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Future Grid
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‣ The future grid will consists of billion smart devices including 
distributed resources, and millions of decision-makers.

– Emerging dynamic behavior at new space and time scales.

‣ Need much faster, better, tighter coordination across 
subsystems: ISO, utilities, microgrids, buildings, homes, etc.
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The Challenge

‣ How can we coordinate the simultaneous operation of a 
very large number of devices and subsystems (actors) to 
achieve system-wide objectives such as ultra-reliability, 
economic optimization, and sustainability?

‣ Recognition that (for many reasons) it is impossible to 
have a single organization making all operational and 
control decisions. 

‣ Decision making needs to be decentralized. 
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Decentralized

3

‣ Recognizes more than one decision-maker.

‣ Microgrids
‣ Demand Response
‣ Building Energy Management Systems
‣ Home Energy Management Systems
‣ Building, Home, Vehicle, X to Grid
‣ Transmission/distribution effects
‣ Consumer Empowerment
‣ Prosumers
‣ Imbalance Markets
‣ Distribution System Operators (DSO)
‣ ISO Seams Issues
‣ Wide-Area Control
‣ Etc. . . .

Use cases of 
decentralized 
coordination
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ARPA-E GENI Project

‣ Interdisciplinary collaboration including power systems, 
networked control, cyber-physical systems, and 
decentralized optimization. 

‣ Project Contribution:
1. Decentralized Control Reference Architecture
2. Power/Cyber Co-Simulator  
3. Decentralized Frequency Control Application
4. Decentralized Energy Scheduling Application
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Concept 1: Prosumer Abstraction

‣ A generic model that captures basic functions (produce, consume, 
store) can be applied to power systems at any scale. 

‣ The fundamental task is power balancing:

‣ Energy services can be virtualized.  
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Concept 2: Networked Grid

Interconnection

ISO

Utility

Grid, Building, Home
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‣ Interactions occur among entities of the same type (prosumers)
‣ Supports hierarchical or flat paradigms
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Concept 3: Prosumer Services
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‣ Prosumer exposes 
standardized services

– Energy balancing
– Frequency regulation
– Reserve
– Sensing and Information
– Forecasting
– Security
– Self-identification
– Voltage control
– Black Start
– Etc. 
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Architecture Summary

‣ The grid is naturally divided into subsystems.
‣ All subsystems can produce, consume and store. 

– They become prosumers.
‣ Prosumers are equipped with distributed intelligence.
‣ Prosumers interact through formal power protocols. 
‣ Layered cyber-physical network coordination stack.
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Grid Co-Simulation

‣ Two distinct aspects need to be covered:

– Power System Simulation
• Numerical solution of a system of differential equations 
• Traditional Tools: PowerWorld, OpenDSS, SimPowerSystem

– Cyber Systems Simulation
• Discrete-event simulation
• Traditional Tools: ns2, ns3, OMNET++
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Grid Co-Simulation

‣ Literature presents two approaches:
‣ Integrated Approach

– A new simulation environment with integrated hybrid 
semantics for Power and Communication aspects 
(e.g. Nutaro et.al “Integrated Hybrid Simulation of Electric Power  and 
Communication Systems”)

‣ Federated Approach
– Combine existing simulators from the domains of 

Power Systems and Computer Networks  using  co-
simulation libraries, such as High Level Architecture 
co-simulation standard

– Examples: EPOCHS (ns-2 + PSCAD); Godfrey et.al. (ns-2 + 
OpenDSS)
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Grid Co-Simulation

‣ Control and Optimization Algorithms are usually prototyped 
in domain-specific environments such as MATLAB. 

‣ Decentralized control requires a Platform-Aware Integrated 
Simulation Environment

– Demonstrate the integrated operation of individual algorithms.
– Investigate the effect of computing platform performance on 

algorithms.
– Demonstrate the self monitoring (and mode switching) capabilities of 

algorithms.
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Grid Co-Simulation for Decentralized Algorithms

‣ Uses ns-3 as the basis of 
‘computing platform’ 
simulation

– Simulate “appropriate” 
software layers as ns-3 
extensions

‣ Consistent with ns-3 
philosophy

– Ns-3 has an inherently 
extensible design in order 
to simulate the software 
stack involved in 
networking

Ns-3 Software Organization
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Grid Co-Simulation for Decentralized Algorithms
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• ns-3 + Existing Power System Tools  (e.g. PowerWorld)

• ns-3 nodes extended with system-level software modules 
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Grid Co-Simulation for Decentralized Algorithms
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Decentralized Frequency Control

‣ Bring steady-state frequencies to desired value while: 
– Returning output power to the scheduled interchange
– Minimizing system-wide control effort
– Avoiding oscillations
– Performing only local computations (distributed!)
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Decentralized Energy Scheduling
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‣ Application able to schedule energy in the day-ahead 
timeframe in a decentralized manner. 

‣ Large-Scale ISO with realistic Unit-Commitment Data
‣ Solution orders of magnitude faster.
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Final Co-Simulator State

‣ Large Scale ISO (PJM) System
– Divided into 100 prosumers
– Described as XML document
– Outputs  the rolling horizon generator set points as .csv 

files
– Mfile reads the csv file and plots the behavior of a 

generator under the “integrated influence “ of various 
algorithms
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Large-Scale ISO Subsystems

‣ PJM Case
– Divided into 100 prosumers

– Described as XML document

– Outputs  the rolling horizon generator set points as .csv files

– Mfile reads the csv file and plots the behavior of a generator under the “integrated 
influence “ of various algorithms
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Integrated Demo 
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Integrated Demo
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Effect of Link Delay
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Effect of Task Execution Time
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Mode Switching
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Summary 

‣ Proposed decentralized control and management of the 
future grid using an energy prosumer paradigm.

‣ Simulation of decentralized coordination algorithms is key 
for a large number of future grid use cases. 

‣ Project has developed an infrastructure for simulation 
environment for decentralized control algorithms. 

– Based on extension of ns-3
– Achieves combined cyber-physical simulation
– Provides flexible integration with existing simulation tools 
– Supports testing of decentralized algorithms in large-scale systems 

using realistic data. 
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Thanks

‣ Santiago Grijalva
‣ sgrijalva@ece.gatech.edu
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