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I. INTRODUCTION

This Resource Letter is a guide to the literature describing
both experimental and theoretical works on the determina-
tion of values of certain fundamental physical constants.

In this Resource Letter, fundamental physical constants
are taken to be the experimentally determined parameters in
the equations that describe the basic laws of physics as they
are currently understood. The numerical values of these con-
stants are needed to make quantitative predictions by theory
for comparison to the results of measurements. In fact, nu-
merical values of the constants are periodically determined
as being those that give the best agreement between theoret-
ical predictions and experimental measurements.

Some of these constants have dimensions and others do
not. For example, the speed of light, a fundamental constant
associated with special relativity and electromagnetism, has
the dimension of velocity, or distance divided by time. In
order to give a unique meaning to the value of such a con-
stant, it is necessary to specify the system of units in which it
is expressed since the numerical value will depend on the
unit definitions. For example, the speed of light is about
3�108 meters /second, which is the same as about 6.7
�108 miles /hour. For such constants with dimensions, the
International System of Units �SI� is widely accepted in sci-
ence and technology and is presently the standard agreed to
through a treaty among 54 nations. On the other hand, di-
mensionless constants, such as the fine-structure constant,
the constant that characterizes the strength of electromag-
netic interactions, are independent of the unit system.

Many of the constants considered here are of use in prac-
tical metrological applications, while others are included be-

cause they have traditionally been evaluated in the periodic
least-squares adjustments of the constants. In general, these
constants have values that have been accurately determined,
and they have a well-defined place in a fundamental theory
such as quantum mechanics or relativity. This includes uni-
versal constants that apply to broad physical laws as well as
properties of particular particles such as their mass. In view
of the critical role of the system of units for expressing the
values of constants, literature on changes that may be made
to the SI definitions in the near future is also surveyed. Not
included here is the broad topic of possible time variation of
the constants.

Besides the references given in this Resource Letter, rel-
evant papers may be located on the searchable database of
the NIST Fundamental Constants Data Center at http://
physics.nist.gov/constantsbib.

II. BASIC RESOURCES

A. Journals

Most of the physics leading to values of the fundamental
constants is reported in the following journals. The listing is
in decreasing order of the number of times articles in the
journal are cited in the latest adjustment of the values of the
constants.

Physical Review Letters
Physical Review A
Metrologia
IEEE Transactions on Instrumentation and Measurement
Physical Review D
Physics Letters B
Canadian Journal of Physics
Zhurnal Eksperimental’ noi i Teoreticheskoi Fiziki [Journal
of Experimental and Theoretical Physics (JETP)]
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Philosophical Transactions of the Royal Society of London
Physics Letters A
International Journal of Mass Spectrometry
Reviews of Modern Physics
Measurement Science and Technology
Reports on Progress in Physics
Physical Review
Nuclear Physics B (Proceedings Supplements)
Modern Physics Letters A
Journal of Physics G
Journal of Physics B
Izmeritel’naya Tekhnika [Measurement Techniques]
Annals of Physics (N.Y.)

B. Conference proceedings

A number of conference series are focused on work that is
often relevant to the physics and values of fundamental con-
stants. Published proceedings of these conferences are listed
here. Other relevant conference proceedings that are not part
of a series are also given.

1. Conference on Precision Electromagnetic
Measurements (CPEM)

This series is focused on measurements and theory that are
of high relevance to knowledge of the fundamental con-
stants.

1. 2008 Conference on Precision Electromagnetic Mea-
surements (CPEM�, edited by T. E. Lipe and Y.-H. Tang,
IEEE Trans. Instrum. Meas. 58�4� 748–1267 �2009�. �A�

2. Special issue on CPEM 2006, edited by G. M. Reedtz,
IEEE Trans. Instrum. Meas. 56�2� 209–676 �2007�. �A�

3. Special issue on CPEM 2004, edited by G. Jones, IEEE
Trans. Instrum. Meas. 54�2� 473–936 �2005�. �A�

4. Special issue on CPEM 2002, edited by U. Feller, IEEE
Trans. Instrum. Meas. 52�2� 221–651 �2003�. �A�

5. Special issue on Selected Papers CPEM’2000, edited by
B. W. Ricketts, IEEE Trans. Instrum. Meas. 50�2� 173–
655 �2001�. �A�

6. Special issue on Selected Papers CPEM’98, edited by
B. A. Bell, IEEE Trans. Instrum. Meas. 48�2� 145–671
�1999�. �A�

7. Special issue on Selected Papers CPEM’96, edited by
R. J. Cook, IEEE Trans. Instrum. Meas. 46�2� 89–646
�1997�. �A�

8. Special issue on Selected Papers CPEM/94, edited by
M. Young, IEEE Trans. Instrum. Meas. 44�2� 77–622
�1995�. �A�

9. Editor J. McA Steele, IEEE Trans. Instrum. Meas. 42�2�
i–679 �1993�. �A�

10. Special issue on Selected Papers CPEM ’90, edited by
N. B. Belecki, IEEE Trans. Instrum. Meas. 40�2� 65–535
�1991�. �A�

2. Enrico Fermi Schools on Metrology and Fundamental
Constants

This series is of general interest for fundamental constants.

11. Metrology and Fundamental Constants, edited by T.

Hänsch, S. Leschiutta, and A. J. Wallard �IOS, Amster-
dam, 2007�. �A�

12. Recent Advances in Metrology and Fundamental
Constants, edited by T. J. Quinn, S. Leschiutta, and P.
Tavella �IOS, Amsterdam, 2001�. �A�

13. Metrology at the Frontiers of Physics and Technol-
ogy, edited by L. Crovini and T. J. Quinn �North-
Holland, Amsterdam, 1992�. �A�

14. Metrology and Fundamental Constants, edited by A.
F. Milone, P. Giacomo, and S. Leschiutta �North-
Holland, Amsterdam, 1980�. �A�

3. International Conference on Atomic Physics (ICAP)

These conferences cover a broader range of topics but in-
clude work relevant to the constants.

15. Proceedings of the XXI International Conference on
Atomic Physics, Pushing the Frontiers of Atomic
Physics, edited by R. Côté, P. L. Gould, M. Rozman,
and W. W. Smith �World Scientific, Singapore, 2009�.
�A�

16. Atomic Physics 20: XX International Conference on
Atomic Physics, edited by C. Roos, H. Häffner, and R.
Blatt, AIP Conference Proceedings 869 �AIP, Melville,
NY, 2006�. �A�

17. Atomic Physics 19: XIX International Conference on
Atomic Physics, ICAP 2004, edited by L. G. Marcassa,
V. S. Bagnato, and K. Helmerson, AIP Conference Pro-
ceedings 770 �AIP, Melville, NY, 2005�. �A�

18. Proceedings of the XVIII International Conference
on Atomic Physics: The Expanding Frontier of
Atomic Physics, edited by H. R. Sadeghpour, E. J.
Heller, and D. E. Pritchard �World Scientific, Singapore,
2003�. �A�

19. Atomic Physics 17: XVII International Conference,
ICAP 2000, edited by P. De Natale, M. Inguscio, and E.
Arimondo, AIP Conference Proceedings 551 �AIP,
Melville, NY, 2000�. �A�

4. Precision Physics of Simple Atomic Systems

As the titles indicate, these conferences are focused on
precision work on atomic structure.

20. Precision Physics of Simple Atoms and Molecules, ed-
ited by S. G. Karshenboim, Lecuture Notes in Physics
745 �Springer, Berlin, 2008�. �A�

21. Precision Physics of Simple Atomic Systems, edited by
S. G. Karshenboim and V. B. Smirnov, Lecture Notes in
Physics 627 �Springer, Berlin, 2003. �A�

22. The Hydrogen Atom: Precision Physics of Simple
Atomic Systems, edited by S. G. Karshenboim, F. S.
Pavone, F. Bassani, M. Inguscio, and T. W. Hänsch, Lec-
ture Notes in Physics 570 �Springer, Berlin, 2001�. �A�

5. Other conferences

23. The Fundamental Constants of Physics, Precision
Measurements and the Base Units of the SI, edited by
T. Quinn and K. Burnett, Philos. Trans. R. Soc. London,
Ser. A 363�1834�, 2097–2327 �2005�. �A�
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24. Gravitational Measurements, Fundamental Metrol-
ogy and Constants, edited by V. De Sabbata and V. N.
Melnikov, NATO ASI Series C, Vol. 230 �Kluwer Aca-
demic, Dordrecht, 1988�. �A�

25. Precision Measurement and Fundamental Constants
II, edited by B. N. Taylor and W. D. Phillips, NBS Spe-
cial Publication 617 �U.S. Government Printing Office,
Washington, DC, 1984�. �A�

26. Quantum Metrology and Fundamental Physical Con-
stants, edited by P. H. Cutler and A. A. Lucas, NATO
ASI Series B Vol. 98 �Plenum, New York, 1983�. �A�

C. Books and monographs

27. H. Fritzsch, The Fundamental Constants: A Mystery
of Physics �World Scientific, Singapore, 2009�. �I�

28. Quantum Metrology and Fundamental Constants,
edited by F. Piquemal and B. Jeckelmann, Eur. Phys. J.
Special Topics 172, 1–408 �2009�. �A�

29. Atomic Clocks and Fundamental Constants, edited by
S. G. Karshenboim and E. Peik, Eur. Phys. J. Special
Topics 163, 1–332 �2008�. �A�

30. J.-P. Uzan and B. Leclercq, The Natural Laws of the
Universe: Understanding Fundamental Constants
�Springer, Berlin, 2008�. �I�

31. Astrophysics, Clocks and Fundamental Constants,
edited by S. G. Karshenboim and E. Peik, Lecture Notes
in Physics 648 �Springer, Berlin, 2004�. �A�

32. J. D. Barrow, The Constants of Nature �Random
House, New York, 2003�. �I�

33. H. Bachmair et al., Fundamental Constants in Physics
and Chemistry (Numerical Data and Functional Re-
lationships in Science and Technology) �Springer, Ber-
lin, 1992�. �A�

34. B. W. Petley, The Fundamental Physical Constants
and the Frontier of Measurement �Adam Hilger, Bris-
tol, 1985�. �A�

35. B. N. Taylor, W. H. Parker, and D. N. Langenberg, The
Fundamental Constants and Quantum Electrody-
namics �Academic, New York, 1969�. �A�

D. Electronic archives and websites

Papers on fundamental physical constants may be found in
various electronic archives. The more frequently used ones
are the following:

36. �http://arxiv.org/archive/physics.gen-ph/GeneralPhysics�
�A�

37. �http://arxiv.org/archive/physics.atom-ph/
AtomicPhysics� �A�

38. �http://arxiv.org/archive/astro-ph/Astrophysics� �A�
39. �http://arxiv.org/archive/hep-th/HighEnergyPhysics-

Theory�. �A�
40. �http://arxiv.org/archive/hep-ph/HighEnergyPhysics-

Phenomenology�. �A�

41. �http://arxiv.org/archive/gr-qc/
GeneralRelativityandQuantumCosmology� �A�

Relevant websites are the following:

42. �http://www.aps.org/units/gpmfc/�, The website for the
American Physical Society’s Topical Group on Precision
Measurement and Fundamental Constants. �E�

43. �http://www.codata.org/taskgroups/TGfundconst/�, A de-
scription of the CODATA Task Group on Fundamental
Physical constants within the home page of the Commit-
tee on Data for Science and Technology �CODATA�. �E�

44. �http://www.bipm.org/extra/codata/�, The home page of
the CODATA Task Group on Fundamental Physical con-
stants within the home page of the International Bureau
of Weights and Measures �BIPM�. �E�

45. �http://physics.nist.gov/cuu/�, The National Institute of
Standards and Technology Reference on Constants,
Units, and Uncertainty. �E�

46. �http://amdc.in2p3.fr/web/amdcw_en.html�, The home
page for the Atomic Mass Data Center which provides
the 2003 Atomic Mass Evaluation. �I�

