Medium Voltage grid interfaces and interconnection equipment

Geza Joos, Professor

Department of Electrical and Computer Engineering
McGill University

15 April 2016
Summary

- Wind farm interconnection issues and requirements
- DER interconnection issues and requirements
- Microgrid operation, interconnection requirements and controller features
- Power electronic interfaces – an enabler for deployment and operation
Transmission wind farm interconnection issues

Given that

- Renewable resources produce variable and intermittent power and are not dispatchable
- Conventional generators have features that define the way generation dispatch is carried out and transmission assets are used and optimized
- High penetration of wind energy displaces/replaces conventional (synchronous generator based) production

It is reasonable, in the framework of the existing electric grid, to expect that wind farms must:

- Reproduce the features of conventional generators, notably inertial response
- Use power electronic interface flexibility and dynamic response to support the grid, by means of its fast real and reactive power control
Large wind generator plants – past and future

- Past: 690 VAC
- Present: 690 VAC
- Future: 690 VAC, or potentially High Voltage, AC or DC

- Large transmission-level plants required for cost parity
- Power electronics drive needed to meet grid requirements
Wind farm interconnection requirements – typical

- Response to disturbances on the grid, including loss of grid – voltage/grid support and low voltage ride through
- Voltage regulation, reactive power and power factor
- Frequency support under faults – inertial response
- Equipment protection – voltage and frequency ranges
- Ramp rates – maximum up and down ramps
- Power system oscillations damping – power system stabilizer functions
- Real power limitation under abnormal conditions – power curtailment
Distribution interconnection issues for DER

- Synchronization
- Voltage regulation
- Islanding and reclosing, islanding detection
- Power and power factor ranges/control
- Response to voltage disturbances – voltage support
- Response to frequency disturbances
- Grid support, low voltage ride through, tripping ranges
- Protection – overcurrent, other functions
- Power quality – harmonic distortion, voltage sags
- Grounding
Smart inverter functions – control – P-Q dispatch

Facilitate DER interconnection and integration

- Voltage/reactive power function – voltage support
- Voltage/power function – grid support – bidirectional option
- Frequency/power function – grid support
- Voltage ride through – configurable ranges
- Dynamic reactive current/power – voltage support function
- Peak power limiting – applicable to battery storage
- Power smoothing – controlled within a range of variations

- Note 1: Needed function must be identified, required features selected, and controller implementation defined
- Note 2: Possibility of operating in the 4 quadrants of the P-Q plane with storage
Microgrids enable pervasive DER and resiliency
NIST/SGIP Microgrid standards coordination

PAP 24: Microgrid Operational Interfaces

Task 0: Scoping Document
Define microgrid standards needs

Task 1: Use Cases: Functional + Interactive EPRI DERMS
Define requirements for different scenarios

Task 2: Microgrid Interconnection standard for grid-interaction
IEEE 1547 Series

Task 3: Unified microgrid-EMS controller standard
IEEE P2030.7

Task 4: Regulatory Framework
a) State
b) Federal
c) NARUC

Task 5: Smart Microgrid Controller Information Models
IEC 61850 Series: CIM, MultiSpeak

Task 6: Microgrid Controller and Interconnection Equipment Test
Controller Test – IEEE P2030.8; Info exchange; Interconnection; Safety; System Impact

http://www.sgip.org/About-PAPs
Microgrid operating requirements

- Microgrid – role, structure and configuration
 - Integration of DER, including generation based on renewables
 - Integration of electric energy storage
 - Integration of controllable loads, and hybrid loads (EV)

- Interconnection requirements – external to the microgrid
 - Control/limit the energy exchange with the distribution grid
 - Manage the energy exchange to an pre-agreed level
 - Present a neutral operation to the distribution grid
 - Provide ancillary services to the distribution grid as negotiated

- Operational requirements – internal to the microgrid
 - Balancing renewable generation variability, meeting load requirements
 - Providing resiliency to the customers
 - Enabling high renewable DER penetration levels
 - Meeting distribution utility interconnection requirements
 - Meeting the needs of local customers in terms of power quality
Microgrid interconnection requirements

2 basic functional requirements – work carried out in P2030.7

- Transitions (abnormal/fault operation) – capability to island when required, while maintaining microgrid internal operation within voltage and frequency limits during transitions, with minimum load disruption and stabilization to the new operating point in a specified time

- Dispatch (normal operation) – capability to maintain operation within voltage and frequency limits in islanded mode and grid connected modes – provide grid support and ancillary services to the distribution grid as required
Microgrid function implementation

2 basic functional requirements – equipment/systems required

- Transitions – from grid connection to islanded modes and reconnection
 - Islanding detection
 - Microgrid Interface Device (MID) – Interface with the grid, for disconnection and isolation, and for reconnection
 - Microgrid controller – implementing centralized or decentralized control making use of intelligent DER functions for the transition period

- MID implementation options
 - Mechanical switch, contactor, breaker
 - Power electronics converter or switch, hybrid switch

- Dispatch
 - Microgrid controller – implementing centralized or decentralized control, making use of intelligent DER functions for normal mode
 - Power electronic MID control for continuous grid interface exchanges
Microgrid controller framework – P2030.7 proposal

Scope of 2030.7
Define functions, inputs and outputs

Grid
(DMS, DERMS)

Microgrid Controller
Functions

Orders, Requests, Prices...
Objectives - Constraints

Status, responses
Dispatch

Energy Mgt
(Optimal Disp.)

Status, Values

Control, Parameters

Microgrid Assets
MID, Gen, Loads. Storage, PLC, Bldg EMS, Sensors
Microgrid/DER power electronic interface enablers

- **Local DER power electronic interfaces – control**
 - Implementation of smart inverter grid-support functions
 - Controllable DER – storage devices
 - Managing local grid perturbations
 - Aggregation of DER for ancillary services provision

- **Power electronic interfaces – microgrid to grid interconnection**
 - Controlled power exchanges
 - Isolates the microgrid from the grid perturbations
 - Allows a controlled connection and disconnection (islanding)
 - Reconfigurable converter structures - flexible and multiple functions
 - Implementable using MV power converters – benefits
Microgrid deployment enablers

■ Power electronic equipment
 ➢ Grid interface inverter robustness – handling harsh environments (temperature and humidity), improvement in overload capabilities, robust operation under faults (remaining connected)
 ➢ Grid interface inverter flexibility – smart inverter functions, grid support
 ➢ Grid interface inverter functionality – integrated storage

■ Operations
 ➢ Protection system design – integrated protection layer, adaptive protection (grid connected and islanded operation)
 ➢ Microgrid controller implementation – centralized control, decentralized control (fall back)
 ➢ Communication infrastructure