Property Index

Absorption coefficient, spectral
See: Transition probabilities for atoms and molecules
Photon cross section

Absorption spectra
See: Electronic molecular spectra
Rotational spectra
Vibrational spectra (infrared, Raman)

Activation energies of chemical reactions
See: Rate constants of chemical reactions

Activity coefficients

Thermodynamic Properties of Aqueous Sodium Chloride

Evaluation of the Thermodynamic Functions for Aqueous
Sodium Chloride from Equilibrium and Calorimetric Measurements

Thermodynamic Properties of the NaBr + H2O System —

Thermodynamic Properties of the Aqueous Sulfuric Acid

Atomic collision cross section (see also Charge exchange cross
section, Electron collision cross section)

Cross Sections and Swarmp Coefficients for H+, H2+, H3+, H,
H2, and H+ in H2 for Energies from 0.1 eV to 10 keV — A. V. Phelps. 19, 653 (1990).

Erratum: Cross Sections and Swarmp Coefficients for H+,
H2+, H3+, H, H2, and H+ in H2 for Energies from 0.1 eV to 10

Cross Sections and Swarmp Coefficients for Nitrogen Ions and
Neutrals in N2 and Argon Ions and Neutrals in Ar for Energies from 0.1 eV to 10 keV — A. V. Phelps. 20, 557 (1991).

Atomic energy levels and spectra

Energy Levels of Iron, Fe I through Fe XXVI — Charles Corliss
and Jack Sugar. 11, 135 (1982).

Energy Levels of Silicon, Si I through Si XIV — W. C. Martin
and Romuald Zalubas. 12, 323 (1983).

Binding Energies in Atomic Negative Ions: II — H. Hotop and

Energy Levels of Phosphorus, P I through P XV — W. C.

Forbidden Lines in n5snp6 Ground Configurations and n5snp
Excited Configurations of Beryllium through Molybdenum Atoms and

Spectral Data for Molybdenum Ions, Mo VI - Mo XLII —
Toshizo Shirai, Yohta Nakai, Kunio Ozawa, Keishi Ishii, Jack Sugar,

Atomic and Ionic Spectrum Lines Below 2000 Angstroms:

Energy Levels of Molybdenum, Mo I through Mo XLII — Jack
Sugar and Arlene Musgrove. 17, 155 (1988).

Wavelengths and Energy-Level Classifications of Scamund
Spectra for All Stages of Ionization — V. Kaufman and J. Sugar. 17,
1649 (1988).

Energy Levels of Atomic Aluminum with Hyperfine Structure

Spectral Data and Grotian Diagrams for Highly Ionized Iron,
Fe VIII-XXVI — Toshizo Shirai, Yoshio Funakata, Kazuo Mori, Jack

Energy Levels of Copper, Cu I through Cu XXIX — Jack Sugar

Cross Sections for Collisions of Electrons and Photons with

Energy Levels of Sulfur, S I through S XVI — W. C. Martin,

Erratum: Energy Levels of Sulfur, S I through S XVI — W. C.

Spectral Data and Grotian Diagrams for Highly Ionized Copper,
Cu X-Cu XXIX — Toshizo Shirai, Toshiaki Nakagaki, Yohta

Wavelengths and Energy Level Classifications of Magnesium
Spectra for All Stages of Ionization (Mg I thru Mg XII) — Victor

Wavelengths and Energy Level Classifications for the Spectra of
Aluminum (Al I through Al XIII) — Victor Kaufman and W. C.

Energy Levels of Krypton, Kr I through Kr XXXVI — Jack

Atomic form factor

Molecular Form Factors and Photon Coherent Scattering Cross
Sections of Water — L. R. M. Morin. 11, 1091 (1982).

Small-Angle Rayleigh Scattering of Photons at High Energies:
Tabulations of Relativistic HFS Modified Atomic Form Factors —
D. Schupp, M. Schumacher, F. Smend, P. Ruihlusen, and J. H.
Hubbell. 12, 467 (1983).

Atomic weight

Isotopic Abundances and Atomic Weights of the Elements —
Paul De Bièvre, Marc Gallet, Norman E. Holden, and I. Lynus

Atomic Weights of the Elements 1987 — J. R. de Laeter. 17,
1791 (1988).

Atomic Weights of the Elements 1989 — J. R. de Laeter. 20,

Isotopic Compositions of the Elements — J. R. de Laeter. 20,
Attenuation coefficients for x-rays and gamma-rays

Molecular Form Factors and Photon Coherent Scattering Cross Sections of Water — L. R. M. Morin. 11, 1091 (1982).

Binding energy

See: Atomic energy levels and spectra
Bond dissociation energy

Boiling point

Bond dissociation energy (see also Thermodynamic properties)

Cell constants

See: Lattice constants

Charge exchange cross section

Cross Sections and Swarm Coefficients for H^+, H_2^+, H_4^+, H, H_2, and H^- in H_2 for Energies from 0.1 eV to 10 keV — A. V. Phelps. 19, 653 (1990).

Erratum: Cross Sections and Swarm Coefficients for H^+, H_2^+, H_4^+, H, H_2, and H^- in H_2 for Energies from 0.1 eV to 10 keV — A. V. Phelps. 20, 1339 (1991).

Cross Sections and Swarm Coefficients for Nitrogen Ions and Neutrons in N_2 and Argon Ions and Neutrons in Ar for Energies from 0.1 eV to 10 keV — A. V. Phelps. 20, 557 (1991).

Combustion, heat of

See: Thermodynamic properties

Compressibility factor

See: Equation of state

Conductance

See: Electrical conductance

Conductivity, thermal

See: Thermal conductivity

Critical temperature, pressure (see also Equation of state)

Cross section

See: Atomic collision cross section
Charge exchange cross section
Electron collision cross section
Photon cross section
Rayleigh scattering cross section

Crystal structure

Behavior of the AB₂-Type Compounds at High Pressures and High Temperatures — Leo Merrill. 11, 1005 (1982).

