Evaluation using Synthetic and Semi-Synthetic Biometric Data

Terrance E. Boult
El Pomar Professor of Innovation and Security
University of Colorado at Colorado Springs
and
CEO/CTO Securics
Presentation draws from a decade of work supported in part by DARPA HID, DHS SBIR, other DOD organizations
Currently Supported by ONR MURI and ONR STTR. Tom McKenna

Outline

- Motivation and Definitions
- PhotoHeads
- 4D Photoheads
- SynFin Example and Issues
- Other Uses
Goals of Evaluation

- Show a particular system implementation meets requirements
- Show a particular system continues to operate as designed/tested
- Evaluate alternative system components
- Support research/design of new algorithm/sensor/system
- Understand the underlying “science”

Experimental Design

If your experiment needs statistics, then you ought to have done a better experiment.

In Reality: Every experiment proves something. If it doesn’t prove what you wanted it to prove, it proves something else. What is proves always depends on “statistics” whether you admit or not!
Experimental Design

Controlled Experiment (Hard science)
- Vary 1 or a few elements, hold all else constant.

Controlled Experiment (Social Science)
- Experiment where variable in question is varied between the test group and "control" group, with other variables balanced or randomized (e.g. RCT)

Natural Experiment
- Measurements from naturally occurring data, i.e. without formal controls group.

The greater the uncontrolled variation, the more data needed to reach a statistically relevant conclusion.

Control ↔ POWER

CMU PIE

The CMU Pose, Illumination, and Expression (PIE) Database
Terence Sim, Simon Baker, and Maan Bsat
Proc of the IEEE Int. Conf. on Automatic Face and Gesture Recognition, May, 2002.
PIE Controlled Pose, Lighting Illumination

Derived From CMU PIE. Not for redistribution

Why (Semi-) Synthetic Evaluation

- Same say it is for more data, to build large datasets (at lower cost)
 - But this is limited by errors in “modeling”

- Maybe more important reason:
 - More experimental control!
 - Explore more conditions
 - Less Obvious: testing assumptions
The “synthetic data” space

- Simple Synthetic Data
 - Scientific Control and Support for conclusions

- Physics-based Synthetic
- Statistical Synthetic
- Guided Synthetic
- Semi-Synthetic
- Controlled Data Collection
- Large scale Challenge Problems
- In situ experiments
- In situ “validation”

Relation to “real problem”

Definitions

- Synthetic (Pure Synthetic)
 - Driven by an (un-validated) generation model

- Modeled Synthetic
 - Driven by a generation model using parameters derived from and validated to real data.

- Guided Synthetic
 - Synthetic data where each sample is tied to real data.

- Semi-Synthetic
 - Real data mixed with artificial “sampling”

- Controlled Data Collection
 - Real data collected with controls on collection making it a Synthetic “Scenario/Operation”
Example “guided synthetic” vs real

Issue: how much do we consider regions outside ROI?

Our Goals

- Move to more and more and more automated/controlled/repeatable experiments.
- Build range of pure/guided/semi-synthetic
- Integrate with real system components (e.g. Real sensors, commercial algorithms, control/capture systems such as MBark)
- Domains long-range maritime biometric “evaluation”, multi-sensor multi-biometric fusion, adaptive fusion systems.
Synthetic “Evaluation” Validation

- Weak
 - Look at match/non-match distribution
 - Replicate known experiment on models as both probe and gallery?
- Increasing Levels of Validation/Testing:
 - Self-Image matching on ScreenShot
 - Replicate an known experiment on Screen-Captures using real gallery and synthetic probes.
 - Self-image matching based on Sensor Capture
 - Replicate an known experiment on Sensor-Captures using real gallery and synthetic probes.

Variations and Challenge

Cooperative Face
- Controlled pose
- Controlled position
- Controlled lighting

Non-Cooperative Face
- No control over subject
- Outdoors?
- Nighttime?
Early Photo-head Data Acquisition

- **Sensor:** FOV 0.5° and 0.25° imaging (equivalent to 1600mm and 3200mm focal lengths).
- Inter-pupil distance in resulting images is approx 120 pixels

Photohead Elements

- Head/Face Models
- Imaging/Capture Systems
- Motion Models
- Lighting Models
- Display System (Not “real” system element)
Example Early Photo-heads

S1 Gallery

S2 Gallery

March 2 12:32 PM, Sensor C0, (Original Images S1)
(C0,S1) Probe Set

March 2 12:32 PM, Sensor C0, (Original Images S2)
(C0,S2) Probe Set

March 2 12:32 PM, Sensor C1, (Original Images S1)
(C1,S1) Probe Set

March 2 12:32 PM, Sensor C1, (Original Images S2)
(C1,S2) Probe Set

Examples Lessons with Early Photo-heads
Variation over the day

Image 1 - Far Camera Clear w/Wind 0-10 MPH
Self Matching

CMS

Rank

Morning Twilight
Afternoon
Evening Twilight
Evening
Morning

Leading commercial algorithm
Impact of Weather

Weather

Rank 3 recognition about 50% (near) - much worse at 200ft

Clear Snow Rain

Early Photoheads results

- Papers on Statistical Evaluation of System
- Lead to some non-obvious results
 - Multiple papers on Quality and System Failure Prediction
 - Performance enhancement via perturbations
Sensor System issues

