Materials Characterization in Nanodomains and Interfaces

Challenges for Modeling and Metrology

Sadasivan Shankar¹, Kevin Jonhston¹, Dan Herr²

¹ Technology and Manufacturing Group, Intel Corporation, Santa Clara, California
² Semiconductor Research Corporation, North Carolina

Invited Talk for The 2011 International Conference on Frontiers of Characterization and Metrology for Nanoelectronics

May 24-26, 2011
Three-fold aim of the current presentation

- **Outline** Drivers of Nanodomain and Problems
- **Illustrate** modeling and metrology applications with specific examples
- **Acknowledgement**
 - M. Haverty, H. Simka, M. Bohr, J. Garcia
 - A. Bower, P. Ho
Background on Nanoscience and Technology
Nanoscience is...

- Understanding of science at the nano level
 - Quantum mechanics provides self-consistent explanation
 - Overlap of Molecular and Structural scales where the material behavior is due to collective behavior of nano-structures
Nanotechnology is...

- Research and technology development at the atomic, molecular or macromolecular levels, in the length scale of approximately 1 - 100 nanometer range."

M. Roco, National Science and Technology Council, February 2000

Relative sizes of micro-and nano-objects

(Hosack, SRC, 2003)
Some key drivers of Nanotechnology
New Information Technology Components

- SENSORS
- DISPLAYS
- OUTPUT CHANNEL
- MASS STORAGE DEVICES
- LOGIC
- LOCAL MEMORY

Information Output
- LCD
- Organic LEDs
- FE and Plasma Displays
- Optical and IR imaging

Information Transmission
- Photonic Networks

Information Processing
- Ferroelectric DRAMS
- Neuroelectronic
- Single electron
- Nanotubes
- Molecular electronics

(Waser, 2003)
Tipping Forces (1)

- Dimensions reduced to nano-dimensions
 - Material domains of same dimensions
 - Effect of Interfaces
- Increasing number of materials in smaller dimensions
 - 130 nm introduced Copper
 - Transition metal
 - 90 nm introduced low-k dielectric
 - Pores several nanometers
 - 45 nm introduced high-k/metal gates
 - Non-Si, polymer
Modern CMOS scaling is as much about material innovation as dimensional scaling
ITRS Emerging Research Materials Matrix

<table>
<thead>
<tr>
<th>TWG</th>
<th>Mat.</th>
<th>Low Dimensional Materials</th>
<th>Macro-molecules</th>
<th>Spin Materials</th>
<th>Complex Metal Oxides</th>
<th>Hetero-structures & Interfaces</th>
<th>Directed Self-assembly</th>
<th>ESH</th>
<th>Metrol. & Model’g</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MET</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M&S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PKG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- **Green**: Detailed TWG requirements or alignment
- **Blue**: General TWG interest or alignment
- **Yellow**: No TWG interest to date

Note:
- **TWG** = Technology Working Group
- **S. Shankar**

10
Moore’s Law - SRAM Cell Size

- Each cache cell has 6 transistors that together store “1” or “0” and allow the value to be changed.
Research Focus in Materials:

New Behavior not seen in traditional bulk materials

TOP FIVE IN PHYSICS

Are you working on the hottest topic in your field? Many scientists may think so, but it has been a tough assertion to prove — until now, that is. A German physicist has devised a way of answering the 'Hot or not?' question for his discipline. If it stands up to scrutiny, it could be used to rate topics across the sciences. In physics, the results show that hotness — measured by a parameter known as m — correlates well with the promise of future wealth... and that promise is greatest in nanotechnology.

12.85 Carbon nanotubes
Super-strong materials and blisteringly fast electronic circuits: the potential applications of these tiny carbon tubes, discovered in 1991, are so enticing that everyone is pouring money into the field.

8.75 Nanowires
Less well studied than nanotubes, but the possible uses are similar. Nanowires could eventually prove more useful than nanotubes, because their chemistry is easier to tailor and they can be used to create nano-sized lasers.

7.84 Quantum dots
Another nanotechnology with a huge range of potential applications. These tiny specks of semiconductor material, measuring as little as a few nanometres across, have already been used to create dyes for cell biologists and new kinds of laser. Physicists hope they might one day form the basis of a quantum computer.

7.78 Fullerenes
These spheres of carbon atoms are attracting significant research interest. But the latest ranking rewards newness, so the topic may have slipped down the list because it predated nanotubes by around six years. The discovery of fullerenes earned a Nobel prize and spawned studies of numerous potential uses, such as drug delivery agents.

