Nanoelectronics: Computation and Metrology

Mark Lundstrom
J.C. Clark, G.K. Klimeck, and A. Raman
Network for Computational Nanotechnology
Purdue University
West Lafayette, IN
1) Simulating Nanoelectronic Devices

2) Metrology and Computation

3) Role of Cyberinfrastructure
Simulating nano devices

- drift-diffusion
- moments of the Boltzmann Eqn.
- Monte Carlo
- full quantum

- accurate
- fast
- useable
21st century electronics

Javey, et al., *Nano Letters*, 4, 1319, 2004

Generic model of a nano-device

\[\gamma_1 = \frac{\hbar}{\tau_1} \quad \gamma_2 = \frac{\hbar}{\tau_2} \]

S. Datta, *Quantum Transport: Atom to Transistor*, Cambridge, 2005
(see also: www.nanohub.org)
Non-equilibrium Green’s Function Approach (NEGF)

S. Datta, *Quantum Transport: Atom to Transistor*, Cambridge, 2005
(see also: www.nanohub.org)
NEGF simulation of CNTFETs

Siyu Koswatta and D. Nikonov

(Lundstrom group)
NEGF for spintronics

Spin-NEGF

Voltage \rightarrow Electron Transport: NEGF Approach \rightarrow Current

Magnetization \rightarrow Dynamics of Localized Spins \rightarrow Torque

(Datta group)
NEGF for spintronics

Ballistic

Theory:
Golizadeh-Mojarad and Datta

Experiment:
Awschalom et al.
PRL 97, (2006)
CNT networks

\[
L_c = \frac{W_{\text{eff}}}{\sigma_0 L_c} \propto \left(\frac{1}{L_c} \right)^m
\]

(Alam group)
CNT networks

\[
\frac{\sigma}{\sigma_0} = \frac{W_{\text{eff}}}{L_c} \propto \left(\frac{1}{L_c} \right)^m
\]

(Alam group)
nanoNet simulator at www.nanoHUB.org
1) device simulation is being driven by new problems

2) the ‘bottom up’ approach adds a new perspective

3) it’s not just about simulation; it’s a new conceptual view

see: Concepts of Quantum Transport, Supriyo Datta, www.nanoHUB.org
Three examples:

1) Inverse Modeling (Gerhard Klimeck)
2) Electro Micro Metrology (Jason Clark)
3) Scanning probe metrology (Arvind Rahman)
Example 1: inverse modeling of RTDs with NEGF simulation

Typical Modeling and Simulation:
• Forward Experiments:
 Assume a structure =>
 What is the predicted Performance?

Problems:
• Metrology:
 Measured Performance =>
 What is the actual structure?
• Synthesis:
 Desired Performance =>
 What is the best structure to be built?

Approach:
• Use existing / verified code (NEMO)
• Genetic algorithm for global optimization
• Develop transferable fitness functions

Impact:
• Demonstrate metrology of resonant tunneling diodes

(G. Klimeck group, Purdue)
Example 1: inverse modeling of RTDs with NEGF simulation

- Allow GA to vary 5 different structural parameters:
 - 3 Thicknesses: well, barrier, spacer
 - 2 Dopings: low doped spacer, unintentional doping in center

- GA found structure close to verified physical structure:
 - Well thicker than intended
 - Unintentional doping higher than expected

(G. Klimeck group, Purdue)
Example 2: electro micro metrology

Typical design/fab process:
- Model and simulate a design
 » Use ideal geometry
 » Use ideal material properties
 » Predict performance
- Fabricate the design
 » Run a standard fabrication process
 » Measure results

Problems:
- Process variation
 » Geometric properties are unknown
 » Material properties are unknown
- Conventional metrology methods
 » Not readily accessible
 » Time-consuming and expensive
 » Large relative errors
 » Few metrology standards. NIST has made 2 ASTM standards (length, strain gradient)
- Performance does not match prediction
 » Parameters and uncertainties are not well characterized
 » Back to the drawing board / trial and error

(J. Clark group, Purdue)
Example 2: electro micro metrology

Approach:
- Leverage off of the sensitive electrical and mechanical coupling at this scale
 - Measure over 2 dozen geometric, dynamic, and material properties by electrical probing.
 - Greatly reduce the size of uncertainties with high-precision electrical measurands.
- Experimentally accurate modeling
 - Verify theory and model: performance of real device versus performance of model.
 - Replace ideal properties with precise measured properties.

Impact:
- Improved understanding of micro-nanoscale design and modeling.
- Fabrication quality control.
- Performance-based standardization.
- Improved characterization of new micro/nanoscale devices.
- Improved sensors and actuators for nanoscale phenomena.
 (J. Clark group, Purdue)

That is, the set of properties of the model that match the performance of the experiment are its effective properties.

Example: The difference between layout and fabrication is

\[
\Delta w = \Delta w(\Delta C) \pm \left[\frac{\partial w}{\partial \delta C} \right] \delta C
\]

Zeroth term $O\left(10^3\right)$
Sensitivity

$O\left(10^{-18}..10^{-21}\right)$
Electrical uncertainty
Example 3: dynamic scanning probe metrology

- Scanned “image” is a convolution of sample properties, tip-sample dynamics, feedback control loops, and tip geometry.
- Next generation SPM nanometrology requires accurate deconvolution or compensation of each of these effects.
- Tip-sample interaction physics, tip oscillations and scanning stability are very non-intuitive; a result of underlying nonlinear dynamics.
- Where intuition fails, computations can offer valuable insight.
- Thousands of SPM experimentalists worldwide; insight from computations can cut training time significantly.

(A. Raman group, Purdue)
Example 3: scanning probe metrology

Virtual Environment for Dynamic AFM

- State of the art simulations of AFM probe dynamics and tip-sample interaction physics
- Suite of experimentally validated code
- Tools online for force spectroscopy and scanning in air/UHV
- Future implementations for Magnetic, Electric Force Microscopy, AFM in liquid environments

(A. Raman group, Purdue)

www.nanoHUB.org
Example 3: scanning probe metrology

Virtual Environment for Dynamic AFM

Fig. 1. Sample simulation results for Si tip, polymer sample. Computed amplitude distance curve and zoom in showing oscillation and interaction force history.

Fig. 2. Dynamic scanning simulation of a Si trench structure using a Si tip. (a) trench topography (b) the measured profile, (c) the metrology error (nm) incurred due to tip dynamics and feedback control.
Network for Computational Nanotechnology

1) people and programs

2) cyberinfrastructure

3) partners

Purdue, Illinois, Northwestern, Stanford, Berkeley, Florida, UTEP, Norfolk State U.
www.nanoHUB.org

In-Vigo

Rappture

nanoVIS

1) online simulation
2) open source software
...and more

tutorials and seminars

NanoSystems Biology

learning modules

online simulation

and more....

online courses
> 21,000 users / year

NCN
1) device simulation is being driven by new problems
2) the ‘bottom up’ approach adds a new perspective
3) it’s not just about simulation; it’s a new conceptual view
4) computation will play an increasing role in metrology
5) cyberinfrastructure can play a role