Density

Thermophysical properties of fluids. I. Argon, ethylene, parahydrogen, nitrogen, nitrogen trifluoride, and oxygen — B. A. Younglove. 11, Suppl. 1 (1982).

Benzene Thermophysical Properties from 279 to 900 K at Pressures to 1000 Bar — Robert D. Goodwin. 17, 1541 (1988).

A Fundamental Equation for Water Covering the Range from the Melting Line to 1273 K at Pressures up to 25000 MPa — A. Saul and W. Wagner. 18, 1537 (1989).

Toluene Thermophysical Properties from 178 to 800 K at Pressures to 1000 Bar — Robert D. Goodwin. 18, 1565 (1989).

Dielectric constant (see also Electric dipole moment of molecules)

Thermophysical properties of fluids. I. Argon, ethylene, parahydrogen, nitrogen, nitrogen trifluoride, and oxygen — B. A. Younglove. 11, Suppl. 1 (1982).

Diffusion coefficient

Transport Properties of Liquid and Gaseous D2O over a Wide Range of Temperature and Pressure — N. Matsunaga and A. Nagashima. 12, 933 (1983).

Diffusivity

See: Thermal conductivity

Dipole moment

See: Electric dipole moment of molecules

Dissociation energy

See: Bond dissociation energy

Drift velocity

Electric dipole moment of molecules

Microwave Spectra of Molecules of Astrophysical Interest. XXI. Ethanol (C₂H₅OH) and Propionitrile (C₃H₅CN) — Frank J. Lovas. 11, 251 (1982).

Electrical conductance

Electrical resistivity

Electrode potential

The Thermodynamics of the Krebs Cycle and Related Compounds — Stanley L. Miller and David Smith-Magowan. 19, 1049 (1990).

Electron affinity

Electron collision cross section

Electron swarm parameters

Cross Sections and Swarm Coefficients for H⁺, H₂⁺, H₃⁺, H, H₂, and H⁺ in H₂ for Energies from 0.1 eV to 10 keV — A. V. Phelps. 19, 653 (1990).

Electronic molecular spectra

Energy levels
See: Atomic energy levels and spectra
Molecular energy levels and constants

Energy transfer coefficients
Rate Coefficients for Vibrational Energy Transfer Involving the Hydrogen Halides — Stephen R. Leone. 11, 953 (1982).

Energy, binding
See: Bond dissociation energy

Energy, dissociation
See: Bond dissociation energy
Thermodynamic properties

Enthalpy
See: Thermodynamic properties

Enthalpy of formation
See: Heat of formation
Thermodynamic properties

Entropy
See: Thermodynamic properties

Equation of state

Carbon Monoxide Thermophysical Properties from 6 to 1000 K at Pressures to 100 MPa — Robert D. Goodwin. 14, 849 (1985).
Recent Progress in Deuterium Triple-Point Measurements — L. A. Schwabe. 15, 1351 (1986).

Benzene Thermophysical Properties from 279 to 900 K at Pressures to 1000 Bar — Robert D. Goodwin. 17, 1541 (1988).

A Fundamental Equation for Water Covering the Range from the Melting Line to 1273 K at Pressures up to 25000 MPa — A. Saul and W. Wagner. 18, 1537 (1989).

Toluene Thermophysical Properties from 178 to 800 K at Pressures to 1000 Bar — Robert D. Goodwin. 18, 1565 (1989).

Equilibrium constant

The Thermodynamics of the Krebs Cycle and Related Compounds — Stanley L. Miller and David Smith-Magowan. 19, 1049 (1990).

Equivalent conductance
See: Electrical conductance

Extinction coefficient
See: Transition probabilities for atoms and molecules

F-values
See: Transition probabilities for atoms and molecules

Formation, heat of
See: Heat of formation
Thermodynamic properties

Free energy
See: Thermodynamic properties

Frequencies, vibrational
See: Vibrational frequencies of molecules

Fundamental physical constants

Gaseous diffusion coefficient
See: Diffusion coefficient

Gibbs energy
See: Thermodynamic properties

Heat capacity (see also Thermodynamic properties)

Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. V. Polystyrene — Umesh Gaur and Bernhard Wunderlich. 11, 313 (1982).

Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. VI. Acrylic Polymers — Umesh Gaur, Suk-fai Lau, Brent B. Wunderlich, and Bernhard Wunderlich. 11, 1065 (1982).

Thermophysical properties of fluids. I. Argon, ethylene, parahydrogen, nitrogen, nitrogen trifluoride, and oxygen — B. A. Younglove. 11, Suppl. 1 (1982).

Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. VII. Other Carbon Backbone Polymers — Umesh Gaur, Brent B. Wunderlich, and Bernhard Wunderlich. 12, 29 (1983).

Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. IX. Final Group of Aromatic and Inorganic Polymers — Umesh Gaur, Suk-fai Lau, and Bernhard Wunderlich. 12, 91 (1983).

Heat of formation (see also Thermodynamic properties)

High-Temperature Vaporization Behavior of Oxides II. Oxides of Be, Mg, Ca, Sr, Ba, B, Al, Ga, In, Ti, Si, Ge, Sn, Pb, Zn, Cd, and Hg — R. H. Lamoreaux, D. L. Hildenbrand, and L. Brewer. 16, 419 (1987).

Heat of mixing

High pressure properties

Behavior of the AB₂-Type Compounds at High Pressures and High Temperatures — Leo Merrill. 11, 1005 (1982).

Infrared spectra
See: Vibrational spectra (infrared, Raman)

Ionization potentials (see also Atomic energy levels and spectra)

Energy Levels of Iron, Fe I through Fe XXVI — Charles Corliss and Jack Sugar. 11, 135 (1982).

Energy Levels of Silicon, Si I through Si XIX — W. C. Martin and Romuald Zaculbas. 12, 323 (1983).

Energy Levels of Molybdenum, Mo I through Mo XLII — Jack Sugar and Arlene Musgrove. 17, 155 (1988).

Energy Levels of Copper, Cu I through Cu XIX — Jack Sugar and Arlene Musgrove. 19, 527 (1990).