47. �http://www.iupap.org/commissions/c2/�, The website of
the International Union of Pure and Applied Physics
�IUPAP� Commission on Symbols, Units, Nomenclature,
Atomic Masses and Fundamental Constants �SUNA-
MCO�. �E�

III. SURVEYS OF CONSTANTS AND UNITS

A. Overviews of the constants

48. “Adjusted recommended values of the fundamental
physical constants,” S. G. Karshenboim, Eur. Phys. J.
Spec. Top. 172, 385–397 �2009�. �I�

49. “Universal constants, standard models and fundamental
metrology,” G. Cohen-Tannoudji, Eur. Phys. J. Spec.
Top. 172, 5–24 �2009�. �I�

50. “New recommended values of the fundamental physical
constants �CODATA 2006�,” S. G. Karshenboim, Phys.
Usp. 51�10�, 1019–1026 �2008�. �I�

51. “The fundamental physical constants,” P. J. Mohr, B. N.
Taylor, and D. B. Newell, Phys. Today 60�7�, 52–55
�2007�. �I�

52. “Fundamental physical constants: Looking from differ-
ent angles,” S. G. Karshenboim, Can. J. Phys. 83�8�,
767–811 �2005�. �I�

53. “Adjusting the Values of the Fundamental Constants,” P.
J. Mohr and B. N. Taylor, Phys. Today 54�3�, 29–34
�2001�. �I�

B. Evaluations of fundamental constants

Starting with the pioneering work of Raymond Birge at
the University of California, Berkeley, in 1929, various
evaluations of the fundamental constants, based on the data
available at the time, have been made. The Committee on
Data for Science and Technology �CODATA� Task Group on
Fundamental Constants was founded in 1969, and since then,
they have recommended values for the constants that are
internationally recognized and used in research and publica-
tions.

54. “CODATA recommended values of the fundamental
physical constants: 2006,” P. J. Mohr, B. N. Taylor, and
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D. B. Newell, J. Phys. Chem. Ref. Data 37�3�, 1187–
1284 �2008�. �A�

55. “CODATA recommended values of the fundamental
physical constants: 2006,” P. J. Mohr, B. N. Taylor, and
D. B. Newell, Rev. Mod. Phys. 80�2�, 633–730 �2008�.
�A�

56. “CODATA recommended values of the fundamental
physical constants: 2002,” P. J. Mohr and B. N. Taylor,
Rev. Mod. Phys. 77�1�, 1–107 �2005�. �A�

57. “CODATA recommended values of the fundamental
physical constants: 1998,” P. J. Mohr and B. N. Taylor,
Rev. Mod. Phys. 72�2�, 351–495 �2000�. �A�

58. “CODATA recommended values of the fundamental
physical constants: 1998,” P. J. Mohr and B. N. Taylor, J.
Phys. Chem. Ref. Data 28�6�, 1713–1852 �1999�. �A�

59. “Recommended values of the fundamental physical con-
stants: A status report,” B. N. Taylor and E. R. Cohen, J.
Res. Natl. Inst. Stand. Technol. 95�5�, 497–523 �1990�.
�A�

60. “The 1986 adjustment of the fundamental physical con-
stants,” E. R. Cohen and B. N. Taylor, Rev. Mod. Phys.
59�4�, 1121–1148 �1987�. �A�

61. “The 1973 least-squares adjustment of the fundamental
constants,” E. R. Cohen and B. N. Taylor, J. Phys.
Chem. Ref. Data 2�4�, 663–734 �1973�. �A�

62. “Determination of e /h using macroscopic quantum
phase coherence in superconductors: Implications for
quantum electrodynamics and the fundamental physical
constants,” B. N. Taylor, W. H. Parker, and D. N. Lan-
genberg, Rev. Mod. Phys. 41�3�, 375–496 �1969�. �A�

63. “Our knowledge of the fundamental constants of physics
and chemistry in 1965,” E. R. Cohen and J. W. M. Du-
Mond, Rev. Mod. Phys. 37�4�, 537–594 �1965�. �A�

