Nanotechnology Overview

H.-S. Philip Wong
Professor of Electrical Engineering
Stanford University, Stanford, California, U.S.A.
hspwong@stanford.edu

http://www.stanford.edu/~hspwong
Nanoelectronics – Si CMOS

Courtesy of Intel Corp.
Nanotechnology

Figures courtesy of IBM Research
Nanotechnology

One day, it may replace Si CMOS…
Key Challenges

- Power / performance improvement and optimization
- Variability
- Integration
 - Device, circuit, system
Nanotubes and Nanowires

STM Image
1.0 nm

Nanotubes

Nanowire
CNT Families and Structure

\[n,m=(10,10) \text{ -- metallic} \]

\[n,m=(10, 0) \text{ -- semiconducting} \]

Diameter: \(~1\) nm
Length: several \(\mu m\)

1998 Carbon Nanotube FETs

Tans et al. Delft University
Nature 393, 49 (1998)

→ P-type, high contact resistance

Martel et al. IBM

→ P-type, high contact resistance
Carbon Nanotube FET
Carbon Nanotube FET

- Drain current normalized by gate capacitance

Drain Voltage V_d [V] vs. Normalized Drain Current $|I_d| / C$ [mA/μm/µF]

Solid line = 2.5/3 µm CNFET
Dashed line = 50 nm Si FET

Data from:
Carbon Nanotube FET is Promising...

- CV/I, G_{msat}/C are comparable to or better than Si nFET
- Chemical synthesis controls a key dimension
 - think of this as an ultra-thin body SOI with body thickness and device width controlled to atomic precision
- Band structure of CNFET:
 - Symmetric band structure
 - electron and hole transport should be identical
 - balanced nFET and pFET
 - Thermal velocity / source injection velocity of CNFET higher than Si FET
 - However, density of states is lower - lower gate capacitance
- Carrier transport is one-dimensional - reduced phase space for scattering
- Wrap-around (“double”) gate - thicker gate oxide possible
- All bonds are satisfied, stable, and covalent
- Device is not “wed” to a particular substrate - 3D plausible
- Circuit design infrastructure preserved - no need to reinvent circuits
CNFET vs. Si MOSFET

Si n-MOS data is 70 nm L_G from 130 nm technology from Antoniadis and Nayfeh, MIT
Key Issue: Materials and Fabrication

- Right kind of tube (electronic properties) at the right places (placement, orientation), doping
- Low parasitic capacitance/resistance, compact device (including isolation) structure
- Process compatibility with Si CMOS

Si Nanowire Growth

- Catalyst size controls nanowire size

Nanowires – 3D Heterogeneous Integration Fabric

Formation of heterostructure interfaces between lattice mismatched materials, e.g. InAs/GaAs (7%) & InAs/InP (3.5%): a comparison between 2D epitaxial growth and wire growth.

Core-shell
Axial hetero-epitaxy
1D Channel FET:

- **1D semiconductors (nanotube, nanowire)**
 - Chemical synthesis controls the critical dimension (reduces variation due to quantum confinement)
 - Self-assembly or directed growth – new manufacturing methods
 - Nanowire (Si, Ge, III-V, II-VI) is the next logical step after Si FinFET
 - Bandgap engineering and strain engineering tricks still possible
 - Both lateral (along axis) and radial (core-shell) engineering possible
 - Excess noise for 1D conductors may be problematic – needs study
Nanotubes and Nanowires

- Net: basic science has progressed to a level where engineering work is feasible
Molecular Electronics

As defined by the conceptual creators Aviram and Ratner [1], molecular electronics is the “study of molecular properties that may lead to signal processing” [2]. However, making molecular electronics into a functioning, manufacturable technology will require revolutions in circuit architecture, fabrication, and design philosophy in addition to gaining a fundamental understanding of conduction and electronic interactions in single molecules.

Molecules = Small?