Ionization rate

Isotopic abundance

Kinetic rate constants
See: Rate constants of chemical reactions

Lattice constants
Behavior of the AB2-Type Compounds at High Pressures and High Temperatures — Leo Merrill. 11, 1005 (1982).

Lifetimes
See: Transition probabilities for atoms and molecules

Line strengths
See: Transition probabilities for atoms and molecules

Loss tangent
See: Dielectric constant

Melting point

Behavior of the AB2-Type Compounds at High Pressures and High Temperatures — Leo Merrill. 11, 1005 (1982).

Recent Progress in Deuterium Triple-Point Measurements — L. A. Schwabla. 15, 1351 (1986).

Microwave spectra
See: Rotational spectra

Mobility of electrons and holes
See: Electron swarm parameters

Molecular energy levels and constants

Microwave Spectra of Molecules of Astrophysical Interest.
XXI. Ethanol (C₂H₅OH) and Propionitrile (C₂H₃CN) — Frank J. Lovas. 11, 251 (1982).

Microwave Spectra of Molecules of Astrophysical Interest.

Molecular spectra
See: Rotational spectra
Vibrational spectra (infrared, Raman)
Electronic molecular spectra

Molecular structure

Nuclear magnetic resonance

Nucleation rate

Oscillator strengths

See: Transition probabilities for atoms and molecules

Osmotic coefficients

PVT Surface
See: Equation of state

Phase diagrams

Behavior of the AB₃-Type Compounds at High Pressures and High Temperatures — Leo Merrill. 11, 1005 (1982).

Phase transition data

Behavior of the AB₂-Type Compounds at High Pressures and High Temperatures — Leo Merrill. 11, 1005 (1982).

Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. VI. Acrylic Polymers — Umesh Gaur, Suk-fai Lau, Brent B. Wunderlich, and Bernhard Wunderlich. 11, 1065 (1982).

Coupled Phase Diagram-Thermodynamic Analysis of the 24 Binary Systems, \(\text{A}_2\text{CO}_2\text{AX} \) and \(\text{A}_2\text{SO}_4\text{AX} \) Where \(\text{A} = \text{Li}, \text{Na}, \text{K} \) and \(\text{X} = \text{Cl}, \text{F}, \text{NO}_3, \text{OH} \) — Yves Dussereault, James Sangster, and Arthur D. Pelton. 19, 1149 (1990).

Photon cross section

Molecular Form Factors and Photon Coherent Scattering Cross Sections of Water — L. R. M. Morin. 11, 1091 (1982).

Polarizability

Potential energy curves for atoms and molecules

Proton affinity

Rate constants of chemical reactions

Rate Coefficients for Vibrational Energy Transfer Involving the Hydrogen Halides — Stephen R. Leone. 11, 953 (1982).

Rotational constants

See: Molecular energy levels and constants

Rotational spectra

Microwave Spectra of Molecules of Astrophysical Interest. XXI. Ethanol (C₂H₅OH) and Propionic acid (C₃H₇COOH) — Frank J. Lovas. 11, 251 (1982).

Recommended Rest Frequencies for Observed Interstellar Molecules Microwave Transitions - 1985 Revision — F. J. Lovas. 15, 251 (1986).

Solubility

PROPERTY INDEX

Specific conductance
See: Electrical conductance

Specific gravity
See: Density

Specific heat
See: Heat capacity
Thermodynamic properties

Spectra
See: Atomic energy levels and spectra
Electronic molecular spectra
Rotational spectra
Vibrational spectra (infrared, Raman)

Spectral line widths

Structure, crystal
See: Crystal structure

Structure, molecular
See: Molecular structure

Surface structure

Surface tension

Swarm coefficient

Cross Sections and Swarm Coefficients for Nitrogen Ions and Neutrals in N2 and Argon Ions and Neutrals in Ar for Energies from 0.1 eV to 10 keV — A. V. Phelps. 20, 557 (1991).

Thermal conductivity

Thermophysical properties of fluids. I. Argon, ethylene, parahydrogen, nitrogen, nitrogen trifluoride, and oxygen — B. A. Younglove. 11, Suppl. 1 (1982).

Transport Properties of Liquid and Gaseous D2O over a Wide Range of Temperature and Pressure — N. Matsunaga and A. Nagashima. 12, 933 (1983).

Toluene Thermophysical Properties from 178 to 800 K at Pressures to 1000 Bar — Robert D. Goodwin. 18, 1565 (1989).

The Viscosity and Thermal Conductivity of Pure Monatomic Gases from Their Normal Boiling Point up to 5000 K in the Limit of Zero Density and at 0.101325 MPa — E. Bich, J. Millat, and E. Vogel. 19, 1289 (1990).

Thermal diffusivity

See: Thermal conductivity

Thermal expansion coefficient

Recommended Values for the Thermal Expansivity of Silicon from 0 to 1000 K — C. A. Swenson. 12, 179 (1983).

Thermodynamic properties (enthalpy, entropy, Gibbs energy, heat capacity)

Ideal Gas Thermodynamic Properties of CH₄, CD₂, CD₄, C₂D₂, C₂D₄, C₂D₆, CH₄N₂CH₃, and CD₃N₂CD₃ — Krishna M. Pamidimukkala, David Rogers, and Gordon B. Skinner. 11, 83 (1982).

Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. V. Polystyrene — Umesh Gaur and Bernhard Wunderlich. 11, 313 (1982).

Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. VI. Acrylic Polymers — Umesh Gaur, Suk-fai Lau, Brent B. Wunderlich, and Bernhard Wunderlich. 11, 1065 (1982).

Thermophysical properties of fluids. I. Argon, ethylene, parahydrogen, nitrogen, nitrogen trifluoride, and oxygen — B. A. Younglove. 11, Suppl. 1 (1982).

Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. VII. Other Carbon Backbone Polymers — Umesh Gaur, Brent B. Wunderlich, and Bernhard Wunderlich. 12, 29 (1983).

Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. IX. Final Group of Aromatic and Inorganic Polymers — Umesh Gaur, Suk-fai Lau, and Bernhard Wunderlich. 12, 91 (1983).