64. “Status of knowledge of the fundamental constants of
physics and chemistry as of January 1959,” J. W. M.
DuMond, Ann. Phys. �N.Y.� 7�4�, 365–403 �1959�. �A�

65. “Résumé of atomic constants,” J. A. Bearden and J. S.
Thomsen, Am. J. Phys. 27�8�, 569–576 �1959�. �A�

66. “A survey of the systematic evaluation of the universal
physical constants,” R. T. Birge, Nuovo Cimento, Suppl.
6�1�, 39–67 �1957�. �A�

67. “A survey of atomic constants,” J. A. Bearden and J. S.
Thomsen, Nuovo Cimento, Suppl. 5�2�, 267–360 �1957�.
�A�

68. “Present status of the atomic constants,” J. A. Bearden,
M. D. Earle, J. M. Minkowski, and J. S. Thomsen, Phys.
Rev. 93�3�, 629–630 �1954�. �A�

69. “Least-squares adjustment of the atomic constants,
1952,” J. W. M. DuMond and E. R. Cohen, Rev. Mod.
Phys. 25�3�, 691–708 �1953�. �A�

70. “A Re-evaluation of the fundamental atomic constants,”
J. A. Bearden and H. M. Watts, Phys. Rev. 81�1�, 73–81
�1951�. �A�

71. “Our knowledge of the atomic constants, F, N, m, and h
in 1947, and of other constants derivable therefrom,” J.
W. M. DuMond and E. R. Cohen, Rev. Mod. Phys.
20�1�, 82–108 �1948�; Erratum 21�4�, 651–652 �1949�.

72. “Probable values of the general physical constants,” R.
T. Birge, Rev. Mod. Phys. 1�1�, 1–73 �1929�. �A�

C. The International System of Units (SI)

The following are various resources describing the Inter-
national System of Units and related concepts:

73. International System of Units (SI), 8th ed. �Bureau
International des Poids et Mesures, Sèvres, France,
2006�, �http://www.bipm.org/en/si/si_brochure/�. �I�

74. B. N. Taylor and A. Thompson, The International Sys-
tem of Units (SI), 2008 ed., NIST Spec. Pub. 330 �U.S.
Government Printing Office, Washington, DC, 2008� .
�I�

75. A. Thompson and B. N. Taylor, Guide for the Use of
the International System of Units (SI), 2008 ed., NIST
Spec. Publ. 811 �U.S. Government Printing Office,
Washington, DC, 2008�. �I�

76. E. R. Cohen, T. Cvitaš, J. G. Frey, B. Holmström, K.
Kuchitsu, R. Marquardt, I. Mills, F. Pavese, M. Quack, J.
Stohner, H. L. Strauss, M. Takami, and A. J. Thor,
Quantities, Units and Symbols in Physical Chemistry,
IUPAC (International Union of Pure and Applied
Chemistry), 3rd ed. �Royal Society of Chemistry, Cam-
bridge, 2007�. �I�

77. E. R. Cohen and P. Giacomo, Symbols, Units, Nomen-
clature and Fundamental Constants in Physics,
IUPAP-25 (IUPAP-SUNAMCO 87-1) �International
Union of Pure and Applied Physics, 1987�; also pub-
lished in Physica �Utrecht� 146A�1–2�, 1–68 �1987�. �I�

See also Ref. 469.

IV. EXACT CONSTANTS

A number of fundamental constants have exact values ei-
ther by the definition of the constant itself or as a conse-
quence of the definitions of the SI units. Because of the
possible dependence on SI unit definitions, which are modi-
fied from time to time, the set of constants that are exact may
also change.

A. Speed of light c

The primary example of an exact constant is the speed of
light c=299 792 458 m /s. Before 1983, the speed of light
was a measured quantity based on the meter and the second,
which were defined independently. In 1983, the SI meter was
redefined to be the distance light travels in a certain interval
of time. From then on, the speed of light has been exactly
one meter divided by that specified time interval. This defi-
nition takes into account the result of special relativity, that
the speed of light in vacuum is the same in all inertial
frames. This redefinition represented a new concept in units
in which a general property of nature, namely, the invariabil-
ity of the speed of light, could be used as the basis for mea-
suring and calibrating any other velocity or, in combination
with the definition of the second, as the basis for defining the
meter.

