The Status and Future of Imaging Metrology Needs for Lithography.

Joost Sytsma
International Technology Roadmap for Semiconductors 1999

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Half Pitch DRAM (nm)</td>
<td>180</td>
<td>130</td>
<td>100</td>
<td>70</td>
<td>50</td>
<td>35</td>
</tr>
<tr>
<td>Development (nm)</td>
<td>90</td>
<td>35</td>
<td>45</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

CD = Controllable minimal linewidth

To be achieved via \(CD = k_1 \cdot \frac{\lambda}{NA} \)
Defining the challenge-1

\[CD = k_1 \cdot \frac{\lambda}{NA} \]

Critical dimension (nm)

Time (years)

I-line

\(k_1 \)

NA

Contrast

Major Change

Paradigm Shift

and/or

DUV

193

157

EUV
Defining the challenge-2

- Major steps by λ and NA

- The process factor k_1 and contrast still decreases \Rightarrow
 Need for:
 - Improved System Dynamics
 - Improved System’s Imaging Capabilities

- Future Needs (EUVL)

“What you can not measure, you can not make, nor control”
Good System Dynamics
Even better System Dynamics
Improved System’s Imaging Capabilities

– Lower k_1:
 - Resolution enhancement techniques
 - Optics utilization improvement
 - Process improvement

system = scanner + reticle + process (+ SEM/ELM....)
The Status and Future of Imaging Metrology Needs for Lithography.

- Illumination enhancement techniques:
 - Off-axis illumination

- Optimal use of Projection Optics
 - Case Study L_1-L_2
 - Aberration measurements
 - Lithographic Correlation and Aberration control

- Reticles:
 - Optical Proximity Correction
 - Phase shifting mask
 - Reticle quality

- Process improvement

“What you can not measure, you can not make, nor control”
The Status and Future of Imaging Metrology Needs for Lithography.

- Illumination enhancement techniques:
 - Off-axis illumination

- Optimal use of Projection Optics
 - Case Study L_1-L_2
 - Aberration measurements
 - Lithographic Correlation and Aberration control

- Reticles:
 - Optical Proximity Correction
 - Phase shifting mask
 - Reticle quality

“What you can not measure, you can not make, nor control”
The Status and Future of Imaging Metrology Needs for Lithography.

Illumination enhancement techniques

(a) Two Huygen sources formed at S1 and S2

(b) More “isolated” S1 and S2

(c) “Densely” packed S1 and S2

Observations:

1) Diffraction patterns are not the same from dense to isolated

2) Lens act as “low-pass” filter, only lower diffraction order light beams can get through lens
Illumination enhancement techniques
Off-axis illumination (OAI)

220 nm
180 nm
150 nm

150 nm

Annular
Quasar
Dipole
Illumination enhancement techniques

OAI and Normalized Image Log Slope

\[k_1 = CD \times \frac{NA}{\lambda} \]

“normalized CD”

NA = 0.7 \(\lambda = 248 \text{ nm} \)

simulation for L/S (1:1)

\(\sigma = 0.85 \) (conv.)

\(\sigma_0 = 0.85 \)

\(\sigma_i = 0.55 \) (ann, QUASAR)
The Status and Future of Imaging Metrology Needs for Lithography.

- **Illumination enhancement techniques:**
 - Off-axis illumination

- **Optimal use of Projection Optics**
 - Case Study L_1-L_2
 - Aberration measurements
 - Lithographic Correlation and Aberration control

- **Reticles:**
 - Optical Proximity Correction
 - Phase shifting mask
 - Reticle quality

“What you can not measure, you can not make, nor control”
Optimal use of Projection Optics

Case study $L_1 L_5$

Target $0.180 \mu m$

$0.170 \mu m$

$0.190 \mu m$
Optimal use of Projection Optics

Case study L_1L_5

- Understanding L_1-L_5
 - Measured and calculated
 - two feature orientations
 - correlation 85%

Sample point
Optimal use of Projection Optics

Case study L₁L₅

- Correlation with coma aberration:
Optimal use of Projection Optics
Case study L₁L₅

\[\Delta \Phi = |Q Q'| \]

Real Wave front

Gaussian reference sphere

Coma = 13 nm: \(\Delta \phi = (n-1)d \), \(d = 26 \text{ nm} \) on a track length of 1 meter, distributed over 50 to 60 surfaces.
Optimal use of Projection Optics

Aberration levels

- Quality in RMS wavefront aberration (Progler, 1998)
 - Gold: 0.025 λ (6.2 nm for 248 nm)
 - Silver: 0.04 λ
 - Bronze: 0.06 λ

Set a target at 5% CD change due to aberration

- Extract the RMS aberration level that results from the target
- Define an aberration sensitivity parameter as SA=RMS-1

More accurate description needed: Zernike fringe polynomials

Zeiss makes ‘golden’ lenses
Optimal use of Projection Optics

Aberration levels

Relative Performance

Starlith™ 500
Starlith™ 550
Starlith™ 700
Starlith™ 750

Zernike coefficients
Wavefront RMS
Focal Plane Deviation (integrated)
Astigmatism (integrated)
Distortion (integrated)
Optimal use of Projection Optics

Zernike Fringe Polynomials

\[W(\rho, \theta) = \sum_{l,m} Z_l^m R_l^m e^{im\theta} \]

\(Z_n \): Zernike coefficients
Optimal use of Projection Optics
Aberration measurements

- All lens manufacturers use phase measuring interferometry (PMI) during manufacturing.

