Current Technology Used in the Laboratory

William E. Demuth II

Chair, AFTE Standardization and Training Committee

Training Coordinator, Illinois State Police, Division of Forensic Services, Forensic Sciences Command, Statewide Training Program
Goals

• The purpose of this presentation is to give the non-Firearms Examiner an introduction to the measurement technology found in the typical modern Firearms Unit.
Goals

- The purpose of this presentation is to give the non-Firearms Examiner an introduction to the measurement technology found in the typical modern Firearms Unit.
- This will be accomplished by discussing:
Goals

- The purpose of this presentation is to give the non-Firearms Examiner an introduction to the measurement technology found in the typical modern Firearms Unit.
- This will be accomplished by discussing:
 - The types of instrumentation found in the section
Goals

- The purpose of this presentation is to give the non-Firearms Examiner an introduction to the measurement technology found in the typical modern Firearms Unit.
- This will be accomplished by discussing:
 - The types of instrumentation found in the section
 - Microscopes
Goals

- The purpose of this presentation is to give the non-Firearms Examiner an introduction to the measurement technology found in the typical modern Firearms Unit.
- This will be accomplished by discussing:
 - The types of instrumentation found in the section
 - Microscopes
 - Measuring Devices
Goals

- The purpose of this presentation is to give the non-Firearms Examiner an introduction to the measurement technology found in the typical modern Firearms Unit.
- This will be accomplished by discussing:
 - The types of instrumentation found in the section
 - Microscopes
 - Measuring Devices
 - Mass/weight, force
Goals

- The purpose of this presentation is to give the non-Firearms Examiner an introduction to the measurement technology found in the typical modern Firearms Unit.

- This will be accomplished by discussing:
 - The types of instrumentation found in the section
 - Microscopes
 - Measuring Devices
 - Mass/weight, force
 - Dimensional
Goals

- The purpose of this presentation is to give the non-Firearms Examiner an introduction to the measurement technology found in the typical modern Firearms Unit.
- This will be accomplished by discussing:
 - The types of instrumentation found in the section
 - Microscopes
 - Measuring Devices
 - Mass/weight, force
 - Dimensional
 - The types of measurements collected
Goals

- The purpose of this presentation is to give the non-Firearms Examiner an introduction to the measurement technology found in the typical modern Firearms Unit.
- This will be accomplished by discussing:
 - The types of instrumentation found in the section
 - Microscopes
 - Measuring Devices
 - Mass/weight, force
 - Dimensional
 - The types of measurements collected
 - Purpose
Goals

- The purpose of this presentation is to give the non-Firearms Examiner an introduction to the measurement technology found in the typical modern Firearms Unit.
- This will be accomplished by discussing:
 - The types of instrumentation found in the section
 - Microscopes
 - Measuring Devices
 - Mass/weight, force
 - Dimensional
 - The types of measurements collected
 - Purpose
 - Possible issues
Microscopes

- Stereomicroscope
 “An optical instrument, which provides three dimensional viewing of an object through paired objectives and eyepieces. Some models share a common main objective”
 AFTE Glossary, 5th Edition
Microscopes

- Stereomicroscope
Microscopes

- Stereomicroscope
 - Provides magnification
Microscopes

- Stereomicroscope
 - Provides magnification
 - Provides stereoscopic view
Microscopes

- Stereomicroscope
 - Provides magnification
 - Provides stereoscopic view
 - Allows for less restricted manipulation of items
Microscopes

- Stereomicroscope
 - Provides magnification
 - Provides stereoscopic view
 - Allows for less restricted manipulation of items
 - May be used in conjunction with standard measuring devices
Microscopes

- Stereomicroscope
 - Provides magnification
 - Provides stereoscopic view
 - Allows for less restricted manipulation of items
 - May be used in conjunction with standard measuring devices
 - Bridges the gap between visual examination of items and the use of the comparison microscope
Microscopes

- Stereomicroscope
 - Greenough
Microscopes

- Stereomicroscope
 - Greenough
 - Two identical optical systems slightly offset to create the stereoscopic effect
Microscopes

- Stereomicroscope
 - Greenough
 - Two identical optical systems slightly offset to create the stereoscopic effect
 - Rugged
Microscopes

