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Future Grid

» The future grid will consists of billion smart devices including
distributed resources, and millions of decision-makers.

— Emerging dynamic behavior at new space and time scales.

» Need much faster, better, tighter coordination across
subsystems: ISQO, utilities, microgrids, buildings, homes, etc.
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The Challenge
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» How can we coordinate the simultaneous operation of a
very large number of devices and subsystems (actors) to
achieve system-wide objectives such as ultra-reliability,
economic optimization, and sustainability?

» Recognition that (for many reasons) it is impossible to
have a single organization making all operational and
control decisions.

» Decision making needs to be decentralized.
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Decentralized

» Recognizes more than one decision-maker.
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ARPA-E GENI Project

» Interdisciplinary collaboration including power systems,
networked control, cyber-physical systems, and
decentralized optimization.

» Project Contribution:
1. Decentralized Control Reference Architecture
2. Power/Cyber Co-Simulator
3. Decentralized Frequency Control Application
4. Decentralized Energy Scheduling Application
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Concept 1: Prosumer Abstraction
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» A generic model that captures basic functions (produce, consume,
store) can be applied to power systems at any scale.

» The fundamental task is power balancing:
Py = F =By = B = Fsror + Fyro-
» Energy services can be virtualized.
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Concept 2: Networked Grid
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» Interactions occur among entities of the same type (prosumers)
» Supports hierarchical or flat paradigms

© 2015 Georgia Institute of Technology



Concept 3: Prosumer Services
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Architecture Summary

» The grid is naturally divided into subsystems.
» All subsystems can produce, consume and store.
— They become prosumers.
» Prosumers are equipped with distributed intelligence.
» Prosumers interact through formal power protocoils.
» Layered cyber-physical network coordination stack.

MARKET Layer

DEVICE CONTROL Layer

© 2015 Georgia Institute of Technology



Grid Co-Simulation

» Two distinct aspects need to be covered:

— Power System Simulation
* Numerical solution of a system of differential equations
 Traditional Tools: PowerWorld, OpenDSS, SimPowerSystem

— Cyber Systems Simulation

* Discrete-event simulation
« Traditional Tools: ns2, ns3, OMNET++
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Grid Co-Simulation

» Literature presents two approaches:
> Integrated Approach

— A new simulation environment with integrated hybrid

semantics for Power and Communication aspects

(e.g. Nutaro et.al “Integrated Hybrid Simulation of Electric Power and
Communication Systems”)

»  Federated Approach

— Combine existing simulators from the domains of
Power Systems and Computer Networks using co-
simulation libraries, such as High Level Architecture
co-simulation standard

— Examples: EPOCHS (ns-2 + PSCAD); Godfrey et.al. (ns-2 +
OpenDSS)
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Grid Co-Simulation

» Control and Optimization Algorithms are usually prototyped
In domain-specific environments such as MATLAB.

» Decentralized control requires a Platform-Aware Integrated
Simulation Environment
— Demonstrate the integrated operation of individual algorithms.

— Investigate the effect of computing platform performance on
algorithms.

— Demonstrate the self monitoring (and mode switching) capabilities of
algorithms.
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Grid Co-Simulation for Decentralized Algorithms

» Uses ns-3 as the basis of
‘computing platform’

simulation
— Simulate “appropriate” Services
software layers as ns-3 o
) Application Framework
extensions
. . Task-based RTOS Model
» Consistent with ns-3 e =
philosophy

— Ns-3 has an inherently
extensible design in order
to simulate the software
stack involved in [[] Existing Modules [ Additions to ns-3 project

networking

Ns-3 Software Organization
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Grid Co-Simulation for Decentralized Algorithms

- ns-3 + Existing Power System Tools (e.g. PowerWorld)

* ns-3 nodes extended with system-level software modules
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Grid Co-Simulation for Decentralized Algorithms
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Decentralized Frequency Control

» Bring steady-state frequencies to desired value while:
— Returning output power to the scheduled interchange
— Minimizing system-wide control effort
— Avoiding oscillations

— Performing only local computations (distributed!)
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Decentralized Energy Scheduling
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» Application able to schedule energy in the day-ahead
timeframe in a decentralized manner.
» Large-Scale ISO with realistic Unit-Commitment Data
» Solution orders of magnitude faster.
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Final Co-Simulator State

» Large Scale ISO (PJM) System
— Divided into 100 prosumers
— Described as XML document

— Outputs the rolling horizon generator set points as .csv
files

— Mfile reads the csv file and plots the behavior of a
generator under the “integrated influence “ of various
algorithms
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Large-Scale ISO Subsystems
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Integrated Demo
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Integrated Demo
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Effect of Link Delay
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Effect of Task Execution Time
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Mode Switching
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Summary

» Proposed decentralized control and management of the
future grid using an energy prosumer paradigm.

» Simulation of decentralized coordination algorithms is key
for a large number of future grid use cases.

» Project has developed an infrastructure for simulation
environment for decentralized control algorithms.
— Based on extension of ns-3
— Achieves combined cyber-physical simulation
— Provides flexible integration with existing simulation tools

— Supports testing of decentralized algorithms in large-scale systems
using realistic data.
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» Santiago Grijalva
» sgrijalva@ece.gatech.edu
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