Computer Methods Applied to the Assessment of Thermochemical Data. Part I. The Establishment of a Computerized Thermochemical Data Base Illustrated by Data for TiCl₄(g), TiCl₄(l), TiCl₃(φ), and TiCl₂(ε) — S. P. Kirby, E. M. Marshall, and J. B. Pedley. 15, 943 (1986).

High-Temperature Vaporization Behavior of Oxides II. Oxides of Be, Mg, Ca, Sr, Ba, Al, Ga, In, Ti, Si, Ge, Sn, Pb, Zn, Cd, and Hg — R. H. Lamoreaux, D. L. Hildenbrand, and L. Brewer. 16, 419 (1987).

Benzene Thermophysical Properties from 279 to 900 K at Pressures to 1000 Bar — Robert D. Goodwin. 17, 1541 (1988).

Thermodynamic Properties of Dioxygen Difluoride (O₂F₂) and Dioxygen Fluoride (O₂F) — John L. Lyman. 18, 799 (1989).

A Fundamental Equation for Water Covering the Range from the Melting Line to 1273 K at Pressures up to 2500 MPa — A. Saul and W. Wagner. 18, 1537 (1989).

Toluene Thermophysical Properties from 178 to 800 K at Pressures to 1000 Bar — Robert D. Goodwin. 18, 1565 (1989).

The Thermodynamics of the Krebs Cycle and Related Compounds — Stanley L. Miller and David Smith-Magowan. 19, 1049 (1990).

Transition probabilities for atoms and molecules

Forbidden Lines in ns^2np^k Ground Configurations and nsnp Excited Configurations of Beryllium through Molybdenum Atoms and Ions — Victor Kaufman and Jack Sugar. 15, 321 (1986).

Transport properties

See: Diffusion coefficient
Thermal conductivity
Viscosity

Vapor pressure (see also Equation of state)

Thermophysical properties of fluids. I. Argon, ethylene, parahydrogen, nitrogen, nitrogen trifluoride, and oxygen — B. A. Younglove. 11, Suppl. 1 (1982).

High-Temperature Vaporization Behavior of Oxides II. Oxides of Be, Mg, Ca, Sr, Ba, Bi, Ga, In, Ti, Si, Ge, Sn, Pb, Zn, Cd, and Hg — R. H. Lamoreaux, D. L. Hildenbrand, and L. Brewer. 16, 419 (1987).

Vibrational frequencies of molecules (see also Molecular energy levels and constants)

Thermodynamic Properties of Dioxygen Difluoride (O_2F_2) and Dioxygen Fluoride (O_2F) — John L. Lyman. 18, 799 (1989).

Vibrational spectra (infrared, Raman)

Virial coefficients

Viscosity

Thermophysical properties of fluids. I. Argon, ethylene, parahydrogen, nitrogen, nitrog, nitro, trifluoride, and oxygen — B. A. Younglove. 11, Suppl. 1 (1982).

Transport Properties of Liquid and Gaseous D₂O over a Wide Range of Temperature and Pressure — N. Matsunaga and A. Nagashima. 12, 933 (1983).

Toluene Thermophysical Properties from 178 to 800 K at Pressures to 1000 Bar — Robert D. Goodwin. 18, 1565 (1989).

The Viscosity and Thermal Conductivity of Pure Monatomic Gases from Their Normal Boiling Point up to 5000 K in the Limit of Zero Density and at 0.101325 MPa — E. Bich, J. Millat, and E. Vogel. 19, 1289 (1990).

Wavelengths of spectral lines

See: Atomic energy levels and spectra
Electronic molecular spectra
Rotational spectra
Vibrational spectra (infrared, Raman)

X-ray production cross section

Index to Selected Classes of Materials

Actinide elements

Alcohols

Heat Capacities of Organic Compounds in the Liquid State I. C\textsubscript{1} to C\textsubscript{18} 1-Alkanols — Milan Zábranský, Vlastimil Růžička, Jr., and Vladimír Majer. 19, 719 (1990).

Alkali halides

Coupled Phase Diagram-Thermodynamic Analysis of the 24 Binary Systems, A\textsubscript{2}CO\textsubscript{3}AX and A\textsubscript{2}SO\textsubscript{4}AX Where A = Li, Na, K and X = Cl, F, NO\textsubscript{3}, OH — Yves Desseureault, James Sangster, and Arthur D. Peoton. 19, 1149 (1990).

Alkali metals

Alkaline earth metals

Amino acids

The Thermodynamics of the Krebs Cycle and Related Compounds — Stanley L. Miller and David Smith-Magowan. 19, 1049 (1990).

Aqueous solutions

Atmospheric gases

INDEX TO SELECTED CLASSES OF MATERIALS

Cross Sections and Swarm Coefficients for Nitrogen Ions and Neutrals in N2 and Argon Ions and Neutrals in Ar for Energies from 0.1 eV to 10 keV — A. V. Phelps. 20, 557 (1991).

Biochemical compounds

The Thermodynamics of the Krebs Cycle and Related Compounds — Stanley L. Miller and David Smith-Magowan. 19, 1049 (1990).

Diatomic molecules

INDEX TO SELECTED CLASSES OF MATERIALS 1363

Elements

Forbidden Lines in ns²np⁴⁴ Ground Configurations and nsnp Excited Configurations of Beryllium through Molybdenum Atoms and Ions — Victor Kaufman and Jack Sugar. 15, 321 (1986).

Free radicals

Halogenated hydrocarbons

Hydrocarbons

Ideal Gas Thermodynamic Properties of CH₄, CD₂, C₂D₄, C₃D₆, C₄H₈, CH₃N₂CH₃, and CD₃N₂CD₃ — Krishna M. Pamidimukkala, David Rogers, and Gordon B. Skinner. 11, 83 (1982).

Benzene Thermophysical Properties from 279 to 900 K at Pressures to 1000 Bar — Robert D. Goodwin. 17, 1541 (1988).

Toluene Thermophysical Properties from 178 to 800 K at Pressures to 1000 Bar — Robert D. Goodwin. 18, 1565 (1989).

