Small Angle X-ray Scattering Metrology for Sidewall Angle and Cross Section of Nanometer Scale Line Gratings

Wen-Li Wu
Ronald L. Jones, Tengjiao Hu, Christopher L. Soles, Eric K. Lin,

Funding
• NIST Office of Microelectronics Programs

wenli@nist.gov

ULSI, Richardson, TX
March 18, 2005
• Introduction

• Measurement of pitch and line width

• Measurement of side wall angle & height

• Line roughness including both side walls & top surface (on-going)

• Conclusions
Transmission SAXS
- Silicon transparent for E > 13 keV
- Developed using synchrotron technology
- Non-destructive / No sample prep
- Lab-scale device feasibility (in progress)

Use scatterometry targets
- Beam spot size (40x40) \(\mu m \)
- Collection time: (1 to 5) seconds/sample
- Model fits simpler than scatterometry

Measure “2-D” and Buried patterns of metals & dielectrics
- Via, post, pads, etc
- High Precision for small line width (10-300 nm)
 - Sub-nm precision in pitch and linewidth
 - Sidewall angle and Pattern Cross Section

Technique “easier” with smaller structures

ULSI, Richardson, TX
March 18, 2005
2-D and Buried Structures

- Structures can be buried (metrology of 3-D circuits possible)
- Transmission measurement samples all depths equally
- 2-D detector allows single measurement to characterize entire top-down shape.
- Additional measurements provide pattern cross section (i.e. sidewall angle)

Full 3-D characterization possible of dense, high aspect ratio patterns

ULSI, Richardson, TX
March 18, 2005
A Wide Range of Samples

Materials measured non-destructively
• Photoresists (248 nm, 193 nm, EUV)
• Engineering Polymers (PMMA, PS)
• Oxides (SiO2)
• Nanoporous Matrices
• Barrier layers (SiN, SiCN)
• Metal Interconnects (Cu)

Pattern Geometries
• Line/Space patterns (gratings)
• Arrays of columns
• Arrays of holes (vias)

Hexagonal Close Packed 60 nm vias
Critical Dimension Small Angle X-ray Scattering (CD-SAXS)

- Probing wavelength < 1 Å → measurement becomes easier as feature size gets smaller
- Weak interaction between materials (Cu, Ta, Si, C, O, H, etc.) → penetration power & Fourier transform (real objects)
- Absorption edge exists for heavy elements including Ta
challenges

• Quantify imperfections of nano-pattern from X-ray data
• Availability of intense x-ray source other than synchrotron
• Introduction

• **Measurement of pitch and line width**

• Measurement of side wall angle and height

• Line roughness including both side walls & top surface (on-going)

• Conclusions
• **Pitch Measurement**

\[D = 237.1 \pm 0.5 \text{ nm} \]

![Graph showing q vs. Peak order](image)

ULSI, Richardson, TX
March 18, 2005
- Average line width

Graph

- **Intensity** vs. **q (Å⁻¹)**
- **Intensity** scale: 10^2 to 10^5
- **q (Å⁻¹)** range: 0.000 to 0.030

Legend:
- Black squares: experimental data
- Red circles: rectangle model, resolution function, Debye-Waller effect

Note:
- Width = 128 nm
- Image of experimental rectangle model, resolution function, Debye-Waller effect

ULSI, Richardson, TX
March 18, 2005
• Introduction

• Measurement of pitch and line width

• **Measurement of side wall angle**

• Line roughness including both side walls & top surface (on-going)

• Conclusions
Trapezoid as a starting point
Sidewall Angle Metrology

Theoretical Model of Trapezoidal Cross Section

2-D Fast Fourier Transform

ULSI, Richardson, TX
March 18, 2005
3-D Lineshape from Sample Rotation

Model

Transformed

Raw Data

ULSI, Richardson, TX
March 18, 2005
CD-SAXS: Pattern Cross Section

real space

Fourier transform

ULSI, Richardson, TX
March 18, 2005
Summary: Cross section measurement-

1. Pitch – periodicity along q_x at $q_z = 0$
2. Line width – intensity modulation along q_x at $q_z = 0$
3. Line height – periodicity along q_z at a fixed q_x
4. Sidewall angle
Photoresist Patterns

Data measured on 5-ID SAXS (DND-CAT)
Advanced Photon Source, Argonne National Lab

Data collection and analysis performed by
Ron Jones, Tengjiao Hu, Wen-li Wu
Beamline Scientists: Steve Weigand, John Quintana
Samples: provided by Qinghuan Lin (IBM T.J. Watson Research)

Sample List:
1) IBM DOF m2 - 248nm PR, -0.2micron Depth of Focus
2) IBM DOF p0 - 248nm PR, “Optimal” Depth of Focus
3) IBM DOF p2 - 248nm PR, +0.2micron Depth of Focus
4) IBM DOF p4 - 248nm PR, +0.4micron Depth of Focus

ULSI, Richardson, TX
March 18, 2005
150nm L/S Patterns Through Focus
Images provided by Q. Lin

Top Down

Cross-section

+0.4 um +0.2 um 0.0 um -0.2 um

Wafer: EPPX

ULSI, Richardson, TX
March 18, 2005
IBM DOF p4
+0.4 micron

Period = 330.5 nm +/- 0.5 nm
Linewidth = 160 +/- 1 nm
Height = 460 +/- 10 nm
Sidewall Angle = 5.6 +/- 0.5 deg
Random Deviation = 5 nm

ULSI, Richardson, TX
March 18, 2005
IBM DOF p4
+0.4 micron

Period = 330.5 nm +/- 0.5 nm
Linewidth = 160 +/- 1 nm
Height = 460 +/- 10 nm
Sidewall Angle = 5.6 +/- 0.5 deg
Random Deviation = 5 nm

Experimental Data

Trapezoid Model

ULSI, Richardson, TX
March 18, 2005
IBM DOF p0

+0.0 micron

Period = 330.5 nm +/- 0.5 nm
Linewidth = 148
Height = 550
Sidewall Angle = 2 +/- 0.3 deg

ULSI, Richardson, TX
March 18, 2005
Experimental data spread more evenly across 2-D plane than model.