- Stereomicroscope
 - Greenough
 - Two identical optical systems slightly offset to create the stereoscopic effect
 - Rugged
 - Compact
Microscopes

- Stereomicroscope
 - Greenough
 - Two identical optical systems slightly offset to create the stereoscopic effect
 - Rugged
 - Compact
 - Relatively inexpensive
Microscopes

Stereomicroscope

- Common Main Objective (CMO)

Image courtesy of Nikon’s MicroscopyU
Microscopes

- Stereomicroscope
 - Common Main Objective (CMO)
 - Single, large diameter objective lens
Microscopes

Stereomicroscope

- Common Main Objective (CMO)
 - Single, large diameter objective lens
 - Collimated light path
 - Accessories can be introduced into the infinity space with little to no image aberrations

Image courtesy of Nikon’s MicroscopyU
Microscopes

- **Stereomicroscope**
 - **Common Main Objective (CMO)**
 - Single, large diameter objective lens
 - Collimated light path
 - Accessories can be introduced into the infinity space with little to no image aberrations
 - Can cost several times as much as a Greenough-type
Comparison of CMO and Greenough Stereomicroscope Designs

![Comparison of CMO and Greenough Stereomicroscope Designs](image.png)

Figure 4

- Eyepiece
- Prism
- Objective
- Stage
- Base

Image courtesy of Nikon’s MicroscopyU
Microscopes

- Comparison Microscope
 “Essentially two microscopes connected to an optical bridge which allows the viewer to observe two objects simultaneously with the same degree of magnification. This instrument can have a monocular or binocular eyepiece. Sometimes referred to as a COMPARISON MACROSCOPE.”

AFTE Glossary, 5th Edition
Microscopes

- Comparison Microscope
Microscopes

- Comparison Microscope
Microscopes

- Comparison Microscope
 - Instrument by which fired ammunition components are directly compared to one another
Bullets Fired from the Same Barrel
Cartridge Cases Fired in the Same Firearm
Microscopes

- **Comparison Microscope**
 - Instrument by which fired ammunition components are directly compared to one another
 - Has remained largely unchanged since it’s introduction
Microscopes

• Comparison Microscope
 • Instrument by which fired ammunition components are directly compared to one another
 • Has remained largely unchanged since it’s introduction
 • Magnification is dependent on setup
Microscopes

- Comparison Microscope
 - Instrument by which fired ammunition components are directly compared to one another
 - Has remained largely unchanged since its introduction
 - Magnification is dependent on setup
 - Typically 5x or 10x oculars
Microscopes

- **Comparison Microscope**
 - Instrument by which fired ammunition components are directly compared to one another
 - Has remained largely unchanged since it’s introduction
 - Magnification is dependent on setup
 - Typically 5x or 10x oculars
 - Objectives typically range from .5x to 4x
Microscopes

- Comparison Microscope
 - Instrument by which fired ammunition components are directly compared to one another
 - Has remained largely unchanged since it’s introduction
 - Magnification is dependent on setup
 - Typically 5x or 10x oculars
 - Objectives typically range from .5x to 4x
 - Total magnification from 2.5x to 40x
Microscopes

- **Comparison Microscope**
 - Instrument by which fired ammunition components are directly compared to one another
 - Has remained largely unchanged since its introduction
 - Magnification is dependent on setup
 - Typically 5x or 10x oculars
 - Objectives typically range from .5x to 4x
 - Total magnification from 2.5x to 40x
 - May be used in conjunction with standard measuring devices
Measuring Devices – Weight/Mass, Force

- Powder Balance
Measuring Devices – Weight/Mass, Force

- Powder Balance
- Mass of bullet
Measuring Devices – Weight/Mass, Force

- Powder Balance
 - Mass of bullet
 - Aid in caliber determination
Measuring Devices – Weight/Mass, Force

- Powder Balance
 - Mass of bullet
 - Aid in caliber determination
 - Mass of powder
Measuring Devices – Weight/Mass, Force

- Powder Balance
 - Mass of bullet
 - Aid in caliber determination
 - Mass of powder
 - Downloading cartridges
Measuring Devices – Weight/Mass, Force

- Powder Balance
 - Mass of bullet
 - Aid in caliber determination
 - Mass of powder
 - Downloading cartridges
 - Reloaded/handloaded cartridges
Measuring Devices – Weight/Mass, Force