- As if (unconstrained) face wasn’t difficult enough...
- Choice of sensor has a huge impact on performance
 - Lighting – Depth of Field
 - Resolution – Motion Blur
 - Field of View

Example “Dark Photo-heads”

Subset of CMU PIE, FERET data set re-imaged in a controlled, dark, indoor “photo-head” setting.
At Univ we have a 100m indoor “Dark room”
Qualitative Results

Securics Detector A Leading Commercial Detector

Evaluating a lowlight detector

New detector vs. leading commercial detector
Motion Artifacts

Typical motion blur

(~0.4 lux, yielding face lumens of 0.115 nits)

- Images taken approximately 100M from the EMCCD camera at dusk
- Top of the walking stride produces minimal blur

Other Artifacts

- Affects Most/All CMOS sensors
- Even with a short integration time, the shutter is capturing data at different times for the top and bottom of the images
4D Photoheads
Animetrics Modeling
Ongoing “validation” results

- FaceGen (Guided-synthetic):
 - Only 80-90% self-matching-screen used to build them! Only 46% on real test.
- Animetrics (Guided-synthetic):
 - 100% self-matching on multiple research and commercial recognition.
 - Replicated Frontal “PIE” results on real collected 4D Photoheads at 100m, 200m
 - Working on full Guided-synthetic PIE

Next Steps

- Working on larger datasets.
- Moving Platforms
- Facial Surgery/Ageing/Weight Modeling
Outline

- Motivation and Definitions
- PhotoHeads
- 4D Photoheads
- SynFin Example and Issues
- Other Uses

How SFInGe works

In our view one of the best “synthetic” fingerprint systems. See R. Cappelli, D. Maio and D. Maltoni, "Synthetic Fingerprint-Database Generation", in Proc. International Conference on Pattern Recognition (ICPR2002), Quebec City, August 2002.
How to validate the model?

- Can human’s identify the synthetics?

About 90 people (many of them having a good background in fingerprint analysis) have been asked to find a synthetic fingerprint image among 4 images (3 of which were real fingerprints). The synthetic image proved to be not distinguishable from the others.

Poll results

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>23%</td>
</tr>
<tr>
<td>B</td>
<td>27%</td>
</tr>
<tr>
<td>C</td>
<td>21%</td>
</tr>
<tr>
<td>D</td>
<td>29%</td>
</tr>
</tbody>
</table>

Comparison of Curves

Fig. 18.25. Algorithms PA02 and PA24: impostor/genuine distribution and FMR/FNMR graph, for the four databases used in FVC2002.
They conclude it is “valid”

- They reasonably conclude it is about the same and real data and hence usable for testing. And for some testing it is!
- But biometric system performance and errors live in the per-match tails of distribution.
- Don’t forget Weyman’s talk this morning.. Everything in “experiment” matters

Actual Performance Differences

- FVC2004 real vs synthetic (DB4)
 - Looking at top 10 DB4 performers?
 - Absolute Difference in Rank with DB1 is 7 positions!
 - Consider Relative Performance with Best Alg
 - RERR_D = (AlgErr_D-BestErr_D)/BestErr_D
 - Average Percentage Change in Relative ERR
 - %CERR = (RERR_4-RERR_1)/RERR_4 = 323%
 - Average % change in Relative FMR100 = 156%
 - Average % change in Relative FMR1000=153%
 - For DB2 % R Changes were 74%, 186% 141%
Performance Differences vary

- FVC2004 is the “most” different as the “real” data had instructions to distort fingerprint. (It is one reason to normalize scores not use raw error rates)
- FVC2002 and FVC2006 are both closer (but still show differences between SFInGe and real data)
- FCV2002 DB1 vs DB4 has the following differences
 - Average change in absolute Range 2.7
 - Average Percentage Change in Relative ERR
 \[\%CERR = \frac{(RERR_4 - RERR_1)}{RERR_4} = 159\%
 - Average % change in Relative FMR100 = 57%
 - Average % change in Relative FMR1000 = 157%

Synthetic Fingerprint Issues

- Can we really conclude synthetic performance is the same?
- What is distribution of parameters
 - Type, minutia, ridge, orientation, pressure, moisture, system noise
- What biases are the models introducing?
 - Algorithms will tuned to these!
Other Uses of Semi-Synthetic

- Testing Assumptions (Micheals-Boutl-08)
- Ongoing System “Revalidation”
- Validation of “algorithm” change
- Validation on component change
 - Sensors
 - Lenses
 - Bandwidth/Performance/compression…
- Hypothesized Variations (surgery, ageing, etc.)

Conclusions

- Defined different levels of “synthetic” data
- Experience has taught us LOTS of things can, and will, go wrong, go wrong, go wrong, … as you try to build (semi) Synthetic biometric evaluations.
- Semi-synthetic data offers experimental processes that can lead to new insights and, we believe, eventually better evaluations.