- All devices are governed by electrostatics and eventually limited by tunneling.
 - Difficult to be much smaller than 2 - 3 nm.

Si FET

Molecular Device

L > 2.5 – 3 nm

Molecules

Organic Systems

- Wires
- Donor
- Acceptor
- Bridges

Metal-metal bonded supramolecules

- $M = V, Nb, Cr, Mo, W, Tc, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag ...$

Ligands chosen to tailor:
- Electronic coupling between dimetal units
- Electrochemistry
- Solubility
- Structure ...

Nanotubes

STM Image 1.0 nm

Naphthalocyanine
- tailor metal center
- tailor ligands off peripherary
- link to form chains or onto surfaces
- stack vertically

Porphyrin

Phthalocyanine

Organo-metallic Akin to Biological Systems

Lower manufacturing cost
New functionality
Two-Terminal Electrical Measurements

NDR measurements

- Nanopore monothiol
- Nanowire monothiol
- CAFM dithiol
- Nanoparticle bridge dithiols
- Xbar monothiol
- Other similar
- Nanopore nitroamine
- Hg drop bilayer
- SIM Fe

References:
J. Chen et al., APL 77, 1224 (2000)
I. Kraochvilova et al., J. Mat. Chem. 12, 2927 (2002)
I. Amlani et al., APL 80, 2761 (2002)
A. M. Rawlett et al., APL 81, 3043 (2002)
C. Li et al., APL 82, 645 (2003)
A. M. Rawlett et al., NT 14, 377 (2003)
C. B. Gorman et al., Langmuir 17, 6923 (2001)
J. D. Le, Appl. Phys. Lett. in press
Molecular Memory and ROM-Based Logic

Y. Chen...J.F. Stoddart, R.S. Williams et al., *Nanotechnology*, 14, p. 462 (2003)
Hysteresis – A Dime a Dozen
Key Challenges

- Power / performance improvement and optimization
- Variability
- Integration
 - Device, circuit, system
Impact of Statistical Variations

![Graph showing the impact of statistical variations on normalized leakage and frequency. The graph illustrates a 30% variation and a 5X improvement in leakage for 130nm technology.]

Normalized Leakage vs. Normalized Frequency

- 30% variation
- 5X improvement

130nm

Frequency ~30%
Leakage ~5-10X

Courtesy of Intel Corp.

Can These be Fabricated for 10 nm FET?

Source: Toshiba, K. Uchida et al., *IEDM* 2003

Source: Samsung, J.-H. Yang et al., *IEDM* 2003
Nanomaterials

Courtesy of IBM Research
Nano for Si Technology – Nano, Now!

Use techniques that produce these:

To make these structures:

Source: Toshiba, K. Uchida et al., IEDM 2003

Source: Samsung, J.-H. Yang et al., IEDM 2003
Lithography Subdivision

- Templated assembly of nanostructures
- Combines top-down lithography with bottom-up assembly
- Provides feature registration with larger, irregular features

Diblock copolymer molecule

Metrology and Characterization

- Cannot manufacture if we cannot measure what we make

- Wish list
 - Fast AFM
 - The equivalent of the CD SEM
 - Defect recognition for new materials
 - nanotube, nanowire, organic molecules
 - Defect repair
 - Characterization methods for soft materials
A Possible Path

Transport-enhanced FET
Strained Si, Ge, SiGe, III-V

Silicon Substrate

Gate Voltage (V_{GS})

Drain Current ($\log(I_D)$)

$S < kT/q$

Fine-grain FLA / PLA

Multi-Gate / FinFET

Source Drain

Molecular devices

Spintronics

Nanotube

Quantum cascade

Embedded memory

3D, heterogeneous integration

Nanowire

Time
Questions? Please contact:

H.-S. Philip Wong
Professor of Electrical Engineering
Stanford University, Stanford, California, U.S.A.
hspwong@stanford.edu

http://www.stanford.edu/~hspwong