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Using Pulsed Lasers
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Advantages of 355 nm
● 3rd harmonic of YAG, so high power systems are readily available.
● High power allows very large detuning (33 THz)
● Spontaneous emission negligible
● AC Stark shifts from 2P1/2 and 2P3/2 nearly cancel, making the
 differential AC Stark shift extremely small.

171Yb+ energy level diagram

Two Regimes:
Weak Pulse Regime1

● Individual pulses have very little
 e�ect on the spin state
● Many pulses add to produce
 frequency comb
● Raman transitions driven by teeth
 separated by hyperfine frequency
● Can perform tasks traditionally
 done by CW lasers, e.g. sideband
 cooling, Mølmer-Sørenson gate

Strong Pulse Regime2

● Individual pulses have large
 effect on the spin state
● Raman transitions driven directly
 by very small number of pulses.
● Allows complete single qubit
 control in tens of picoseconds.
● Will allow extremely fast motional gates,
 which are faster than the trap period.

Weak pulse regime: two pulse trains, one with
shifted comb teeth, drive Raman transitions.

Future Plans
● Counterpropagating pulses produce spin-dependent
 momentum kicks.
● Kicks are much faster than the trap period → pure
 vertical displacements in phase space.
● These kicks allow implementation of a gate faster
 than the trap frequency.
● Gates work by rapidly enclosing an area in phase
 space in a spin-dependent way, then returning to
 the free-evolution location in phase-space.  Motion
 factors, leaving spin-dependent phase → phase gate.

Fast gate scheme using spin-
dependent kicks proposed in [3]. Fast gate proposed in [4].
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Microwave Ramsey Experiment

Ramsey experiment demonstrating pure σz rotation.

 Blue: Two microwave π/2 pulses, free evolution
   in between.
 Red: Two microwave π/2 pulses, with σz 
   rotation pulses and free evolution
   in between.
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∼50 ps π-pulse

This point is a pure
σz rotation.

Conclusions
● Pulsed lasers allow very fast, very clean qubit control.
● Complete arbitrary control of a trapped ion qubit in
 tens of picoseconds, with negligible AC Stark shift
 and spontaneous emission.

ωHF
ωHF ...

Single Pulse Qubit Rotation

72%

Spin flip vs. pulse energy for single 355 pulse.
Limited by bandwidth -- Acts like Rabi flopping
with a detuning.

Strong pulse regime spectra for 1, 2, 5, and 20 pulses.

● Pulses are very short (1-10 ps)
 → large bandwidth (0.1-1 THz)
 → large frequency gaps are easily bridged.

● Extremely high power readily available → Efficient
 frequency doubling and tripling, large detunings OK
 → Reduced AC Stark shift, spontaneous emission.

● Fast pulses + high power → Low
 noise, high speed operations.

● Allow implementation of gates
 faster than trap frequency.

● No carrier - envelope
 phase stablization necessary

Two Pulse Qubit Rotation

Variable
  Delay

π
2 rotation π

2 rotation

Pure σz Rotation ● Pulse is split, with each half a π/2 pulse.
● Delay between pulses is controlled.
● Different polarizations lead to different
 behavior in the overlap region.

Green: Optical inteference region (Theory)    Black: Thermal average of green (Theory)
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● If counterpropagating pulses
 have lin ⊥ lin polarizations,
 transitions only occur  by
 absorbing from one pulse
 and emitting into the other.
● This gives the ion a
 momentum kick.
● In phase space, ion’s
 motional state diffracts.
● Sequences of counter-
 propagating lin ⊥ lin pulse
 pairs can produce true
 spin dependent kick.
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