In-Line Detection and Measurement of Molecular Contamination in Semiconductor Processing Solutions

Jason Wang, Michael West, Ye Han, Bob McDonald, Wenjing Yang, Bob Ormond and Harmesh Saini

Metara Inc.
Sunnyvale, CA, USA
Outline

- Introduction
 - Why the analysis of molecular contamination is important?

- Discussion
 - Use of the Metara Trace Contamination Analyzer (TCA) for molecular contamination measurement
 - Problem solving examples
 1. A nitrogen-containing compound in H_2O_2
 2. Organic additives in SC-1
 3. Urea in UPW
 4. Molecular contamination in UPW
 5. Plasticizers in IPA
 6. Sulfur-containing compounds in IPA

- Conclusion
Molecular Contamination Sources

- Process equipment
- Impurities in incoming process chemicals
- Transfer from earlier process steps
- Airborne molecular contamination
- Deliberate addition of organics to process chemicals
 - Surfactants and chelating agents
 - “Proprietary” additives
Gate Oxide Degradation Due To Organic Contamination

* HMDS Monolayer on Oxide

* HMDS = Hexa-methyl-di-silazane

Cumulative Failure (%)

Q_{BD} = Charge-to-Breakdown measurement

“Cost Effective Cleaning and High-quality Thin Gate Oxides”,
International Technology Roadmap for Semiconductor (ITRS)

(2003 Edition)
Table 70a Surface Preparation Technology Requirements—Near-term

<table>
<thead>
<tr>
<th>Year of Production</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>Driver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical GOI surface metals ((10^{10} \text{ atoms/cm}^2) [F])</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>M</td>
</tr>
<tr>
<td>Critical other surface metals ((10^{10} \text{ atoms/cm}^2) [F])</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>M</td>
</tr>
<tr>
<td>Mobile ions ((10^{10} \text{ atoms/cm}^2) [G])</td>
<td>1.8</td>
<td>1.9</td>
<td>1.9</td>
<td>2</td>
<td>2.2</td>
<td>2.4</td>
<td>2.5</td>
<td>m</td>
</tr>
<tr>
<td>Surface carbon ((10^{13} \text{ atoms/cm}^2) [H])</td>
<td>1.8</td>
<td>1.6</td>
<td>1.4</td>
<td>1.3</td>
<td>1.2</td>
<td>1</td>
<td>0.9</td>
<td>D, %, M</td>
</tr>
</tbody>
</table>

Surface Carbon

ITRS 2004 Updated, Table 114a Technology Requirements for wafer environmental contamination control

<table>
<thead>
<tr>
<th>30% (\text{H}_2\text{O}_2) total oxidizable carbon (ppb)</th>
<th>-</th>
<th>TBD</th>
<th>TBD</th>
<th>TBD</th>
<th>TBD</th>
<th>TBD</th>
<th>TBD</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD IPA: High molecular weight organics (ppb)</td>
<td>-</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>ADD 30% (\text{H}_2\text{O}_2): Resin byproducts (ppb)</td>
<td>-</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>
TCA (Trace Contamination Analyzer)
for Metallic, Organic and Molecular Contaminants

<table>
<thead>
<tr>
<th>Trace Contaminant Analysis (TCA) Platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Extraction Unit</td>
</tr>
<tr>
<td>Sample Preparation Module</td>
</tr>
<tr>
<td>Electrospray Ionization Interface</td>
</tr>
<tr>
<td>Mass-Analyzer Ion-Trap & TOF</td>
</tr>
</tbody>
</table>

- Cations
- Anions
- Metallics
- Organics
- 24/7

Metara

Characterization and Metrology for ULSI Technology Conference 2005
Example 1: H$_2$O$_2$ Excursion at a Production Fab

- Contaminated H$_2$O$_2$ suspected to cause yield crash at a fab

- Analyses of traditional lab methods show inconclusive results between the “Good” & the “Bad” H$_2$O$_2$ samples
 - ICP-MS (Inductively Coupled Plasma Mass Spectrometry),
 - IC (Ion Chromatography),
 - TOC (Total Oxidizable Carbon)
 - Assay

- Results of TCA showed Intensity of peak at m/z 118 was ~ 20x higher in “bad” sample than in “good” sample
Contaminant found from H_2O_2 Sample by TCA

Intensity of 118 peak was found to be $\sim 20x$ higher in “Bad” sample.
Identification of Contaminant in “Bad” H₂O₂ Sample