- Trigger Pull
Measuring Devices – Weight/Mass, Force

- Trigger Pull
 - An indication of how much force needs to be applied to the trigger of a firearm to cause it to fire
Measuring Devices – Weight/Mass, Force

- **Trigger Pull**
 - An indication of how much force needs to be applied to the trigger of a firearm to cause it to fire
 - A large portion of the community represents this in terms of pounds
Measuring Devices – Weight/Mass, Force

- Trigger Pull
 - An indication of how much force needs to be applied to the trigger of a firearm to cause it to fire
 - A large portion of the community represents this in terms of pounds
 - Consistent with the firearms manufacturing industry
Measuring Devices – Weight/Mass, Force

- **Trigger Pull**
 - An indication of how much force needs to be applied to the trigger of a firearm to cause it to fire
 - A large portion of the community represents this in terms of pounds
 - Consistent with the firearms manufacturing industry
 - Product literature tends to report in these terms
Measuring Devices – Weight/Mass, Force

- Trigger Pull
 - An indication of how much force needs to be applied to the trigger of a firearm to cause it to fire
 - A large portion of the community represents this in terms of pounds
 - Consistent with the firearms manufacturing industry
 - Product literature tends to report in these terms
 - Relatively easy to determine if the firearm is in the “normal” range
Measuring Devices – Weight/Mass, Force

• Trigger Pull
 • An indication of how much force needs to be applied to the trigger of a firearm to cause it to fire
 • A large portion of the community represents this in terms of pounds
 • Consistent with the firearms manufacturing industry
 • Product literature tends to report in these terms
 • Relatively easy to determine if the firearm is in the “normal” range
 • Weight is an easier term for most jurors to understand
Measuring Devices – Weight/Mass, Force

- **Trigger Pull**
 - An indication of how much force needs to be applied to the trigger of a firearm to cause it to fire
 - A large portion of the community represents this in terms of pounds
 - Consistent with the firearms manufacturing industry
 - Product literature tends to report in these terms
 - Relatively easy to determine if the firearm is in the “normal” range
 - Weight is an easier term for most jurors to understand
 - Some agencies may use this information to form a conclusion with regards to accidental/unintentional shooting cases
Measuring Devices – Weight/Mass, Force

- Arsenal weights
Measuring Devices – Weight/Mass, Force

- Arsenal weights
 - Increasing amounts of weight added until trigger releases sear
Measuring Devices – Weight/Mass, Force

- Arsenal weights
 - Increasing amounts of weight added until trigger releases sear
 - Repeated to determine consistency
Measuring Devices – Weight/Mass, Force

- Arsenal weights
 - Increasing amounts of weight added until trigger releases sear
 - Repeated to determine consistency
- Gives results on a par with the firearms manufacturing industry
Measuring Devices – Weight/Mass, Force

- Arsenal weights
 - Increasing amounts of weight added until trigger releases sear
 - Repeated to determine consistency
- Gives results on a par with the firearms manufacturing industry
- Momentum not considered in results
Measuring Devices – Weight/Mass, Force

- Arsenal weights
 - Increasing amounts of weight added until trigger releases sear
 - Repeated to determine consistency
- Gives results on a par with the firearms manufacturing industry
- Momentum not considered in results
- Poor technique yields poor results
Measuring Devices – Weight/Mass, Force

- Spring gauge
Measuring Devices – Weight/Mass, Force

- Spring gauge
 - Increasing amounts of pressure applied until trigger releases sear
Measuring Devices – Weight/Mass, Force

- Spring gauge
 - Increasing amounts of pressure applied until trigger releases sear
 - Repeated to determine consistency
Measuring Devices – Weight/Mass, Force

- Spring gauge
 - Increasing amounts of pressure applied until trigger releases sear
 - Repeated to determine consistency
- Gives results on a par with the firearms manufacturing industry
Measuring Devices – Weight/Mass, Force

- Spring gauge
 - Increasing amounts of pressure applied until trigger releases sear
 - Repeated to determine consistency
- Gives results on a par with the firearms manufacturing industry
- Momentum not considered in results
Measuring Devices – Weight/Mass, Force