B. Hyperfine frequency in cesium �Cs

Another constant that is exact as the result of a definition
of a unit is the ground-state hyperfine frequency in cesium
�Cs=9 192 631 770 Hz. This constant is qualitatively differ-
ent from the speed of light in that it refers to a particular
property of a particular atom. As such, it is not a universal
constant like c. In the SI, the second is defined to be the
period of time for a certain number of cycles of this transi-
tion frequency to elapse. In view of this definition, the hy-
perfine frequency is an exact number. Other frequencies are
determined by comparing them to �Cs.

341 341Am. J. Phys., Vol. 78, No. 4, April 2010 P. J. Mohr and D. B. Newell

 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

129.6.169.29 On: Wed, 23 Sep 2015 20:29:11



C. Magnetic constant �0 and electric constant �0

The magnetic constant, or the permeability of free space,
is fixed by the SI definition of the ampere to be
�0=4��10−7 N A−2. From electromagnetic theory in SI
units, the electric constant, or permittivity of free space, is
�0=1 /�0c2 so that �0 is also exact.

V. DIRECTLY MEASURED CONSTANTS

As mentioned in the introduction, the values of the funda-
mental constants are obtained by comparing experimental
results to the predictions of theory in which the constants
appear as parameters. The best values of the constants are
taken to be those for which the theoretical predictions best
match the experimental results as determined by the method
of least squares. That work and its methodology are de-
scribed in the papers cited in Sec. III B. In this section, ref-
erences for the more recent theoretical and experimental
work relevant to the determination of the values of particular
constants are given and organized according to the constant
to which the research is relevant. The focus is on recent
papers and some older papers that are of particular signifi-
cance.

A. Fine-structure constant �

The most accurate determination of the fine-structure con-
stant � is from the combination of measurements of the
anomalous magnetic moment of the electron, ae, and quan-
tum electrodynamics �QED� theory. Also given are determi-
nations of � from atomic recoil, neutron diffraction, and
electromagnetic measurements.

1. Electron anomalous magnetic moment

The QED part of the theoretical expression for the anoma-
lous magnetic moment of the electron ae is

ae�QED� = Ce
�2���

�
� + Ce

�4���

�
�2

+ Ce
�6���

�
�3

+ Ce
�8���

�
�4

+ . . . .

There are additional contributions from weak and strong in-
teraction effects, but these are relatively small. A value for �
may be obtained by equating the theoretical expression to the
measured ae.

The first coefficient Ce
�2� was calculated about 60 years ago

by Schwinger, and subsequent work has led to values for the
other coefficients. Work is still underway refining the value
of Ce

�8�, and calculations have only begun on the next term in
the series.

78. “Renormalization of QED and its experimental test over
60 years,” T. Kinoshita, Prog. Theor. Phys. Suppl. 167,
62–75 �2007�. �I�

79. “Automated calculation scheme for �n contributions of
QED to lepton g−2: New treatment of infrared diver-
gence for diagrams without lepton loops,” T. Aoyama,
M. Hayakawa, T. Kinoshita, and M. Nio, Nucl. Phys. B
796�1–2�, 184–210 �2008�. �A�

80. “Revised value of the eighth-order QED contribution to
the anomalous magnetic moment of the electron,” T.
Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, Phys.

Rev. D 77, 053012 �2008�, 24 pp. �A�
81. “Tenth-order lepton anomalous magnetic moment:

Second-order vertex containing two vacuum polarization
subdiagrams, one within the other,” T. Aoyama, M. Hay-
akawa, T. Kinoshita, and M. Nio, Phys. Rev. D 78,
113006 �2008�, 7 pp. �A�

82. “Eighth-order vacuum-polarization function formed by
two light-by-light-scattering diagrams and its contribu-
tion to the tenth-order electron g−2,” T. Aoyama, M.
Hayakawa, T. Kinoshita, M. Nio, and N. Watanabe,
Phys. Rev. D 78, 053005 �2008�, 14 pp. �A�

83. “Revised value of the eighth-order contribution to the
electron g−2,” T. Aoyama, M. Hayakawa, T. Kinoshita,
and M. Nio, Phys. Rev. Lett. 99, 110406 �2007�, 4 pp.
�A�

84. “Precise mass-dependent QED contributions to leptonic
g−2 at order �2 and �3,” M. Passera, Phys. Rev. D 75,
013002 �2007�, 6 pp. �A�

85. “Improved �4 term of the electron anomalous magnetic
moment,” T. Kinoshita and M. Nio, Phys. Rev. D 73,
013003 �2006�, 28 pp. �A�

86. “New results on the hadronic contributions to ��MZ
2� and

to �g−2�� ,” M. Davier and A. Höcker, Phys. Lett. B
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2. Transitions in antiprotonic helium
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and mass,” M. Hori, J. Eades, R. S. Hayano, T. Ish-
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me =
2hR	

�2c

from the definition of the Rydberg constant in Sec. V C using
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this Resource Letter.

K. Electron-muon mass ratio me Õm�

Muonium is the atomic state of a positive muon and an
electron. The ground state has two hyperfine levels, depend-
ing on the relative alignment of the spins of the muon and
electron. The electron-muon mass ratio is determined by a
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��Mu =
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3
cR	�2 me

m�
�1 +

me

m�
�−3

F��,me/m�� ,

where the function F, which is 1 to lowest order in the vari-
ables, contains the details of the theory but depends only
weakly on the mass ratio.

The value of the fine-structure constant � can also be de-
termined from this relation if an independent value of the
mass ratio is used. However, the value for � obtained this
way is less accurate than values obtained from other sources.

1. Theory
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414. “Polarization of vacuum in a hydrogen-like relativistic
atom: Hyperfine structure,” S. G. Karshenbo�m, V. G.
Ivanov, and V. M. Shabaev, JETP 90�1�, 59–65 �2000�.
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Hughes, M. Janousch, K. Jungmann, D. Kawall, F. G.
Mariam, C. Pillai, R. Prigl, G. zu Putlitz, I. Reinhard,
W. Schwarz, P. A. Thompson, and K. A. Woodle, Phys.
Rev. Lett. 82�4�, 711–714 �1999�. �A�
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son, E. G. Myers, J. M. Brown, M. S. Dewey, E. G.
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Henins, H. G. Börner, M. Jentschel, C. Doll, and H.
Lehmann, Phys. Lett. A 255�4–6�, 221–229 �1999�. �A�

Ionization energies for evaluation of ion masses are in the
following references. The binding energy uncertainties are
insignificant compared to the ion mass uncertainties.

437. The National Institute of Standards and Technology
spectroscopic database, �http://physics.nist.gov/ASD�.
�I�

438. “Recent trends in the determination of nuclear masses,”
D. Lunney, J. M. Pearson, and C. Thibault, Rev. Mod.
Phys. 75�3�, 1021–1082 �2003�; see Appendix A. �A�
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drogen through krypton. Part I �H–Cr�,” R. L. Kelly, J.
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18�3�, 243–291 �1976�. �A�

M. Other elementary-particle constants

Constants associated with weak and strong interaction
physics, such as the Fermi coupling constant, GF, not in-
cluded in the preceding sections, are surveyed by the Particle
Data Group in periodic publications. The latest references
are the following:

441. Particle Data Group Website, �http://pdg.lbl.gov�. �I�
442. “Review of particle physics,” Particle Data Group, C.

Amsler, et al. Phys. Lett. B 667�1–5�, 1–1340 �2008�.
�A�

VI. DERIVED CONSTANTS

The best values of the constants in this section are cur-
rently not obtained from direct measurements but instead are
calculated from theoretical identities, relating them to di-
rectly measured constants considered in the previous section.

A. Elementary charge e

In the classic Millikan oil-drop experiment, the elementary
charge e was measured directly, but the current best value is

based on the definition of the fine-structure constant as it
appears in the SI system, which yields the relation

e = �2�0hc��1/2 = �2�h

�0c
�1/2

.

