New Scanning Acoustic Microscopy Technologies Applied to 3D Integration Applications

Peter Czurratis, Tatjana Djuric, Peter Hoffrogge
PVA Tepla Analytical Systems GmbH, Deutschordenstrasse 38
73463 Germany

in cooperation

Alain Phommahaxay, Ingrid De Wolf
imec, Kapeldreef 75, 3001 Leuven, Belgium

Sebastian Brand, Matthias Petzold, Fraunhofer Institute for Mechanics of Materials IWM,
Walter-Hülse-Straße 1, 06120 Halle (Saale)
Outline

1. Potential of SAM

2. SAM analysis set-up

3. SAM analysis examples:
 Stack dies, micro bumps, c4 bumps
 FC/PBGA: chip underfill-underfill/laminate/ILD delam
 TSV`s, FIB cross sections

4. Summary
1. Potential of SAM (Scanning Acoustic Microscopy)
Potential of Scanning Acoustic Microscopy

- non-destructive investigations from top to bottom
- non-destructive cross-sectioning
- high axial- and lateral resolution, depending on frequency
- **fast 3D-imaging and analysis**
- estimation of E modulus, G modulus and Poission ratio
2. SAM analysis set up
Transducer manufacturing equipment: Improve resolution and image quality

- HF- sputter equipment,
- Turbo pump 750 l
- Start vacuum 1x10^{-6} mbar
- Sputter rate 1 \mu m/h
- Process gas Argon/ dioxyn
- Target ZnO 4 zoll
- Sputter capacity 0-500 Watt
- Process parameters programmable
Spectral response from the different interfaces of a 370 µm die (thickness)

Spectrum of the full signal: 1st and 2nd interface

Spectrum of the 1st interface

Spectrum of the 2nd interface
TIME CORRECTED GAIN (TCG): Increase depth resolution for stack dies

Time corrected gain (TCG) is used to amplify the reflected signal depending on its time-of-flight (TOF). For example, to be able to perform a simultaneous scan of the 1st and 2nd interface (G-scan), the intensity of the 2nd IF needs to be significantly increased. Using TCG the gain can be adjusted for the 2nd peak, avoiding the 1st IF to become oversaturated.
HiSA – task: compensate image artefacts in case of surface bow/ warpage

Linear Scanning:
Limited focus due to bending, surface trigger limited to ~600µm bow

⇒ Certain areas out of focus

HiSA-System controls active the focus distance

⇒ Sample always in focus
Bow: 2 mm
Hardware development GHz SAM: 100 MHz-2000 MHz

- Pulser Unit
- Motion Controller
- Receiver Unit
- Gate
- Control Center
- Scanner
- motion Controller
- rs 232/gpiB/usB
- Pulse
- x-stAGe
- y-stAGe
- z-stAGe
- receive Signal
- trigger
- rF-signal
- video signal
- sample
GHz imaging of real small µ-Bumps

The pulser is driving the lens with tone burst signals. This improves the signal intensity and signal to noise ratio.

GHz-SAM

Scanning head with 1GHz 100° lens
3. SAM analysis examples:

Stack dies

FC/PBGA: chip underfill-underfill/laminate/ILD delam

TSV`s
4 x 3 dies stack: A Scan plot: smallest data gate size: 140 ps-7 GSPS ADC board

A-Scan

- 1st die
- 2nd die
- 3rd die

mold compound

350 ns
Transducer requirements for μ-bumps analysis

Spectrum of the 1st interface: μ bump area

Spectrum of the 2nd interface: c4 bump area
GHz investigations

Image & analysis modes

- $v(z)$ scans
- $v(z)$ curves
- $B(z)$ curves
- maximum value image
- mean value image
GHz imaging of real small µ-Bumps

• GHz SAM: System Features and Performance
 - Combined rf-chain for acoustic frequencies between 100 MHz and 2 GHz
 - High acoustic resolution (>1 µm @ 1GHz)
 - Quantitative evaluation of local elastic coefficients possible
 - 30 µm x 30 µm-2 mm x 2 mm lateral scan range with 50 nm scan resolution
 - 50 Hz scan-line repetition frequency (fast imaging)
 - V(f) and V(z) inspection method: quantification of SAM data
 - Small and compact Scanner: it can adapted to any other imaging device:
 - (optical microscopes - table top or inverted, large field scanners for SAMs)
Sound velocity in Cu: 4700 m/s, TSV depth of 50 µm: reflection recorded <20ns would indicate the presence of defects within the TSV.

Stronger signal reflection compared to filled TSVs:

>90% for voids vs 35% for completely filled vias

- Signal frequency up to 2 GHz

- PRF => 500 kHz @ 2 GHz (pulser repetition frequency)

- Monochromatic signal (tone burst)
TSV inspection (5 µm diameter, depth 50 µm)

- $f=200$ MHz
- $f=1$ GHz, good detail
- resolution
- A perfect correlation has been obtained between the FIB and SAM analysis.
Real small μ-Bumps

- Investigations of μ-bumps for micro voids, delaminations, cracks
- delamination between wiring and BCB layer
Small µ-Bumps

- Acoustic Inspection at 1 GHz (through 5µm of BCB)
- SAM C-scan, f= 1GHz
- Position for FIB cut
- FESEM, 5 kV
Real small µ-bumps

- BCB “indentation” used for image alignment

• acoustic micrograph @ 1GHz
1 GHz SAM-analysis
 Imaging modes: maximum value imaging, mean value imaging, defocused imaging, B(z) analysis

- The image on the left was taken at the z-position with the highest V(z)-amplitude (z = -10 µm)
- This position corresponds to the focus on top of the TSVs

V(z) curve:

- B(z)-signatures show uniform intensity for the surface (1st peak) and only slightly intensity deviations for the 2nd peak respective to v(z) curve (see red arrows): mechanical properties of the TSVs are almost equal, no defects observed.
V(z)-curves @ 1 GHz: increase throughput for TSV inspection

Defocus 4 µm

A) Type 1
- 1st peak @ 4 µm
- 2nd peak @ 9.3 µm
- 3rd peak @ 16.3 µm
- 4th peak @ 28.4 µm
- 5th peak @ 35.3 µm

B) Type 2
- Peak positions are the same, intensities differ
- One peak onset @ 29.3 µm

C) Type 3
- 3rd peak shifted to 14.3 µm
- 5th peak shifted to 40-42 µm
- 2 additional peaks (strongly pronounced) @ 20.3, @ 33.2 µm
V(z)-curves: Unique finger print

Defocus 10 µm
V(z)-curves: Unique finger print

Defocus 25 µm

- particularly
- different
- intensity distribution
V(z)-curves: Unique finger print

Defocus 37 µm
Further correlations GHz SAM-FIB based on V(z) analysis
Orientation by LM-images

1 GHz V(z)_withvoids_001
FIB cut - rotated sample Spot 1/2
Summary

1. Improve yield and cost of ownership of F&A equipment: increase SAM resolution and depth sensitivity, sample throughput

2. Provide SAM defect resolution >>10 μm range

3. Localization and measure of defects in z- 3D approach

4. Utilization of GHz SAM as new approach for semiconductor failure analysis in 1 μm range, potential for in line tool TSV inspection development for complete 300 mm wafer inspection
END

Thank you!