- Spring gauge
 - Increasing amounts of pressure applied until trigger releases sear
 - Repeated to determine consistency
- Gives results on a par with the firearms manufacturing industry
- Momentum not considered in results
- Poor technique yields poor results
Measuring Devices – Weight/Mass, Force

- Force gauge
Measuring Devices – Weight/Mass, Force

- Force gauge
- Automated models that recognize when the trigger “breaks”
Measuring Devices – Weight/Mass, Force

- Force gauge
- Automated models that recognize when the trigger “breaks”
- Measurements given in Joules or Inch-Pound Force
Measuring Devices - Dimensional

- Rulers, Tape Measures, Machinist’s Scales, etc.
Measuring Devices - Dimensional

- Rulers, Tape Measures, Machinist’s Scales, etc.
 - Used for simple, straight-line dimensions on firearms and attachments
Measuring Devices - Dimensional

- Rulers, Tape Measures, Machinist’s Scales, etc.
 - Used for simple, straight-line dimensions on firearms and attachments
 - Overall length of firearms
Measuring Devices - Dimensional

- Rulers, Tape Measures, Machinist’s Scales, etc.
 - Used for simple, straight-line dimensions on firearms and attachments
 - Overall length of firearms
 - Barrel length of firearms
Measuring Devices - Dimensional

- Rulers, Tape Measures, Machinist’s Scales, etc.
 - Used for simple, straight-line dimensions on firearms and attachments
 - Overall length of firearms
 - Barrel length of firearms
 - May be inexpensive, simple devices
Measuring Devices - Dimensional

- Rulers, Tape Measures, Machinist’s Scales, etc.
 - Used for simple, straight-line dimensions on firearms and attachments
 - Overall length of firearms
 - Barrel length of firearms
 - May be inexpensive, simple devices
 - May be special-purpose devices
Measuring Devices - Dimensional

- Rulers, Tape Measures, Machinist’s Scales, etc.
 - Used for simple, straight-line dimensions on firearms and attachments
 - Overall length of firearms
 - Barrel length of firearms
 - May be inexpensive, simple devices
 - May be special-purpose devices
 - Should be certified and traceable to a NIST standard
Measuring Devices - Dimensional

- Rulers, Tape Measures, Machinist’s Scales, etc.
 - Used for simple, straight-line dimensions on firearms and attachments
 - Overall length of firearms
 - Barrel length of firearms
 - May be inexpensive, simple devices
 - May be special-purpose devices
 - Should be certified and traceable to a NIST standard
 - Used for critical measurements
Measuring Devices - Dimensional

- Barrel Length and Overall Length
 - The term "short-barreled shotgun" means a shotgun having one or more barrels less than eighteen inches in length and any weapon made from a shotgun (whether by alteration, modification, or otherwise) if such weapon as modified has an overall length of less than twenty-six inches.
Measuring Devices - Dimensional

- Barrel Length and Overall Length
 - The term "short-barreled shotgun" means a shotgun having one or more barrels less than eighteen inches in length and any weapon made from a shotgun (whether by alteration, modification, or otherwise) if such weapon as modified has an overall length of less than twenty-six inches.
 - The term "short-barreled rifle" means a rifle having one or more barrels less than sixteen inches in length and any weapon made from a rifle (whether by alteration, modification, or otherwise) if such weapon, as modified, has an overall length of less than twenty-six inches.
Measuring Devices - Dimensional

- Barrel Length and Overall Length
Measuring Devices - Dimensional

- Barrel Length and Overall Length
 - An example of a “critical measurement”
Measuring Devices - Dimensional

- Barrel Length and Overall Length
 - An example of a “critical measurement”
 - One of the few measurements that is included in the report
Measuring Devices - Dimensional

- Barrel Length and Overall Length
 - An example of a “critical measurement”
 - One of the few measurements that is included in the report
 - Additional charges may be leveled based on the measurements collected and reported
Measuring Devices - Dimensional

- Barrel Length and Overall Length
 - An example of a “critical measurement”
 - One of the few measurements that is included in the report
 - Additional charges may be leveled based on the measurements collected and reported
 - Use of certified measuring devices
Measuring Devices - Dimensional

- Barrel Length and Overall Length
 - An example of a “critical measurement”
 - One of the few measurements that is included in the report
 - Additional charges may be leveled based on the measurements collected and reported
 - Use of certified measuring devices
 - Calculation of Measurement Uncertainty
Measuring Devices - Dimensional