INDEX TO SELECTED CLASSES OF MATERIALS

Hydrogen

Recent Progress in Deuterium Triple-Point Measurements — L. A. Schwabbe. 15, 1351 (1986).

Hydrogen ions

Inorganic materials

Rate Coefficients for Vibrational Energy Transfer Involving the Hydrogen Halides — Stephen R. Leone. 11, 953 (1982).

Behavior of the AB2-Type Compounds at High Pressures and High Temperatures — Leo Merrill. 11, 1005 (1982).

High-Temperature Vaporization Behavior of Oxides II. Oxides of Be, Mg, Ca, Sr, Ba, B, Al, Ga, In, Ti, Si, Ge, Sn, Pb, Zn, Cd, and Hg — R. H. Lamoreaux, D. L. Hildenbrand, and L. Brewer. 16, 419 (1987).

Interstellar molecules

Microwave Spectra of Molecules of Astrophysical Interest. XXI. Ethanol (C2H5OH) and Propionitrile (C2H5CN) — Frank J. Lovas. 11, 251 (1982).

Recommended Rest Frequencies for Observed Interstellar Molecular Microwave Transitions-1985 Revision — F. J. Lovas. 15, 251 (1986).

Ions

INDEX TO SELECTED CLASSES OF MATERIALS

Cross Sections and Swarm Coefficients for Nitrogen Ions and Neutrals in N₂ and Argon Ions and Neutrals in Ar for Energies from 0.1 eV to 10 keV — A. V. Phelps. 20, 557 (1991).

Liquid crystals

Metal oxides

Metals and alloys

Noble gases

Thermophysical properties of fluids. I. Argon, ethylene, parahydrogen, nitrogen, nitrogen trifluoride, and oxygen — B. A. Younglove. 11, Suppl. 1 (1982).

The Viscosity and Thermal Conductivity of Pure Monatomic Gases from Their Normal Boiling Point up to 5000 K in the Limit of Zero Density and at 0.101325 MPa — E. Bich, J. Millat, and E. Vogel. 19, 1289 (1990).

Organic compounds

Ideal Gas Thermodynamic Properties of CH₄, CD₄, H₂, CH₂H₂, CH₂D₂, C₂H₂, C₂D₂, C₂H₆, C₂H₄, CH₃CH₂CH₃, and CD₃CD₂CD₃ — Krishna M. Pamidimukkala, David Rogers, and Gordon B. Skinner. 11, 83 (1982).

INDEX TO SELECTED CLASSES OF MATERIALS

Polymers

Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. VI. Acrylic Polymers — Umesh Gaur, Suk-fai Lau, Brent B. Wunderlich, and Bernhard Wunderlich. 11, 1065 (1982).

Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. VII. Others Carbon Backbone Polymers — Umesh Gaur, Brent B. Wunderlich, and Bernhard Wunderlich. 12, 29 (1983).

Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. IX. Final Group of Aromatic and Inorganic Polymers — Umesh Gaur, Suk-fai Lau, and Bernhard Wunderlich. 12, 91 (1983).

Salts

Semiconductors

Recommended Values for the Thermal Expansivity of Silicon for 0 to 1000 K — C. A. Swenson. 12, 179 (1983).

Transition elements

Energy Levels of Iron, Fe through Fe XXVI — Charles Corliss and Jack Sugar. 11, 135 (1982).

Computer Methods Applied to the Assessment of Thermochemical Data. Part I. The Establishment of a Computerized Thermochemical Data Base Illustrated by Data for TiCl4(g), TiCl4(1), TiCl3(cr), and TiCl2(cr) — S. P. Kirby, E. M. Marshall, and J. B. Pedley. 15, 943 (1986).

Water

Molecular Form Factors and Photon Coherent Scattering Cross Sections of Water — L. R. M. Morin. 11, 1091 (1982).

Transport Properties of Liquid and Gaseous D₂O over a Wide Range of Temperature and Pressure — N. Matsunaga and A. Nagashima. 12, 933 (1983).

A Fundamental Equation for Water Covering the Range from the Melting Line to 1273 K at Pressures up to 25000 MPa — A. Saul and W. Wagner. 18, 1537 (1989).

Ackerman, M. W.

Adler-Golden, Steven M.

Alberty, Robert A.

Anderson, Orson L.

Archer, Donald G.

Arudi, Ravindra L.

Assael, M. J.

Atkinson, Roger

Avedisian, C. T.

Bailey, Sylvia M.

Balfour, F. W.

Banerjee, Sujit

Bansal, N. P.

Barnes, I. Ly纳斯

Bartmess, John E.

Bartle, K. D.

Basu, R. S.

Battino, Rubin

Baulch, D. L.

Beatty, E. C.

Bell, K. L.

Benson, Sidney W.

Bich, E.

The Viscosity and Thermal Conductivity of Pure Monatomic Gases from Their Normal Boiling Point up to 5000 K in the Limit of Zero Density and at 0.101325 MPa — E. Bich, J. Millat, and E. Vogel. 19, 1289 (1990).

Bielski, Benon H. J.

Bishop, David M.

Blair, Terence T.

Bloomstein, Theodore M.

Bogaard, R. H.

Bolletta, Fabrizio

Boushehri, A.

Bowers, M.

Bransden, B. H.

Bratsch, Steven G.

Brewer, L.

High-Temperature Vaporization Behavior of Oxides. II. Oxides of Be, Mg, Ca, Sr, Ba, Al, Ga, In, Ti, Si, Ge, Sn, Pb, Zn, Cd, and Hg — R. H. Lamoreaux, D. L. Hildenbrand, and L. Brewer. 16, 419 (1987).

Brion, C. E.

Burcat, Alexander

Burmenko, Ellen

Busey, R. H.

Buxton, George V.

Bzowski, J.

Cabelli, Diane E.

Camy-Peyret, C.

Carmichael, Ian

Carroll, John J.

Castleman, A. W., Jr.

AUTHOR INDEX

Chang, Edward S.