Experimental Data

Trapezoid Model

IBM DOF p0

+0.0 micron

Period = 330.5 nm +/- 0.5 nm
Linewidth = 148 +/- 1
Height = 550 +/- 10
Sidewall Angle = 2 +/- 0.5 deg

Missing peaks possibly due to footer.
IBM DOF p2

$+0.2 \text{ micron}$

Period = 330.5 nm +/- 0.5 nm
Linewidth = 153 +/- 1
Height = 605 +/- 10
Sidewall Angle = 2 +/- 0.5 deg

Possible evidence of small standing wave effect

ULSI, Richardson, TX
March 18, 2005
IBM DOF p2

+0.2 micron

Period = 330.5 nm +/- 0.5 nm
Linewidth = 153 +/- 1
Height = 605 +/- 10 nm
Sidewall Angle = 2 +/- 0.5 deg

Experimental Data

Trapezoid Model

ULSI, Richardson, TX
March 18, 2005
More Complicated Structures

ULSI, Richardson, TX
March 18, 2005
• Introduction

• Measurement of pitch and line width

• Measurement of side wall angle & height

• Line roughness including both side walls & top surface (on-going)

• Conclusions
Line roughness probed by CD-SAXS includes both side wall and top surface, this is different from LER by SEM
photoresist patterns
SEM micrograph

Fourier transfer of the above
CD-SAXS: New Metrology for LER and CD

Low “LER”:
- > 40 orders of diffraction
- Peaks isotropic

Large “LER”:
- Photoresist with (3 to 5) nm RMS sidewall roughness (1 σ)
- Peaks intensities decay more rapidly (20 orders observed)
- Broadened diffraction peak widths
- Diffuse “halo” around beam center
- “Streaks” perpendicular to diffraction axis

ULSI, Richardson, TX
March 18, 2005
Sidewall Correlations: High vs. Low LER

Samples with more defects demonstrate higher intensity “streaking”

ULSI, Richardson, TX
March 18, 2005
Streaks decay with increasing q_x
Diffraction peaks become isotropic at high q_x

ULSI, Richardson, TX
March 18, 2005
SAXS characterization technique

- Line-edge roughness

\[A \sin(\pi \nu y + \phi) \]
CD-SAXS: a model LER – single sine wave
SAXS characterization technique

Dependence of satellite peak intensity

\[
I_{\text{s}atellite} / I_{\text{Bragg peak}} = \left[\frac{\sin\left(\frac{2N+1}{2}q_{x}D\right)}{\sin\left(\frac{q_{x}D}{2}\right)} \right]^2 \left[\frac{2\sin\left(\frac{q_{x}W}{2}\right)}{q_{x}} \right]^2 \left[\delta(q_{y}) + (A^2 + 4q_{x}\Delta D^2)(\delta(q_{y} - \nu) + \delta(q_{y} - \nu)) \right]
\]

0th order

1st order

2nd order

ULSI, Richardson, TX
March 18, 2005
Line roughness of copper interconnect
Probing Cu Interconnects

Sample: Cu filled Silicon Oxide lines

Effects demonstrated previously are magnified

→ Higher density of defects ??

→ Higher x-ray contrast

ULSI, Richardson, TX
March 18, 2005
Measuring pattern quality: the diffuse “halo”

Intensity integrated +/- 45 deg normal to diffraction axis

ULSI, Richardson, TX
March 18, 2005
CD-SAXS: Measuring CD and Pitch

Basic Model:

- Simple Rectangular Profile
- Pitch determined from period of diffraction peaks
- Line width determined from relative intensities
- Decay of intensities fit with Debye-Waller factor
- Peak profiles fit with Voigt function

Data fitting performed rapidly due to simplicity of modeling and data analysis procedures (i.e. no libraries of solutions required)

ULSI, Richardson, TX
March 18, 2005
Observable defects in SAXS patterns

Fourier space

• Strikes along q_y direction
• Amorphous halo
• Debye-Waller factor

Real space

• Side wall & top surface roughness
• Mass fluctuations along each line
• Position fluctuation of the center of each lines
Conclusions

- Methodology for pitch, line width, side wall angle is in place, detail cross sectional modeling is within reach
- Methodology for line surface roughness, linear mass fluctuation and center position fluctuation is in research stage
Conclusions (cont.)

• The wavelength of the probing x-ray beam can be calibrated with great precision; there is no need to calibrate the resulting dimensions from x-ray measurements

• A potential laboratory based metrology complementary to SEM, AFM and optical scattometry
Acknowledgements

• X-ray measurements were conducted at Advanced Photon Source of Argonne National Laboratory

• Test samples obtained from Intel, IBM, ISMT & Shipley (now Rohm Haas)