- Micrometer
Measuring Devices - Dimensional

- Micrometer
 - Used for dimensional measurements on fired evidence
Measuring Devices - Dimensional

- Micrometer
 - Used for dimensional measurements on fired evidence
 - Determining caliber for cartridge cases with inadequate/misleading headstamp markings
Measuring Devices - Dimensional

- Micrometer
 - Used for dimensional measurements on fired evidence
 - Determining caliber for cartridge cases with inadequate/misleading headstamp markings
 - Caliber of fired bullets
Measuring Devices - Dimensional

- Micrometer
 - Used for dimensional measurements on fired evidence
 - Determining caliber for cartridge cases with inadequate/misleading headstamp markings
 - Caliber of fired bullets
 - Diameter of bearing surface
Measuring Devices - Dimensional

- Micrometer
 - Used for dimensional measurements on fired evidence
 - Determining caliber for cartridge cases with inadequate/misleading headstamp markings
 - Caliber of fired bullets
 - Diameter of bearing surface
 - Width of land and groove impressions
Measuring Devices - Dimensional

- **Micrometer**
 - Used for dimensional measurements on fired evidence
 - Determining caliber for cartridge cases with inadequate/misleading headstamp markings
 - Caliber of fired bullets
 - Diameter of bearing surface
 - Width of land and groove impressions
 - When used in conjunction with stereo or comparison microscope
Measuring Devices - Dimensional

- **Micrometer**
 - Used for dimensional measurements on fired evidence
 - Determining caliber for cartridge cases with inadequate/misleading headstamp markings
 - Caliber of fired bullets
 - Diameter of bearing surface
 - Width of land and groove impressions
 - When used in conjunction with stereo or comparison microscope
 - Various levels of quality and readout
Measuring Devices - Dimensional

- Micrometer
 - Used for dimensional measurements on fired evidence
 - Determining caliber for cartridge cases with inadequate/misleading headstamp markings
 - Caliber of fired bullets
 - Diameter of bearing surface
 - Width of land and groove impressions
 - When used in conjunction with stereo or comparison microscope
 - Various levels of quality and readout
 - Typically are periodically checked against a NIST certified gauge block
Measuring Devices - Dimensional

- Caliper
Measuring Devices - Dimensional

- Caliper
 - Used for dimensional measurements on fired evidence
Measuring Devices - Dimensional

- **Caliper**
 - Used for dimensional measurements on fired evidence
 - Determining caliber for cartridge cases with inadequate/misleading headstamp markings
Measuring Devices - Dimensional

- Caliper
 - Used for dimensional measurements on fired evidence
 - Determining caliber for cartridge cases with inadequate/misleading headstamp markings
 - Caliber of fired bullets
Measuring Devices - Dimensional

- **Caliper**
 - Used for dimensional measurements on fired evidence
 - Determining caliber for cartridge cases with inadequate/misleading headstamp markings
 - Caliber of fired bullets
 - Diameter of bearing surface
Measuring Devices - Dimensional

- **Caliper**
 - Used for dimensional measurements on fired evidence
 - Determining caliber for cartridge cases with inadequate/misleading headstamp markings
 - Caliber of fired bullets
 - Diameter of bearing surface
 - Width of land and groove impressions
Measuring Devices - Dimensional

- Caliper
 - Used for dimensional measurements on fired evidence
 - Determining caliber for cartridge cases with inadequate/misleading headstamp markings
 - Caliber of fired bullets
 - Diameter of bearing surface
 - Width of land and groove impressions
 - When used in conjunction with stereo or comparison microscope
Measuring Devices - Dimensional

- Caliper
 - Used for dimensional measurements on fired evidence
 - Determining caliber for cartridge cases with inadequate/misleading headstamp markings
 - Caliber of fired bullets
 - Diameter of bearing surface
 - Width of land and groove impressions
 - When used in conjunction with stereo or comparison microscope
 - Various levels of quality and readout
Measuring Devices - Dimensional

- Caliper
 - Used for dimensional measurements on fired evidence
 - Determining caliber for cartridge cases with inadequate/misleading headstamp markings
 - Caliber of fired bullets
 - Diameter of bearing surface
 - Width of land and groove impressions
 - When used in conjunction with stereo or comparison microscope
 - Various levels of quality and readout
 - Typically are periodically checked against a NIST certified gauge block
Measuring Devices - Dimensional