Chao, Jing

Chase, M. W., Jr.

Cheung, Lap M.

Chu, T. K.

Chung, Michael B.

Chung, T. H.

Churney, Kenneth L.

Clarke, E. Colin W.

Clever, H. Lawrence

Clifford, A. A.

Cohen, E. Richard

Cohen, N.

Cole, Wendy A.

Collocott, S. J.

AUTHOR INDEX

Corliss, Charles

Energy Levels of Iron, Fe I through Fe XXVI — Charles Corliss and Jack Sugar. 11, 135 (1982).

Coulombe, M. J.

Cox, R. A.

Crosswhite, H. M.

Crovetto, Rosa

Crutzen, P. J.

Curnutt, J. L.

Cvetanović, R. J.

Davies, C. A.

De Bièvre, Paul

de Laeter, J. R.

Derrick, M. Elizabeth

Desai, P. D.

Dessureault, Yves

Dewan, Ashok

Duncan, T. M.

Dutton, J.

Eaton, B. E.

Ely, James F.

Evans, William H.

Dorofeeva, O. V.

Downey, J. R., Jr.

Fernández-Prini, Roberto

Fraud, J-M.

Flood, Theresa M.

Freeman, D. E.

Freund, Robert S.

Friend, Daniel G.

Frurip, D. J.

Fuhr, J. R.

Funatake, Yoshio

Gadalla, N. A. M.

Gallagher, J. S.

Gallagher, Jean W.

Gallet, Marc

Gammon, B. E.

Gaur, Umesh

Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. V. Poly styrene — Umesh Gaur and Bernhard Wunderlich. 11, 313 (1982).
Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. VI. Acrylic Polymers — Umesh Gaur, Suk-fai Lau, Brent B. Wunderlich, and Bernhard Wunderlich. 11, 1065 (1982).
Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. VII. Other Carbon Backbone Polymers — Umesh Gaur, Brent B. Wunderlich, and Bernhard Wunderlich. 12, 29 (1983).
Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. IX. Final Group of Aromatic and Inorganic Polymers — Umesh Gaur, Suk-fai Lau, and Bernhard Wunderlich. 12, 91 (1983).

Gehrig, Catherine A.

Gierlach, Matthew

Gilbody, H. B.

Gilmore, Forrest R.

Glew, David N.

Goldberg, Robert N.

Goodwin, Robert D.

Benzene Thermophysical Properties from 279 to 900 K at Pressures to 1000 Bar — Robert D. Goodwin. 17, 1541 (1988).

Toluene Thermophysical Properties from 178 to 800 K at Pressures to 1000 Bar — Robert D. Goodwin. 18, 1565 (1989).

Gordon, S.

Greenstock, Clive L.

Grigull, U.

Grilly, E. R.

Gurvich, L. V.

Ha, Young S.

Hall, Kenneth R.

Halow, Iva

Hampson, R. F., Jr.

Hanley, H. J. M.

Hatano, Y.

Havill, T. N.

Hayashi, M.

Hearing, Elizabeth D.

Helman, W. Phillip

Hendricks, R. C.

Herron, John T.

Chemical Kinetic Data Base for Propellant Combustion: I. Reactions Involving NO, NO\textsubscript{2}, HNO, HNO\textsubscript{2}, HCN and N\textsubscript{2}O — Wing Tsang and John T. Herron. 20, 609 (1991).

Hildenbrand, D. L.

High-Temperature Vaporization Behavior of Oxides II. Oxides of Be, Mg, Ca, Sr, Ba, B, Al, Ga, In, Ti, Si, Ge, Sn, Pb, Zn, Cd, and Hg — R. H. Lamoreaux, D. L. Hildenbrand, and L. Brewer. 16, 419 (1987).

Hill, Philip G.

A Unified Equation of State for H\textsubscript{2}O — Philip G. Hill. 19, 1231 (1990).

Hisham, Mohamed W. M.

Hiza, M. J.

Ho, C. Y.

Hoffman, Morton Z.

Holden, Norman E.

Holland, P. M.

Holmes, John L.

Hotop, H.

Hubbell, J. H.

Hug, Gordon L.

Hughes, J. G.

Huie, Robert E.

Ichimura, A.

Ingham, Hepburn

Ishii, Keishi

Itikawa, Y.

Jacobsen, Richard T.

Jacox, Marilyn E.

Jafar, S. A.

Jahangiri, Majid

James, H. M.

Janev, R. K.

Janz, George J.

Johnson, Susan A.

Jorish, V. S.

Kadoya, K.

Kamgar-Parsi, B.

Kang, Tae H.

Karni, Miriam

Kaufman, Victor

Forbidden Lines in n\alpha^2\eta b^k Ground Configurations and n\alpha p Excited Configurations of Beryllium through Molybdenum Atoms and Ions — Victor Kaufman and Jack Sugar. 15, 321 (1986).

Keesee, R. G.

Kelly, Raymond L.

Kerr, J. A.

Kestin, J.

Kidnay, A. J.

Kingston, A. E.

Kirby, S. P.

Computer Methods Applied to the Assessment of Thermochemical Data. Part I. The Establishment of a Computerized Thermochemical Data Base Illustrated by Data for TiCl_4(g), TiCl_4(l), TiCl_2(ce), and TiCl_2(ce) — S. P. Kirby, E. M. Marshall, and J. B. Pedley. 15, 943 (1986).

Kisiel, Z.

Knierim, K.

Konjević, N.

Krauss, R.

Laesecke, A.

Laher, Russ R.

Lamoreaux, R. H.

High-Temperature Vaporization Behavior of Oxides II. Oxides of Be, Mg, Ca, Sr, Ba, B, Al, Ga, In, Ti, Si, Ge, Sn, Pb, Zn, Cd, and Hg — R. H. Lamoreaux, D. L. Hildenbrand, and L. Brewer. 16, 419 (1987).

Langhoff, P. W.

Lapicki, G.

Lau, Suk-fai

Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. VI. Acrylic Polymers — Umesh Gaur, Suk-fai Lau, Brent B. Wunderlich, and Bernhard Wunderlich. 11, 1065 (1982).

Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. IX. Final Group of Aromatic and Inorganic Polymers — Umesh Gaur, Suk-fai Lau, and Bernhard Wunderlich. 12, 91 (1983).

Lee, V.

Lennon, M. A.

Leone, Stephen R.

Rate Coefficients for Vibrational Energy Transfer Involving the Hydrogen Halides — Stephen R. Leone. 11, 953 (1982).

Levin, Rhoda D.

Li, H. H.

Li, S. F. Y.

Lias, Sharon G.

AUTHOR INDEX

Liebman, Joel F.

Lin, C. T.

Lineberger, W. C.

Lloyd, Alan C.

Loewenschuss, Aharon

Lovas, Frank J.

Microwave Spectra of Molecules of Astrophysical Interest. XXI. Ethanol (C₂H₅OH) and Propionitrile (C₂H₅CN) — Frank J. Lovas. 11, 251 (1982).

Recommended Rest Frequencies for Observed Interstellar Molecular Microwave Transitions - 1985 Revision — F. J. Lovas. 15, 251 (1986).

Lyman, John L.

Thermodynamic Properties of Dioxygen Difluoride (O₂F₂) and Dioxygen Fluoride (O₂F) — John L. Lyman. 18, 799 (1989).

MacMillan, R. D. Chris

Mackay, Donald

Majer, Vladimir

Malcolm, D. G.

Mallard, W. Gary

Marcus, Yitzhak

Marsh, Kenneth N.

Marshall, E. M.

Computer Methods Applied to the Assessment of Thermochemical Data. Part I. The Establishment of a Computerized Thermochemical Data Base Illustrated by Data for TiCl₄(g), TiCl₃(g), TiCl₂(ce), and TiCl₂(ce) — S. P. Kirby, E. M. Marshall, and J. B. Pedley. 15, 943 (1986).

Martin, G. A.

Martin, W. C.

Mason, E. A.

Mather, Alan E.

Matsunaga, N.

Transport Properties of Liquid and Gaseous D2O over a Wide Range of Temperature and Pressure — N. Matsunaga and A. Nagashima. 12, 933 (1983).

Matula, R. A.

McCarty, Robert D.

McDonald, R. A.

Merrill, Leo

Behavior of the AB3-Type Compounds at High Pressures and High Temperatures — Leo Merrill. 11, 1005 (1982).

Millat, J.

The Viscosity and Thermal Conductivity of Pure Monatomic Gases from Their Normal Boiling Point up to 5000 K in the Limit of Zero Density and at 0.101325 MPa — E. Bich, J. Millat, and E. Vogel. 19, 1289 (1990).

Millen, D. J.

Miller, R. C.

Miller, Stanley L.

The Thermodynamics of the Krebs Cycle and Related Compounds — Stanley L. Miller and David Smith-Magowan. 19, 1049 (1990).

Mixafendi, S.

Moggi, Luca

Mohammed, K.

Morgan, T. J.

Mori, Kazuo

Morin, L. R. M.
Molecular Form Factors and Photon Coherent Scattering Cross Sections of Water — L. R. M. Morin. 11, 1091 (1982).

Murray, M. J.

Musgrove, Arlene
Energy Levels of Copper, Cu I through Cu XXIX — Jack Sugar and Arlene Musgrove. 19, 527 (1990).

Muthu, Ol

Nagashima, A.
Transport Properties of Liquid and Gaseous D2O over a Wide Range of Temperature and Pressure — N. Matsunaga and A. Nagashima. 12, 923 (1983).

Najafi, B.

Nakagaki, Toshiaki

Nakai, Yohta

Nakamura, M.
Neta, P.

Neubert, Mary E.

Nieto de Castro, C. A.

Nishimura, H.

Nuttall, Ralph L.

Oh, S. G.

Olchowy, G. A.

Olson, R. E.

Onda, K.

Oref, Izhack

Ozawa, Kunio

Pamidimukkala, Krishna M.

Ideal Gas Thermodynamic Properties of CH$_3$, CD$_3$, CD$_4$, C$_2$D$_2$, C$_4$D$_4$, C$_2$H$_6$, CH$_3$N$_2$CH$_3$, and CD$_3$N$_2$CD$_3$ — Krishna M. Pamidimukkala, David Rogers, and Gordon B. Skinner. 11, 83 (1982).

Parker, Vivian B.

AUTHOR INDEX

Parkinson, W. H.

Pearlman, Robert S.

Pedley, J. B.

Computer Methods Applied to the Assessment of Thermochemical Data. Part I. The Establishment of a Computerized Thermochemical Data Base Illustrated by Data for TiCl$_4$(g), TiCl$_4$(l), TiCl$_3$(cr), and TiCl$_2$(cr) — S. P. Kirby, E. M. Marshall, and J. B. Pedley. 15, 943 (1986).

Peiper, J. Christopher

Pelton, Arthur D.

Phelps, A. V.

Cross Sections and Swarm Coefficients for H$^+$, H$_2^+$, H$_3^+$, H, H$_2$, and H$^+$ in H$_2$ for Energies from 0.1 eV to 10 keV — A. V. Phelps. 19, 653 (1990).

Erratum: Cross Sections and Swarm Coefficients for H$^+$, H$_2^+$, H$_3^+$, H, H$_2$, and H$^+$ in H$_2$ for Energies from 0.1 eV to 10 keV — A. V. Phelps. 20, 1339 (1991).

Cross Sections and Swarm Coefficients for Nitrogen Ions and Neutrals in N$_2$ and Argon Ions and Neutrals in Ar for Energies from 0.1 eV to 10 keV — A. V. Phelps. 20, 557 (1991).

Pine, A. S.

Pitchford, L. C.

Pitzer, Kenneth S.

Ramires, M. L. V.

Reif, Andrea K.

Rettich, Timothy R.

Risley, J. S.

Ro, S. T.

