	62	3.85	2.37
SD Std	1.7	0.19	0.11
RSD	2.8%	4.9%	4.7%
Min	58	3.6	2.2
Max	63	4.1	2.5

Vi-CELL is more Repeatable



Which process is more repeatable?

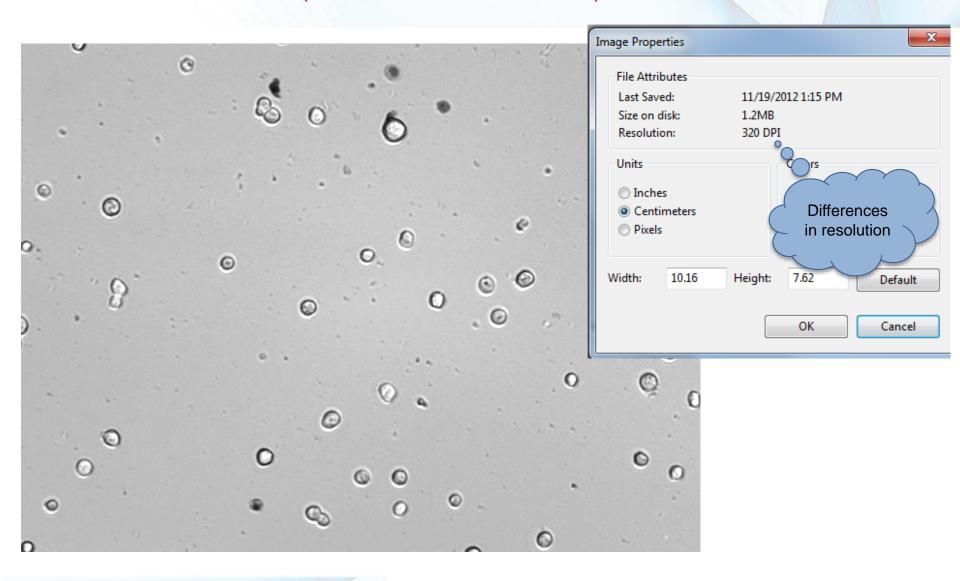
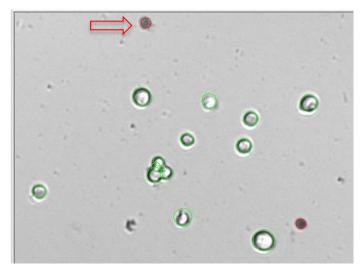
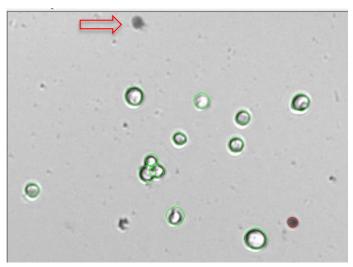
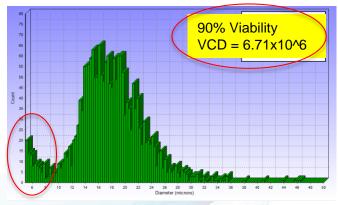


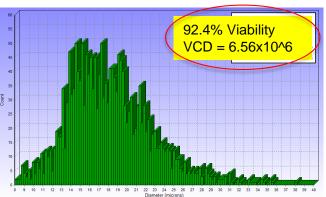
IMAGE FROM ANOTHER CELL COUNTER

VI-CELL IMAGE (1280 X 960 PIXELS)

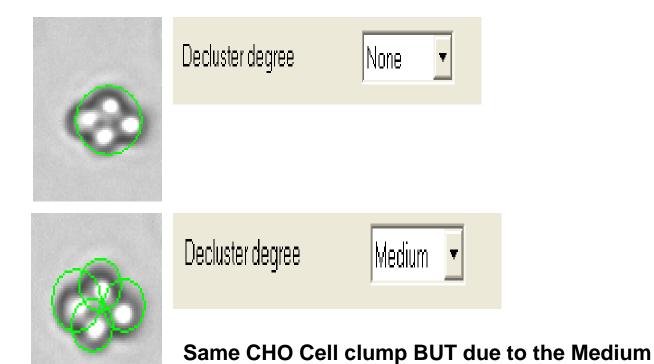



Magnification 6.75x

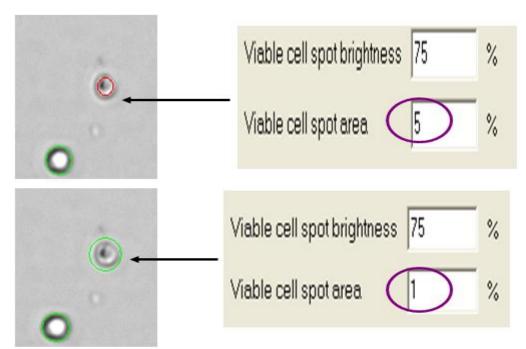



Recommendations for Correlation Study

 Optimize instrument settings as close to previous method (size, brightness, cluster, ignore debris)



APPLYING DECLUSTERING



Declustering, each cell within the clump is

differentiated thus increasing cell count

CHANGING VIABLE CELL SPOT AREA

For cells on the border of live/dead, adjust viable spot area to increase or decrease % viability

Recommendations for Correlation/Bridge Study

- Use concentration and viability standards (latex beads) to start study
- Practice good sample handing(mixing, pipetting, time, temp)
- Test side by side (same sample, same time)
- Practice good statistics Ensure a representative sample
- Account for variables in the process realistic tolerance ranges
 - Some processes inherently have high variability
- Account for differences in Technology (Resolution, parameters)

Thank you

Questions?

Contact me:

LenaLee@Beckman.com