- Reticules
Measuring Devices - Dimensional

- Reticules
 - Employed as a component of a stereo or comparison microscope
Measuring Devices - Dimensional

- Reticules
 - Employed as a component of a stereo or comparison microscope
 - Used for small scale dimensional measurements on fired evidence
Measuring Devices - Dimensional

- Reticules
 - Employed as a component of a stereo or comparison microscope
 - Used for small scale dimensional measurements on fired evidence
 - Caliber of fired bullets
Measuring Devices - Dimensional

- Reticules
 - Employed as a component of a stereo or comparison microscope
 - Used for small scale dimensional measurements on fired evidence
 - Caliber of fired bullets
 - Diameter of bearing surface
Measuring Devices - Dimensional

• Reticules
 • Employed as a component of a stereo or comparison microscope
 • Used for small scale dimensional measurements on fired evidence
 • Caliber of fired bullets
 • Diameter of bearing surface
 • Width of land and groove impressions
Measuring Devices - Dimensional

- Reticules
 - Employed as a component of a stereo or comparison microscope
 - Used for small scale dimensional measurements on fired evidence
 - Caliber of fired bullets
 - Diameter of bearing surface
 - Width of land and groove impressions
 - Ocular with etched division lines
Measuring Devices - Dimensional

- Reticules
 - Employed as a component of a stereo or comparison microscope
 - Used for small scale dimensional measurements on fired evidence
 - Caliber of fired bullets
 - Diameter of bearing surface
 - Width of land and groove impressions
 - Ocular with etched division lines
 - Filar micrometer
Measuring Devices - Dimensional

- Reticules
 - Employed as a component of a stereo or comparison microscope
 - Used for small scale dimensional measurements on fired evidence
 - Caliber of fired bullets
 - Diameter of bearing surface
 - Width of land and groove impressions
 - Ocular with etched division lines
- Filar micrometer
- Digital camera software
Measuring Devices - Dimensional

- **Reticules**
 - Employed as a component of a stereo or comparison microscope
 - Used for small scale dimensional measurements on fired evidence
 - Caliber of fired bullets
 - Diameter of bearing surface
 - Width of land and groove impressions
 - Ocular with etched division lines
- **Filar micrometer**
- **Digital camera software**
- **All of these methods should be performance checked regularly against a certified stage micrometer**
Measuring Devices - Dimensional

- MP6 Measuring Projector
Measuring Devices - Dimensional

- MP6 Measuring Projector
- Used for dimensional measurements on fired evidence
Measuring Devices - Dimensional

- MP6 Measuring Projector
 - Used for dimensional measurements on fired evidence
 - Caliber of fired bullets
Measure Devices - Dimensional

- MP6 Measuring Projector
 - Used for dimensional measurements on fired evidence
 - Caliber of fired bullets
 - Diameter of bearing surface
Measuring Devices - Dimensional

- MP6 Measuring Projector
 - Used for dimensional measurements on fired evidence
 - Caliber of fired bullets
 - Diameter of bearing surface
 - Width of land and groove impressions
Measuring Devices - Dimensional

- MP6 Measuring Projector
Measuring Devices - Dimensional

- MP6 Measuring Projector
 - Image of item is projected on a screen with a fixed anchor line
Measuring Devices - Dimensional

- MP6 Measuring Projector
 - Image of item is projected on a screen with a fixed anchor line
 - The stage is connected directly or indirectly to a measuring device
Fired Evidence

- Cartridge Cases
 - Inadequate headstamp
Fired Evidence

- Cartridge Cases
 - Inadequate headstamp
 - Misleading headstamp
Fired Evidence

- Cartridge Cases
Fired Evidence

- Cartridge Cases
 - Dimensional measurements taken
Fired Evidence

- Cartridge Cases
 - Dimensional measurements taken
 - Micrometer
Fired Evidence

- Cartridge Cases
 - Dimensional measurements taken
 - Micrometer
 - Caliper
Fired Evidence

- Cartridge Cases
 - Dimensional measurements taken
 - Micrometer
 - Caliper
 - Dimensions compared to published standards
Fired Evidence