Rogers, David

Ideal Gas Thermodynamic Properties of CH$_4$, CD$_3$, CD$_4$, C$_2$D$_2$, C$_2$D$_4$, C$_2$H$_6$, CH$_3$N$_2$CH$_3$, and CD$_3$N$_2$CD$_3$ — Krishna M. Pamidimukkala, David Rogers, and Gordon B. Skinner. 11, 83 (1982).

Rogers, P. S. Z.

AUTHOR INDEX

Ross, Alberta B.

Růžička, Vlastimil, Jr.

Rullhusen, P.

Sakimoto, K.

Samson, J. A. R.

Sangster, James

Sato, H.

Saul, A.

A Fundamental Equation for Water Covering the Range from the Melting Line to 1273 K at Pressures up to 25000 MPa — A. Saul and W. Wagner. 18, 1537 (1989).

Schaupp, D.

Schivione, James A.

Schiebener, P.

Schlachter, A. S.

Schumacher, M.

Schumm, Richard H.

Schwalbe, L. A.

Recent Progress in Deuterium Triple-Point Measurements — L. A. Schwalbe. 15, 1351 (1986).

Sengers, J. M. H. Levelt

Sengers, J. V.

Setzmann, U.

Shilstone, G. F.

Shirai, Toshizo

Shiu, Wan Ying

Singleton, D. L.

Skinner, Gordon B.

Ideal Gas Thermodynamic Properties of CH₃, CD₃, C₂H₆, C₂D₆, C₂H₅, C₂D₅, C₂H₄, CH₃₄, CH₃₂CH₃, and CD₃₂CD₃ — Krishna M. Pavindimukkala, David Rogers, and Gordon B. Skinner. 11, 83 (1982).

Slupsky, John D.

Sloan, E. D.

AUTHOR INDEX

1389

Smend, F.

Smith, Buford D.

Smith, F. J.

Smith-Magowan, David

The Thermodynamics of the Krebs Cycle and Related Compounds — Stanley L. Miller and David Smith-Magowan. 19, 1049 (1990).

Somayaju, G. R.

Srivastava, R.

Steinfeld, Jeffrey I.

Stephan, K.

Stewart, Richard B.

Straub, J.

AUTHOR INDEX

Stwalley, William C.

Suenram, R. D.

Microwave Spectral Tables III. Hydrocarbons, CH to C_{10}H_{10} — F. J. Lovas and R. D. Suenram. 18, 1245 (1989).

Sugar, Jack

Energy Levels of Iron, Fe I through Fe XXVI — Charles Corliss and Jack Sugar. 11, 135 (1982).

Forbidden Lines in n{2}np{1} Ground Configurations and n{2}np{2} Excited Configurations of Beryllium through Molybdenum Atoms and Ions — Victor Kaufman and Jack Sugar. 15, 321 (1986).

Energy Levels of Copper, Cu I through Cu XXIX — Jack Sugar and Arlene Musgrove. 19, 527 (1990).

Sullivan, D. A.

Sullivan, J. C.

Swenson, C. A.

Recommended Values for the Thermal Expansivity of Silicon from 0 to 1000 K — C. A. Swenson. 12, 179 (1983).

Syverud, A. N.

Takayanagi, K.

Takayanagi, T.

Tawara, H.

Taylor, Barry N.

Tewari, Yadu B.

Thormählen, I.

Tominaga, Toshihiro

Tomkins, R. P. T.

Trenogove, R. D.

Troe, J.

Tsai, Chun-che

Tsai, Mitchell

Tsang, Wing

Tsurubuchi, S.

Tuckerman, R. T.

Uematsu, M.

Uribe, F. J.

Valenzuela, E. A.

van der Burgt, P. J. M.

Vargaftik, N. B.

Varma-Nair, Manika

Vesovic, V.

Vogel, E.

The Viscosity and Thermal Conductivity of Pure Monatomic Gases from Their Normal Boiling Point up to 5000 K in the Limit of Zero Density and at 0.101325 MPa — E. Bich, J. Millat, and E. Vogel. 19, 1289 (1990).

Voljak, L. D.

Volkov, B. N.

Wagman, Donald D.

Wagner, Herman L.

Wagner, W.

A Fundamental Equation for Water Covering the Range from the Melting Line to 1273 K at Pressures up to 25000 MPa — A. Saul and W. Wagner. 18, 1537 (1989).

Wakeham, William A.

Waldman, M.

Wang, Peiming

Wardman, Peter

Watanabe, K.

Watson, J. T. R.

Watson, Philip R.

Watson, R. T.

Westberg, K. R.

Westerveld, W. B.

White, G. K.

Wiese, Wolfgang L.

Wilhoit, Randolph C.

Wu, K. Y.

Wunderlich, Bernhard

Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. V. Polystyrene — Umesh Gaur and Bernhard Wunderlich. 11, 313 (1982).

Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. VI. Acrylic Polymers — Umesh Gaur, Suk-fai Lau, Brent B. Wunderlich, and Bernhard Wunderlich. 11, 1065 (1982).

Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. VII. Other Carbon Backbone Polymers — Umesh Gaur, Brent B. Wunderlich, and Bernhard Wunderlich. 12, 29 (1983).

Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. IX. Final Group of Aromatic and Inorganic Polymers — Umesh Gaur, Suk-fai Lau, and Bernhard Wunderlich. 12, 91 (1983).

Wunderlich, Brent B.

Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. VI. Acrylic Polymers — Umesh Gaur, Suk-fai Lau, Brent B. Wunderlich, and Bernhard Wunderlich. 11, 1065 (1982).
Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. VII. Other Carbon Backbone Polymers — Umesh Gaur, Brent B. Wunderlich, and Bernhard Wunderlich. 12, 29 (1983).

Yalkowsky, Samuel H.

Yang, Sze Cheng

Yoshino, K.

Yoshino, M.

Younglove, B. A.

Thermophysical properties of fluids. I. Argon, ethylene, parahydrogen, nitrogen, nitrogen trifluoride, and oxygen — B. A. Younglove. 11, Suppl. 1 (1982).

Zábranský, Milan

Zalubas, Romuald

Zelezník, Frank J.

Zemke, Warren T.

Zou, Keshan