Possible compound: Tri-methyl-glycine

\[
\begin{align*}
\text{CH}_3 & \quad \text{N}^+ \quad \text{CH}_2 \quad \text{C} \quad \text{O}^- \\
\text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3
\end{align*}
\]

m/z = 118.087

\[
\begin{align*}
\text{CH}_3 & \quad \text{N}^+ \quad \text{CH}_2 \quad \text{C} \quad \text{O}^- \quad \text{H}^+ \\
\text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3
\end{align*}
\]

m/z = 59.074

m/z = 60.082

m/z = 59.074
Contaminant from Ion Exchange Resin

Structure of Ion Exchange Resin

Tri-methyl-glycine

[Chemical structures and equations are shown here, depicting the structure of a contaminant from an ion exchange resin and the tri-methyl-glycine molecule.]
TCA In-Line Monitoring Molecular Contamination in SC-1 (NH₄OH:H₂O₂:H₂O) Bath at a Fab

![Graph showing the ratio of peak areas versus internal standards over time with bath changes indicated.]
High Organic Content in High Purity H$_2$O$_2$

Total Organic Carbon (TOC)

<table>
<thead>
<tr>
<th>Substance</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum (Al)</td>
<td>10 ppt max</td>
</tr>
<tr>
<td>Antimony (Sb)</td>
<td>10 ppt max</td>
</tr>
<tr>
<td>Arsenic (As)</td>
<td>10 ppt max</td>
</tr>
<tr>
<td>Boron (B)</td>
<td>10 ppt max</td>
</tr>
<tr>
<td>Calcium (Ca)</td>
<td>10 ppt max</td>
</tr>
<tr>
<td>Chromium (Cr)</td>
<td>10 ppt max</td>
</tr>
<tr>
<td>Copper (Cu)</td>
<td>10 ppt max</td>
</tr>
<tr>
<td>Gold (Au)</td>
<td>10 ppt max</td>
</tr>
<tr>
<td>Iron (Fe)</td>
<td>10 ppt max</td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>10 ppt max</td>
</tr>
<tr>
<td>Lithium (Li)</td>
<td>10 ppt max</td>
</tr>
<tr>
<td>Magnesium (Mg)</td>
<td>10 ppt max</td>
</tr>
<tr>
<td>Manganese (Mn)</td>
<td>10 ppt max</td>
</tr>
<tr>
<td>Nickel (Ni)</td>
<td>10 ppt max</td>
</tr>
<tr>
<td>Potassium (K)</td>
<td>10 ppt max</td>
</tr>
<tr>
<td>Sodium (Na)</td>
<td>10 ppt max</td>
</tr>
<tr>
<td>Strontium (Sr)</td>
<td>10 ppt max</td>
</tr>
<tr>
<td>Tin (Sn)</td>
<td>10 ppt max</td>
</tr>
<tr>
<td>Titanium (Ti)</td>
<td>10 ppt max</td>
</tr>
<tr>
<td>Zinc (Zn)</td>
<td>10 ppt max</td>
</tr>
</tbody>
</table>

Problems

- **High Organic Content**
 - 5000 ppb max
- **Low Metallic Content**
 - 10 ppt max
Example 2: Deliberate Addition of Surfactant or Chelating Agents in Baths

- Industrial Trend for Using Diluted Chemistry
 - SC-1 NH4OH:H2O2:UPW from x:1:5 (x = 0.05-3), up to 1:1:500
 - SC2 HCl:H2O2:UPW up to 1:1:1000

- Addition of Surfactant or Chelating Agents in Baths
 - Improve Particle & Metal Removal Efficiency
 - Improve Surface Wetability for Uniform Wafer Surface Preparation
Chelating Agent found from a SC-1 (NH₄OH:H₂O₂:H₂O) by TCA

Possible Formulation:
A Mixture of Compounds with Functioning Groups R-COO⁻ and -(CH₂CH₂)ₙ-O

Chelating agents/surfactants Need to be completely rinsed off from wafer surface
Example 3: TOC (Total Oxidizable Carbon) Excursions at a Fab

- Seasonal TOC excursions at a fab
 - Urea (fertilizer) in UPW (Ultrapure Water) was suspected
 - “No way to confirm suspicions” because “no laboratory methods available to accurately measure low ppb concentrations of urea contamination in water”*

TCA Quantitative Analysis of Urea in UPW

\[(\text{NH}_2)_2\text{COH}^+\]

- **0 ppb Urea**
 - \(m/z = 61.041\)

- **5 ppb Urea**
 - \(m/z = 61.041\)

- **10 ppb Urea**
 - \(m/z = 61.041\)