- Cartridge Cases
 - Dimensional measurements taken
 - Micrometer
 - Caliper
 - Dimensions compared to published standards
 - Reloading manuals
Fired Evidence

- Cartridge Cases
 - Dimensional measurements taken
 - Micrometer
 - Caliper
 - Dimensions compared to published standards
 - Reloading manuals
 - Reference works (*Cartridges of the World*)
Fired Evidence

- Cartridge Cases
 - Dimensional measurements taken
 - Micrometer
 - Caliper
 - Dimensions compared to published standards
 - Reloading manuals
 - Reference works (*Cartridges of the World*)
 - Commercially available databases
Fired Evidence

- Cartridge Cases
Fired Evidence

- Cartridge Cases
 - Potential pitfalls
Fired Evidence

- Cartridge Cases
 - Potential pitfalls
 - Dimensional tolerances vary slightly by manufacturer
Fired Evidence

- Cartridge Cases
 - Potential pitfalls
 - Dimensional tolerances vary slightly by manufacturer
 - Due to obturation, dimensions of fired cartridge cases may vary slightly from unfired cartridges
Fired Evidence

- Cartridge Cases
 - Potential pitfalls
 - Dimensional tolerances vary slightly by manufacturer
 - Due to obturation, dimensions of fired cartridge cases may vary slightly from unfired cartridges
 - The “human factor”
Fired Evidence

- Cartridge Cases
 - Potential pitfalls
 - Dimensional tolerances vary slightly by manufacturer
 - Due to obturation, dimensions of fired cartridge cases may vary slightly from unfired cartridges
 - The “human factor”
 - Reading the device
Fired Evidence

- Cartridge Cases
 - Potential pitfalls
 - Dimensional tolerances vary slightly by manufacturer
 - Due to obturation, dimensions of fired cartridge cases may vary slightly from unfired cartridges
 - The “human factor”
 - Reading the device
 - Selecting the proper areas to measure
Fired Evidence

- Cartridge Cases
 - Potential pitfalls
 - Dimensional tolerances vary slightly by manufacturer
 - Due to obturation, dimensions of fired cartridge cases may vary slightly from unfired cartridges
 - The “human factor”
 - Reading the device
 - Selecting the proper areas to measure
 - Generally poor technique
Fired Evidence

- Bullets
 - Three class characteristics are mathematically linked to each other
Fired Evidence

- Bullets
 - Three class characteristics are mathematically linked to each other
 - Caliber – diameter of the bullet (D)
Fired Evidence

- Bullets
 - Three class characteristics are mathematically linked to each other
 - Caliber – diameter of the bullet (D)
 - Number of land and groove impressions (N)
Fired Evidence

- **Bullets**
 - Three class characteristics are mathematically linked to each other
 - Caliber – diameter of the bullet (D)
 - Number of land and groove impressions (N)
 - Width of the land and groove impressions (L, G)
Fired Evidence

- Bullets
 - Three class characteristics are mathematically linked to each other
 - Caliber – diameter of the bullet (D)
 - Number of land and groove impressions (N)
 - Width of the land and groove impressions (L, G)
 - If two are known, the third can be derived
 - \(D = \frac{(L + G) \cdot (N)}{\pi} \)
Fired Evidence

• Bullets
 • Example:
 • Damage to bearing surface preventing diameter measurement (D)
 • Measured land impression widths = .056” (L)
 • Measured groove impression widths = .122” (G)
 • Number of land and groove impressions = 6 (N)
Fired Evidence

• Bullets
 • Example:
 • Damage to bearing surface preventing diameter measurement (D)
 • Measured land impression widths = .056” (L)
 • Measured groove impression widths = .122” (G)
 • Number of land and groove impressions = 6 (N)
 • \[D = \frac{(L + G) \times (N)}{\pi} \]
Fired Evidence

- Bullets
 - Example:
 - Damage to bearing surface preventing diameter measurement (D)
 - Measured land impression widths = .056” (L)
 - Measured groove impression widths = .122” (G)
 - Number of land and groove impressions = 6 (N)

- \[D = \frac{(L + G) (N)}{\pi} \]
- \[D = \frac{(.061” + .122”) (6)}{3.14159265} \]
Fired Evidence