The elementary charge is a universal constant because the
charge of any isolated system is an integer multiple of e, as
far as it has been tested experimentally. Limits can be placed
on possible differences between the magnitude of positive
and negative elementary charges from measurements of the
neutrality of matter.

443. “The electrical neutrality of atoms and of bulk matter,”
C. S. Unnikrishnan and G. T. Gillies, Metrologia 41�5�,
S125–S135 �2004�. �I�

444. “Automated electric charge measurements of fluid mi-
crodrops using the Millikan method,” E. R. Lee, V.
Halyo, I. T. Lee, and M. L. Perl, Metrologia 41�5�,
S147–S158 �2004�. �A�

445. H. Bachmair, “The elementary charge,” in Units and
Fundamental Constants in Physics and Chemistry:
Fundamental Constants in Physics and Chemistry,
edited by J. Bortfeldt, and B. Kramer, Subvolume b
�Springer, Berlin, 1992�, Chap. 3.2.4, pp. 79–82. �I�

446. “The electric neutrality of matter: A summary,” M.
Marinelli and G. Morpurgo, Phys. Lett. 137B�5–6�,
439–442 �1984�. �I�

B. Bohr radius a0

The Bohr radius, which is also the atomic unit of length, is
given by

a0 =
�

4�R	

.

C. Reduced Compton wavelength of the electron �C

The reduced Compton wavelength, i.e. the Compton
wavelength divided by 2�, is given by

�C =
�

mec
= �a0.

D. Bohr magneton �B

The Bohr magneton follows from

�B =
e�

2me
= � c�5h

32�2�0R	
2 �1/2

.

E. Nuclear magneton �N

The nuclear magneton is given by

�N =
Ar�e�
Ar�p�

�B, �1�

where Ar�e�=me /mu and Ar�p�=mp /mu are the relative
atomic masses of the electron and proton and mu is the rela-
tive atomic mass unit given in Sec. VI G.

F. Electron volt, eV

The electron volt is a unit of energy given by
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1 eV =
e

1 C
1 J,

where C is a coulomb and J is a joule.

G. Relative atomic mass unit, u

The relative atomic mass unit is

1 u = mu = 1
12m�12C� = 10−3 kg mol−1/NA,

where m�12C� is the mass of the carbon-12 atom.

VII. POSSIBLE REDEFINITION OF SI UNITS

As methods of measurement have advanced over the
years, the International System of Units has also evolved.
The latest change in the definition of an SI unit was made in
1983 when the meter was redefined by the statement: “The
meter is the length of the path traveled by light in vacuum
during a time interval of 1/299 792 458 of a second.” This
definition implies that the speed of light c is exactly
299 792 458 m/s. �See Ref. 73.�

Currently there is interest in providing similar definitions
of other SI units in terms of fundamental constants. The Con-
sultative Committee for Units has recommended to the Inter-
national Committee for Weights and Measures of the Inter-
national Bureau of Weights and Measures that the kilogram,
ampere, kelvin, and mole be redefined by specifying exact
values for the Planck constant h, the elementary unit of
charge e, the Boltzmann constant k, and the Avogadro con-
stant NA. The change is likely to take place when it is felt
that the experiments needed to determine mass based on the
proposed new definition are sufficiently accurate.

447. “The quantum SI: A possible new international system
of units,” P. J. Mohr, Adv. Quantum Chem. 53, 27–36
�2008�, Chap. 3. �I�

448. “Defining units in the quantum based SI,” P. J. Mohr,
Metrologia 45�2�, 129–133 �2008�. �A�
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X Ray Photograph. The photograph shows an instructor at the Kenyon Military Academy using Kenyon College
apparatus to make an X ray photograph of his hand. The date is about 1905, and the picture was taken in Ascension
Hall on the Kenyon campus. The tube is still in existence and the glass in front of the cathode, through which the
X rays passed, has been colored a light purple due to the formation of color centers. The photographic plate is wrapped
up in opaque paper and is underneath the instructor’s hand. Note the complete absence of shielding from stray
radiation. �Photograph and Notes by Thomas B. Greenslade, Jr., Kenyon College�
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