- In situ by sampling the pupil
 - Select angles (Litel)
 - Use structures with different diffraction patterns
 - Use Multiple Illumination Settings (NA/s)
 - Quick and extension on established methods: FAMIS/DAMIS
 - Full lens qualification: Artemis
Optimal use of Projection Optics

Aberration measurements At Multiple Illumination Settings

- **FAMIS: Focal At Multiple Illumination Settings**
 - Best Focus changes due to spherical aberration: Z_4, Z_9, Z_{16}, \ldots
 - Sensitivity depends on $\frac{\text{NA}}{\sigma}$ and can be calculated
 - Solve linear matrix equation:

\[
\begin{bmatrix}
BF_{\text{meas}}(1) \\
BF_{\text{meas}}(2) \\
\vdots \\
BF_{\text{meas}}(n)
\end{bmatrix}
= Z_4 \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} + Z_9 \cdot \begin{bmatrix} BF_{\text{sim@1nm}}(1) \\
BF_{\text{sim@1nm}}(2) \\
\vdots \\
BF_{\text{sim@1nm}}(n)\end{bmatrix} + Z_{16} \cdot \begin{bmatrix} BF_{\text{sim@1nm}}(1) \\
BF_{\text{sim@1nm}}(2) \\
\vdots \\
BF_{\text{sim@1nm}}(n)\end{bmatrix}
\]

- **Generalized:** $C = W \cdot Z$
Optimal use of Projection Optics

Aberration measurements at Multiple Illumination Settings

- **Famis:**
 - Spherical aberration,
 - Astigmatise: $Z_{9,16}, Z_{12,21}$

- **Damis:** Distortion at MIS
 - Coma: $Z_{7,8}, Z_{14,15}$

- **Artemis:** ART at MIS (Philips)
 - Full set, Z_{5-37},

- **Artemis:** Prints a phase dot

- **MIS** allows separation of radial terms

- **Deformation is written as a Fourier series.**

- **Order of Fourier components correspond to angular Zernike coefficients**

- **ASML**
Optimal use of Projection Optics

Lithographic Correlation and Aberration control

- Controlling Iso-dense bias
 - Related to Spherical Aberration, measurable with FAMIS
 - Process optimization reduces Iso-dense bias

![Graph showing Iso-Dense bias and Zernike Z9 relationship](image)
Optimal use of Projection Optics

Lithographic Correlation and Aberration control

- Controlling L_1L_2
 - Caused by coma, measurable by DAMIS
 - Wavelength shift reduced coma
 - L_1L_2 reduced from 50 to 10 nm
Optimal use of Projection Optics

Lithographic Correlation and Aberration control

- Isolation properties of DRAM cells at $k_1 = 0.37$
 - C-D is critical metric, Threewave and coma sensitive
 - Predicted performance of a ‘golden’ lens
The Status and Future of Imaging Metrology Needs for Lithography.

- Illumination enhancement techniques:
 - Off-axis illumination

- Optimal use of Projection Optics
 - Case Study L₁-L₂
 - Aberration measurements
 - Lithographic Correlation and Aberration control

- Reticles:
 - Optical Proximity Correction
 - Phase shifting mask
 - Reticle quality

“What you can not measure, you can not make, nor control”
Reticles

Resolution Enhancement Techniques

Masks

Mask Type

Structure(s)

Challenges

Binary or Chrome on Glass

Low k1 Imaging

OPC & Assist Features

Writing, Inspection

Half Tone or Attenuated PSM

Material, Repair

Levenson or Alternating PSM

CoO, Phase errors, inspection & repair

Imaging 28
version 2.0
Joost Sytsma / ULSI Characterization and Metrology 2000
Reticles

Optical Proximity Correction

Scatter Bars

Serifs

Scatter Bars

Serifs

Scatter Bars
Reticles

Phase Shifting Masks

Binary Mask

Quartz

Chrome

Multi-Phase Shift Mask

Quartz

Etched Quartz

Chrome
Reticles

Quality: CD-uniformity

<table>
<thead>
<tr>
<th>Feature</th>
<th>Setting</th>
<th>CD-uniformity [3σ, nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>@BF</td>
<td>MEF</td>
</tr>
<tr>
<td>180nm DL</td>
<td>NA=0.60</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>σ=0.70/0.40</td>
<td></td>
</tr>
<tr>
<td>180nm iso</td>
<td>NA=0.56</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>σ=0.60/0.30</td>
<td></td>
</tr>
<tr>
<td>150nm DL</td>
<td>NA=0.66</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>σ=0.75/0.45</td>
<td></td>
</tr>
<tr>
<td>150nm DL*</td>
<td>NA=0.70</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>σ=0.85/0.55</td>
<td></td>
</tr>
<tr>
<td>150nm iso</td>
<td>NA=0.62</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>σ=0.85/0.55</td>
<td></td>
</tr>
</tbody>
</table>

* Quadrupole

20 points per field, 2 orientations
Averaged over 6 dies
AMAT 7830SI CD-SEM
Reticles

Why is MEF ≠ 1?

- Lower Aerial Image Contrast -> Higher MEF
- Position of Resist Threshold strongly affects MEF
Acknowledgements

- Projection Lenses group, especially Hans van der Laan, Marco Moers, Rob Willekers

- Jan van Schoot, Jo Finders, Henk van Greevenbroek, Jan Mulkens, Donis Flagello, Kevin Cummings, Anton van Dijsseldonk, Hans Meiling

- Christian Wagner of Carl Zeiss

“What you can not measure, you can not make, nor control”