6.82 Giant magnetoresistance

Not a new topic, but still hot because of its economic importance. Modern hard disk drives were made possible by the discovery of giant magnetoresistant materials, which show marked falls in electrical resistance — more than around 5% — when a magnetic field is applied. Researchers are now aiming to make hard disks even more powerful.
M²: Modeling and Measurement
Nanotechnology – Two major paradoxes

- Size in nano dimensions, **but**
 - Interfaces/bulk ratio >>1, interfaces modulate behavior (e.g. pinning, **voiding**)
 - Non-local effects **manifest**
 - Density of states modulated by neighboring materials and structures
 - New structures or thin films which are chemically different, are integrated
 - High-k/Metal gate
 - Polymer ILD

- Metrology **unable** to characterize precise specific effects, especially “buried” **surfaces**
Nanotechnology Paradoxes

(M. Begley, 2006)

\[R_{\text{tip}} = 100 \text{ nm} \]

Fraction error in modulus, \(\Delta E/E \)

Depth error, \(\Delta h = 2 \text{ nm} \)

For small depths:

\[A(h) = \pi (2hR_{\text{tip}} - h^2) \]

Penetration depth, \(\text{nm} \)

Hardness error, \(\Delta H/H \)
Motivation for Modeling

- **Efficient and effective way of engineering material performance in devices**
- **Multiple “Eureka” moments aid in evaluating directions**

(Ack: J. Mar, 1998)

Use Modeling to Accelerate Learning Curve

S. Shankar

16
Fundamental Problem in Modeling

- Use of first principles is information limited
 - $O(10^{23}) \sim 10$ trillion x trillion
 - Mining & post-processing are limiting
- GIGO
 - Structure, characterization, and interface conditions need to be precise
Motivation for Metrology

- Use Metrology to understand structure, composition, and function
- 2D/3D chemical, bonding, Electronic DOS, and structural characterization
 - Functional property characterization - Metrology & test structures to separate functional properties

Line Edge Roughness (LER)

Atomic Force Microscope Picture of Resist Nano-domains

Ack: M. Garner
Problem in Measurement

• How do you interpret measurement?
• What are you looking for?

Nanoflouro Coatings

Topography
Phase (G. Blackman, 2006)

S. Shankar

Blackman, Brill, Wysong
Metrology Challenge

- Dimensions of integrated devices are increasingly below the interaction volume of standard metrologies, such as SIMS, SCM, XPS, Auger, TEM

- Modeling is needed to deconvolute analytical results from integrated geometry
Fundamental problem of Measurement and Modeling

- Presence of multiple interfaces
- Ternary compounds and higher
- Both modeling and metrology are convoluted and are up against combinatorics
Symbiosis between Modeling and Metrology

• Model necessary to interpret a physical or electrical measurement.
• Physical or electrical characterization necessary to confirm a model of a novel material, device structure
Interface Reliability

Interface Property

- Advanced back-end interconnect technologies contain dual-damascene Cu layers and numerous interfaces:
 - *Intel 65nm logic technology features 8 Cu interconnect layers with CDO low-K ILD and SiCN etch stop layers (P. Bai et al, IEEE International Electronic and Device Meeting, 2004)*

- Understanding the interface is critical to optimize and ensure the desired properties and device reliability

Focus of this work:
Challenges and Goals

• Challenges:
 – Adhesion strength depends on many factors (materials, process conditions)
 – Lack of detailed characterization of interfaces (composition, structure, etc)
 – Adhesion measurements are often complex and time-consuming
 – Multiple effects are difficult to deconvolve and evaluate separately

• Goals:
 – Develop a fundamental model for Cu interface adhesion for screening materials and guiding experiments

Agglomeration
M² Methodology

• **Modeling:**
 – Periodic supercell model of interfaces:
 – Typical Cu(111) slab: A few atomic layers each with 4 or 16 atoms. Atoms in the 2 layers farthest from the dielectric fixed at their bulk positions
 – Energies calculated using DFT
 – Adhesion energies determined using:
 \[E_{\text{adhesion}} = \frac{(E_{\text{stack}} - E_{\text{slab1}} - E_{\text{slab2}})}{A} \]
 \[E_{\text{stack}} = \text{total energy of relaxed stack} \]
 \[E_{\text{slab1}} = \text{total energy of slab1} \]
 \[E_{\text{slab2}} = \text{total energy of slab2} \]
 \[A = \text{cross sectional area of interface} \]

