NIST Transactive Energy Challenge Preparatory Workshop March, 2015

Future Grid

- The future grid will consists of billion smart devices including distributed resources, and millions of decision-makers.
 - Emerging dynamic behavior at new space and time scales.
- Need much faster, better, tighter coordination across subsystems: ISO, utilities, microgrids, buildings, homes, etc.

The Challenge

- How can we coordinate the simultaneous operation of a very large number of devices and subsystems (actors) to achieve system-wide objectives such as ultra-reliability, economic optimization, and sustainability?
- Recognition that (for many reasons) it is impossible to have a single organization making all operational and control decisions.
- Decision making needs to be decentralized.

Decentralized

- Recognizes more than one decision-maker.
- Microgrids
- Demand Response
- Building Energy Management Systems
- Home Energy Management Systems
- Building, Home, Vehicle, X to Grid
- Transmission/distribution effects
- Consumer Empowerment
- Prosumers
- Imbalance Markets
- Distribution System Operators (DSO)
- ISO Seams Issues
- Wide-Area Control
- Etc. . . .

Use cases of decentralized coordination

ARPA-E GENI Project

Interdisciplinary collaboration including power systems, networked control, cyber-physical systems, and decentralized optimization.

- Project Contribution:
 - Decentralized Control Reference Architecture
 - 2. Power/Cyber Co-Simulator
 - 3. Decentralized Frequency Control Application
 - 4. Decentralized Energy Scheduling Application

Concept 1: Prosumer Abstraction

- A generic model that captures basic functions (produce, consume, store) can be applied to power systems at any scale.
- The fundamental task is power balancing:

$$P_{INT} = P_G - P_D - P_{Loss} - P_{STO+} + P_{STO-}$$

Energy services can be virtualized.

Concept 2: Networked Grid

- Interactions occur among entities of the same type (prosumers)
- Supports hierarchical or flat paradigms

Concept 3: Prosumer Services

- Prosumer exposes standardized services
 - Energy balancing
 - Frequency regulation
 - Reserve
 - Sensing and Information
 - Forecasting
 - Security
 - Self-identification
 - Voltage control
 - Black Start
 - Etc.

Interactions h

Architecture Summary

- The grid is naturally divided into subsystems.
- All subsystems can produce, consume and store.
 - They become prosumers.
- Prosumers are equipped with distributed intelligence.
- Prosumers interact through formal power protocols.
- Layered cyber-physical network coordination stack.

SYSTEM CONTROL Layer

CYBER Layer

DEVICE CONTROL Layer

DEVICE Layer

Grid Co-Simulation

- Two distinct aspects need to be covered:
 - Power System Simulation
 - Numerical solution of a system of differential equations
 - Traditional Tools: PowerWorld, OpenDSS, SimPowerSystem
 - Cyber Systems Simulation
 - Discrete-event simulation
 - Traditional Tools: ns2, ns3, OMNET++

Grid Co-Simulation

Literature presents two approaches:

Integrated Approach

 A new simulation environment with integrated hybrid semantics for Power and Communication aspects (e.g. Nutaro et.al "Integrated Hybrid Simulation of Electric Power and Communication Systems")

Federated Approach

- Combine existing simulators from the domains of Power Systems and Computer Networks using cosimulation libraries, such as High Level Architecture co-simulation standard
- Examples: EPOCHS (ns-2 + PSCAD); Godfrey et.al. (ns-2 + OpenDSS)

Grid Co-Simulation

- Control and Optimization Algorithms are usually prototyped in domain-specific environments such as MATLAB.
- Decentralized control requires a Platform-Aware Integrated
 Simulation Environment
 - Demonstrate the integrated operation of individual algorithms.
 - Investigate the effect of computing platform performance on algorithms.
 - Demonstrate the self monitoring (and mode switching) capabilities of algorithms.

Grid Co-Simulation for Decentralized Algorithms

- Uses ns-3 as the basis of 'computing platform' simulation
 - Simulate "appropriate" software layers as ns-3 extensions
- Consistent with ns-3 philosophy
 - Ns-3 has an inherently extensible design in order to simulate the software stack involved in networking

Ns-3 Software Organization

Grid Co-Simulation for Decentralized Algorithms

- ns-3 + Existing Power System Tools (e.g. PowerWorld)
- ns-3 nodes extended with system-level software modules

Grid Co-Simulation for Decentralized Algorithms

Decentralized Frequency Control

- Bring steady-state frequencies to desired value while:
 - Returning output power to the scheduled interchange
 - Minimizing system-wide control effort
 - Avoiding oscillations
 - Performing only local computations (distributed!)

Decentralized Energy Scheduling

- Application able to schedule energy in the day-ahead timeframe in a decentralized manner.
- Large-Scale ISO with realistic Unit-Commitment Data
- Solution orders of magnitude faster.

Final Co-Simulator State

- Large Scale ISO (PJM) System
 - Divided into 100 prosumers
 - Described as XML document
 - Outputs the rolling horizon generator set points as .csv files
 - Mfile reads the csv file and plots the behavior of a generator under the "integrated influence " of various algorithms

Large-Scale ISO Subsystems

Integrated Demo

Integrated Demo

Effect of Link Delay

Effect of Task Execution Time

Mode Switching

Summary

- Proposed decentralized control and management of the future grid using an energy prosumer paradigm.
- Simulation of decentralized coordination algorithms is key for a large number of future grid use cases.
- Project has developed an infrastructure for simulation environment for decentralized control algorithms.
 - Based on extension of ns-3
 - Achieves combined cyber-physical simulation
 - Provides flexible integration with existing simulation tools
 - Supports testing of decentralized algorithms in large-scale systems using realistic data.

Thanks

- Santiago Grijalva
- sgrijalva@ece.gatech.edu

