Helping Juries and Officers of the Courts Make Sense of Statistics in Forensic Science:

Update from the Working Group on Presenting Forensic Science Evidence Using Quantitative and Qualitative Terms (QQWG)

Melissa Taylor
Study Director

Program Manager, Management Practices
Law Enforcement Standards Office
QQWG

✓ What are they doing?
✓ Who are they?
✓ Why?
QQWG: What are they doing?

Mission: Identify methods to **best convey relevant qualitative and qualitative information** (such as statistics, verbal scales, expressions of uncertainty or error probabilities in measurements) to lay jurors and officers of the court.

Deliverable: A report that provides recommendations on how scientists can present qualitative and quantitative data or conclusion in a reasonably transparent, fair, and comprehensible manner. These recommendations will be useful in standardizing and optimizing the presentation of forensic science evidence to law enforcement, officers of the court, and jurors.
QQWG: Who are they?

• NIST OLES collaboration with the Pennsylvania State University
• Sponsored by NIJ
• Selected a working group made up forensic practitioners, legal scholars, psychologists, researchers, and statisticians
QQWG Members

JoAnn Buscaglia
Research Chemist
FBI Laboratory

Christophe Champod
Professor of Forensic Science
University of Lausanne

Shari Diamond
Professor of Law & Psychology
Northwestern University School of Law

Ian Evett
Consultant
Evett Forensic Inference Ltd.

Stephen E. Fienberg
Professor of Statistics & Social Science
Carnegie Mellon University

Mike Finkelstein
Adjunct Faculty
Columbia Law School

Nancy Gertner
Professor of Practice
Harvard University School of Law

Melissa Gische
Physical Scientist/Forensic Examiner
FBI Laboratory

Derek Hammond
Forensic Document Examiner
US Army CID Laboratory

Graham Jackson
Visiting Professor of Forensic Science
University of Abertay Dundee
Consultant Forensic Scientist, Advance Forensic Science

Richard O. Lempert
Professor of Law and Sociology Emeritus
University of Michigan Law School

Valerie Reyna
Professor
Co-Director, Cornell Magnetic Resonance Imaging Facility
Department of Human Ecology
QQWG Management Team

Pennsylvania State University Team

David H. Kaye
Distinguished Professor of Law
Graduate Faculty, Forensic Science Program
The Pennsylvania State University

Cedric Neumann
Assistant Professor in Statistics
Eberly College of Science
The Pennsylvania State University

Anjali Ranadive
Project Manager
SciLawForensics, Ltd.

NIJ/NIST

Gerry LaPorte
Acting Director
Forensic Policy Program Manager
Office of Investigative and Forensic Sciences
National Institute of Justice

Melissa Taylor
QQWG Study Director
Program Manager, Management Practices
Law Enforcement Standards Office
National Institute of Standards and Technology
QQWG: Why?

Consider this example from a study to ascertain the effectiveness of the format and terminology used by the National Weather Service\(^1\)

Today the meteorologist says, "chance of rain 60%." You understand this to mean:

A. Rain will occur 60% of the day.

B. At a specific point in the forecast area (for example, your house), there is a 60% chance of rain occurring.

C. There is a 60% chance that rain will occur somewhere in the forecast area during the day.

D. 60% of the forecast area will receive rain and 40% will not.

\(^1\)http://pajk.arh.noaa.gov/Articles/articles/survey/poptext.html

Answer is B. Less than 9% surveyed answered correctly
Statistical Numeracy

✓ There is evidence that individual differences in numeracy affect judgment and decision making

✓ Innumeracy is widespread
 • Studies show that approximately half of the U.S. population have only very basic or below basic quantitative skills

✓ Misunderstandings arise from nontransparent framing of the information

✓ Limited research on which presentation formats are most beneficial for individuals at different levels of numerical ability
Berlin Numeracy Test

- Provides a fast and psychometrically sound instrument for assessment of statistical numeracy and risk literacy
- Purports to test the ability to understand numerous day-to-day risks (for example in connection with medical diagnoses and drug treatments) or statistical probabilities (such as weather forecasts)
- The test usually takes about 3 minutes
- Instructions: Do not use a calculator but feel free to use your own scratch paper for calculations

NOTE: The Berlin Numeracy Test is one of many test available to test numeracy skills... I choice to use this test because of its short format. I adapted the test for demonstrations purposes given the time constraints of this presentation.
1. Imagine we are throwing a five-sided die 50 times. On average, out of these 50 throws how many times would this five-sided die show an odd number (1, 3 or 5)?

a) 5 out of 50 throws
b) 25 out of 50 throws
c) 30 out of 50 throws
d) None of the above
2. Out of 1,000 people in a small town 500 are members of a choir. Out of these 500 members in the choir 100 are men. Out of the 500 inhabitants that are not in the choir 300 are men. What is the probability that a randomly drawn man is a member of the choir? Please indicate the probability in percent

a) 10%

b) 25%

c) 40%

d) None of the above
3. Imagine we are throwing a loaded die (6 sides). The probability that the die shows a 6 is twice as high as the probability of each of the other numbers. On average, out of these 70 throws, about how many times would the die show the number 6?
a) 20 out of 70 throws
b) 23 out of 70 throws
c) 35 out of 70 throws
d) None of the above
Berlin Numeracy Test

Scoring = Count total number of correct answers.
Correct answers are: 1 = c; 2 = b; 3 = a

≤1 Your numeracy score is similar to those in the bottom 25% of college educated individuals.

2 Your numeracy score is better than about 50-75% of all college educated individuals.

3 Your numeracy score is better than about 75-100% of all college educated individuals.

www.riskliteracy.org
QQWG – Various Presentation Approaches

✓ Features only
✓ Qualitative
 – Consistent with, cannot exclude, could of
 – Unusual, rare (Dlugosz)
 – Strength of evidence (support, likelihood ratio, RvT)
 – Source attribution (identification) + degree of confidence or uniqueness
✓ Quantitative
 – Probability of match (transposition risk)
 – Likelihood ratio (sometimes as verbal equivalent)
 – Posterior probability (sometimes translated into qualitative terms)
 – Fixed or variable priors
✓ Testimony about probability of errors
 – Proficiency test results
 – Not possible
QQWG- Many Questions Left to Tackle

• When probabilities are used, how should they be stated and characterized?

• Are verbal scales appropriate or preferable to numbers?
 — Can they be standardized across forensic disciplines?
 — How best to map likelihood ratios to verbal scales

• What visual aids, illustrations, or analogies, if any, would be, on balance, helpful?
QQWG- Report Outline

Chapter 1 – Introduction
Chapter 2 – Current Situation
Chapter 3 – Psychology of Effective Communication
Chapter 4 – Nature of Forensic Inference
Chapter 5 – How to Present Qualitative and Quantitative Information
Chapter 6 – How to Implement the Recommendations
Expert Working Group on Human Factors in Handwriting Analysis

- 2nd in the working group series charged with conducting a scientific assessment of the effects of human factors on forensic analysis and developing recommendations to reduce the risk of error

- Supported by NIST and NIJ

- Find the original report related fingerprint analysis at www.nist.gov/oles
Stay Tuned!

Melissa Taylor
Program Manager, Management Practices
Law Enforcement Standards Office
National Institute of Standards and Technology

Office: 301.975.6363
E-mail: melissa.taylor@nist.gov

Special thanks to working group member Valerie Reyna for providing the background information used in this talk.
References