DL = \(3\sigma/m = 0.084\) ppb

\(C = 84\) ppt C, \(n = 6\)
TCA Analysis of Urea by Ratio Technique

1. 0 ppb 12C Urea + 10 ppb 13C Urea
2. 5 ppb 12C Urea + 10 ppb 13C Urea
3. 10 ppb 12C Urea + 10 ppb 13C Urea
Ratio Measurement of 12C Urea/13C Urea

$m/z = 61$ (C12)

$m/z = 62$ (C13)

Ratio of 61/62
TCA Analytical Results of Urea

\[C_s = C_{sp} \left(\frac{V_{sp}}{V_s} \right) \left(\frac{A_{sp} - Ratio \times B_{sp}}{Ratio \times B_s - A_s} \right) \]

TCA Automatic Quantification

Calculated Results (10ppb C13 Urea Spike)

Accurately Quantified at ppb level

Characterization and Metrology for ULSI Technology Conference 2005
Example 4: Molecular Contamination in Pre-Gate Cleaning Processes at a Fab

- Yield problems at a Fab
 - Gate oxide breakdown voltage reduction

- Results of TXRF and VPD-ICP/MS
 - No metallic contamination

- Organic or molecular contamination was proposed
 - No significant suspect by routine lab methods
Contaminants Found from HQDR (Hot Quick Dump Rinse) UPW by TCA

- **HQDR UPW_2**
 - (H₃PO₄)H⁺
 - m/z = 98.987

- **HQDR UPW_3**
 - Urea
 - (NH₂)₂COH⁺
 - m/z = 61.040

- **HQDR UPW_4**
 - NMP-H⁺
 - m/z = 100.076

Scale Different
Possible Contamination Sources in Fab

NMP = N-Methyl-2-pyrrolidone (C₅H₉NO m/z = 99.068)

- Photoresist stripper
- Wafer cleaning
- Semi-aqueous defluxing
- Degreasing
- Coatings (polyamide, epoxy, & polyurethane)

H₃PO₄ Incomplete rinse from nitride etching?

Urea Source water, re-cycling or reclaimed water?
TCA In-Line Monitoring Phosphorus Species in SC-1 Bath at a Production Fab

Proposed as $\text{H}_3\text{PO}_4\text{NH}_4^+$ m/z=106.011
Example 5: Phthalate (Plasticizer) Contamination in IPA (Isopropyl Alcohol)

- It has been reported:
 - Dibutyl phthalate (DBP) in high density polyethylene (HDPE) containers leaching into IPA
 - Plasticizers deposit inside the gas nozzles and chamber in a dryer

- Phthalates have deleterious effects on wafers
TCA Analysis of Dioctyl Phthalate (DOP) and Dibutyl Phthalate (DBP) in IPA

![Graphs showing mass spectra for DOP and DBP in different concentrations.]

- **Blank**: DBP H⁺ m/z=279.160
- **5 ppb**: DBP H⁺ m/z=279.160, DOP H⁺ m/z=391.285
- **10 ppb**: DBP H⁺ m/z=279.160, DOP H⁺ m/z=391.285
Example 6: Molecular Contamination in IPA (Isopropyl Alcohol) at a Fab

- IPA from lot 1, 2, 3 suspected causing multiple excursions
- No significant difference between lot 1, 2, 3 and lot 4, 5, 6 by routine lab methods
Contamination Sources from IPA Manufacturing Processes

Isopropyl sulfate is a highly suspect in IPA lot 1, 2, 3

\(\text{propene gas} \)

\[\text{CH}_3\text{CH}=\text{CH}_2 + \text{H}_2\text{SO}_4 \xleftrightarrow{} (\text{CH}_3)_2\text{CH} \text{O-S-OCH(CH}_3)_2 + (\text{CH}_3)_2\text{CHO-S-O} \]

\(\xrightarrow{\text{hydrolysed with H}_2\text{O}} \)

\[(\text{CH}_3)_2\text{CHOH} \]

Final Product = IPA

m/z = 139.007
Summary

- Using the TCA we have demonstrated the ability to:
 - Analyze molecular contamination in a variety of process solutions including UPW, SC-1 and IPA
 - Identify specific molecular contaminants
 - Provide quantitative concentration measurement
 - Make measurements in-line and in near real-time
 - Provide process chemistry trends that correlate to Wafer Fab yield problems
Conclusion

- We believe this new measurement capability will:
 - Enable statistically valid real-time process chemistry control decisions
 - Provide advanced warning of excursions
 - Enable chemical specifications and bath life decisions based on process data and yield correlation