• **Metrology:**
 – Wetting experiments
Interface Adhesion

- Modeling showed that surface affinity towards Cu increases in the order of

 \[
 \text{TiN}(111) < \text{W}(111) < \text{TiNC} < \text{TiNSi} < \text{TaN}, \text{TaC}, \text{TaO} < \beta-\text{Ta}(001)
 \]

- Results consistent with de-wetting experiments for 100Å Cu on various barrier layers, annealed at 380°C for 15 minutes
Classical Open System:
Electromigration

Reference: A. Bower, P. Ho, S. Shankar (MRS, 2007)
Problem

Challenges

- Cu Damascene structures are heterogeneous due to interconnect morphology and materials
- Voids nucleation and evolution are system dependent;
 - Different material properties
 - Hetero-material interfaces
 - Triple boundaries
 - Current and mass transport
 - Stress effects

Void Nucleation

- Caused by stress induced debonding at interfaces
- Occurs early

Void Evolution and Growth

- Caused by stress and electric current induced mass transport
- Dominant part of interconnect life
Void nucleation/growth in 2 level structure

Cu/Cap Interface diffusion

Cap

Surface diffusion

Grain boundary

Cu/Ta Interface diffusion

Dielectric E_d, ν_d, α_d

Cu $E_{Cu}, \nu_{Cu}, \alpha_{Cu}$

Electron flow
Void nucleation, growth and evolution

Animation showing entire structure
Contours show vertical stress

Animation showing close-up of void.
Note rapid failure after void meets grain boundary
Comparison with experiments

Hauschild et al. (Proc AIP stress workshop, 2004)

- Void formation at interface.
- Void evolution at interface towards cathode end.
- Continuous void growth along the line with some growth into the via increasing the sigma value of void areas.

Conclusion – simulation predictions very similar to experiment. Minor differences are caused by discrepancy of grain boundaries between simulations and experiments.
Metrology Examples
Schematic of the indentation procedure. The SEM picture at the bottom shows the arrangement of the stack with three levels of metallization.
Correlation between the energy of adhesion for the interface ES/Cu measured by 4 point bending and the crack length along the same interface measured by MCSN for the case of ILD-2 (ES/ILD-2 adhesion energy is about 3 J/m² in all cases). Error bars represent the standard deviation for the mean value for 5-7 indentations. Typical standard deviation for four-point bending is 10%
Modified cross-sectional nano-indentation

Figure 6: SEM images of the crack path in two different samples. (a) ES-1 (poor adhesion). The crack kinks into the interface; (b) ES-4 (good adhesion). Almost all the cracking occurs through the ILD.
Phase Retrieval Approach

- Quantitative phase imaging is one method for extracting geometric information from TEM images.
- At below left, the transport of intensity equation was solved for a stack of TEM images to extract the geometry of an MgO particle. The result compares well to the modeled image at right.

T. Pedersen et al University of Sydney

S. Shankar
Metrology Modeling

Stress relaxation with modeling used to assess Cu interconnect reliability with different passivation layers

Ack: Ho, IITC, 2003
Challenges
Complexity of Multi-scale Systems

Technology performance is determined by the behavior of materials at the integrated level.

Quantum Mechanics
Molecule

Quantum and Atomistic
Nanostructure

Thin Film
Or Macrostructure

Mesoscale

Integrated Device
Circuit

S. Shankar
Material Dimensions falls between Molecules and Structures

The Frontier

Top Down

Bottom UP

Nano-world

1 cm
100 um
1 um
10 nm
1 A

1980 2000 2020

IHS
Die
Bumps
Cell
180nm M6
65nm V6
virus
45nm M1
Gate, protein
CNT, DNA,
Atoms, ions

S. Shankar
Modeling & Simulation Requirements

- Four major components on Synthesis, Structure & Composition, Probe interactions, and Properties
Summary

• “Nanotechnology” needs new levels of understanding
• Demonstrated successful applications of modeling & metrology

• Needs in modeling
 – Theory Development
 – Examples: Density Functional Theory, low concentration defects
 – Algorithm Development
 – Bridging length scales for integrated systems
 – Software Development
 – Scalability and Productization

• Needs in metrology
 – Characterize different properties
 – Electronic structure, transport, optical properties
 – Classes of Materials
 – Semiconductors (III-V, IV), Graphene, CNT, Complex Oxides and Nitrides

• The convergence of today’s difficult challenges, emerging market drivers, and recent breakthroughs in materials technology represents a rare opportunity for chemists, chemical engineers, materials scientists, and others to develop breakthrough material and process application options