3D characterization of semiconductor interfaces using aberration-corrected STEM

Klaus van Benthem, Miyoung Kim, Andrew R. Lupini, Sergey N. Rashkeev, and Stephen J. Pennycook

Oak Ridge National Laboratory

benthem@ornl.gov

http://stem.ornl.gov
Motivation

- “What good would it be to see individual atoms distinctly?”

- “Another direction of improvement is to make physical machines three dimensional […].”

Richard F. Feynman
1918-1988
STEM Z-contrast imaging

Resolution = probe size
Z-contrast ~Z^2
Easy image interpretation
Simultaneous EELS

The intensity as a function of probe position gives an image

SrTiO_3 [110] HAADF image

Sr (38)
Ti (22)
O (Z=8)
Aberration Correction in STEM

Nion aberration corrector

Source → Condenser Lenses → Objective Lens → Sample → To Detector

Quadrupoles and Octupoles

Beam cross-section:

(Qualinopes control trajectories. Correction given by Octupoles)
Aberration corrected probe

VG Microscope’s HB603U, 300 kV

Aberration limited

\[C_s = 1.0 \text{ mm} \]
\[C_c = 1.0 \text{ mm} \]

Significant current is lost in probe “tails”

FWHM \~ 1.3 Å

No spherical aberration

Current density is concentrated into central maximum

FWHM \~ 0.5 Å

Aberration correction \implies “smaller” and “brighter” probe

Critical for single atom sensitivity

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY
Pico-scale Z-contrast Imaging:

Information transfer to 0.607 Å
(61 pm)

P.D. Nellist et al.,

Si \langle 112 \rangle Direct Image
Resolution at 0.78 Å
The form of Pt on the γ-Al$_2$O$_3$ (110C) Surface

With OH-cap Pt spacings match calculations
Pt atoms change from electron-rich to electron-poor
Unexpected Benefit of Aberration Correction

\[\Delta X \approx \frac{\lambda}{\theta} \]

\[\Delta Z \approx \frac{\lambda}{\theta^2} \]

Corrected 200kV “UltraSTEM”:
- \(\theta = 50 \text{ mrad} \)
- \(\Delta X \approx 0.05 \text{ nm} \)
- \(\Delta Z \approx 1 \text{ nm} \)
3D concept

Scan in 3-dimensions

Build 3D dataset by slices

Build and Analyze 3D Model
Si/HfO$_2$/poly-Si

- Atomic layer deposition
- Substrate temperature 320°C
- Annealing at 950°C for 30sec. In N$_2$
3D Analysis of Semiconductors

\[\Delta f \pm 2.0 \text{nm} \]
Slice View
Vertical position of Hf atoms

- Atoms located inside the device
- Sample thickness 6±1 nm
3D reconstruction of HfO2/SiO2(Hf)/Si

• Localization of single Hf atoms (laterally & vertically)
• Surface roughness
• "Si dumbbell columns"
Hf atom distribution in SiO$_2$

Leakage current related to individual Hf atoms in SiO$_2$ films

Hf can act as a leakage current center

Other atoms involved in leakage current

EELS Spectrum Imaging: Si L$_{2,3}$-edge

p-Si HfO$_2$/SiO$_2$ Si<110>
Spot Analysis: O K edge
Valence EELS = VEELS

- Local electronic structure (DOS)
- Local dielectric properties ($\varepsilon = \varepsilon_1 + i\varepsilon_2$)
- Leakage paths (in 3D?)
Cathodoluminescence

Incoming electron

\[E_F \]

\[h\nu \]

\[\text{Energy-loss electron} \]

ZnO(Mg) nanorods

ADF

CL
Electron Beam Induced Current

- Incoming electron
- CB
- EF
- VB
- Energy-loss electron
- EBIC
- Detectable w/ and w/o applied potential
- Imaging contrast
- Charge Collection Microscopy (CCM)
- 3D-CCM
Conclusions

- Volume resolution better than $0.1 \times 0.1 \times 6 \text{ nm}^3$
- Single atom sensitivity in 3D
- Direct proof that dopant atoms are located inside the device
- Hf atoms stay away from the Si/SiO$_2$ interface
- Hf atoms occupy “interstitial” sites in SiO$_2$
- Single Atom EELS (in 3D)
- Comparison of DOS and EELS/ELNES data
- VEELS
 - Local dielectric properties
 - Optical properties
- CL & EBIC
Acknowledgements

- A.Y. Borisevich, M.F. Chisholm, A.R. Lupini, Y. Peng, M. Varela
- S.N. Rashkeev, S.T. Pantelides (ORNL & Vanderbilt U)
- M. Kim et al. (Samsung, Korea)
- G. Duscher (NCSU)
- M.P. Oxley, S.D. Findlay, L.J. Allen (U Melbourne)
- J.T. Luck, W.H. Sides (technical support)
- Alexander-von-Humboldt Foundation (AvH)
- Oak Ridge Associated Universities (ORAU)
- Department of Energy (DOE)