- **Bullets**
 - Example:
 - Damage to bearing surface preventing diameter measurement (D)
 - Measured land impression widths = .056” (L)
 - Measured groove impression widths = .122” (G)
 - Number of land and groove impressions = 6 (N)

 \[
 D = \frac{(L + G) \cdot (N)}{\pi}
 \]

 \[
 D = \frac{(.061” + .122”) \cdot 6}{3.14159265}
 \]

 \[
 D = .349”
 \]
Fired Evidence

- Bullets
 - Diameter can be measured
 - Macroscopically using
 - Caliper
 - Micrometer
Fired Evidence

• Bullets
 • Diameter can be measured
 • Macroscopically using
 • Caliper
 • Micrometer
 • Under magnification using
 • Reticules
 • MP6 measuring projector
Fired Evidence

- Bullets
 - Land and groove impression widths can be measured
 - Under magnification using
Fired Evidence

- Bullets
 - Land and groove impression widths can be measured
 - Under magnification using
 - Reticules
Fired Evidence

• Bullets
 • Land and groove impression widths can be measured
 • Under magnification using
 • Reticules
 • MP6 measuring projector
Fired Evidence

- Bullets
 - Land and groove impression widths can be measured
 - Under magnification using
 - Reticules
 - MP6 measuring projector
 - Ruler
Fired Evidence

• Bullets
 • Land and groove impression widths can be measured
 • Under magnification using
 • Reticules
 • MP6 measuring projector
 • Ruler
 • Caliper (air gap)
Fired Evidence

- Bullets
 - Land and groove impression widths can be measured
 - Under magnification using
 - Reticules
 - MP6 measuring projector
 - Ruler
 - Caliper (air gap)
 - Micrometer (air gap)
Fired Evidence

- Bullets
Fired Evidence

- Bullets
 - Potential pitfalls
Fired Evidence

- Bullets
 - Potential pitfalls
 - Damage to bullet can cause distortion of dimensions
Fired Evidence

- Bullets
 - Potential pitfalls
 - Damage to bullet can cause distortion of dimensions
 - Poor shoulder definition
Fired Evidence

- Bullets
 - Potential pitfalls
 - Damage to bullet can cause distortion of dimensions
 - Poor shoulder definition
 - The “human factor”
Fired Evidence

- Bullets
 - Potential pitfalls
 - Damage to bullet can cause distortion of dimensions
 - Poor shoulder definition
 - The “human factor”
 - Reading the device
Fired Evidence

- Bullets
 - Potential pitfalls
 - Damage to bullet can cause distortion of dimensions
 - Poor shoulder definition
 - The “human factor”
 - Reading the device
 - Interpolation between division marks on reticules and rulers
Fired Evidence

- Bullets
 - Potential pitfalls
 - Damage to bullet can cause distortion of dimensions
 - Poor shoulder definition
 - The “human factor”
 - Reading the device
 - Interpolation between division marks on reticules and rulers
 - Selecting the correct anchor points on the shoulders
Fired Evidence

- Bullets

![Diagram showing groove and land impressions on a bullet]
Fired Evidence

- Bullets
 - Potential pitfalls
 - Damage to bullet can cause distortion of dimensions
 - Poor shoulder definition
 - The “human factor”
 - Reading the device
 - Interpolation between division marks on reticules and rulers
 - Selecting the correct anchor points on the shoulders
 - Generally poor technique
Conclusion

- Over the course of this discussion, an introduction to the basic instrumentation found within the modern Firearms Unit was presented.
Conclusion

- Over the course of this discussion, an introduction to the basic instrumentation found within the modern Firearms Unit was presented.
- This included a brief description of:
Conclusion

- Over the course of this discussion, an introduction to the basic instrumentation found within the modern Firearms Unit was presented.
- This included a brief description of:
 - Microscopes
Conclusion

Over the course of this discussion, an introduction to the basic instrumentation found within the modern Firearms Unit was presented.

This included a brief description of:

- Microscopes
- Measuring Devices
Conclusion

- Over the course of this discussion, an introduction to the basic instrumentation found within the modern Firearms Unit was presented.
- This included a brief description of:
 - Microscopes
 - Measuring Devices
 - Mass/weight, force
Conclusion

Over the course of this discussion, an introduction to the basic instrumentation found within the modern Firearms Unit was presented.

This included a brief description of:

- Microscopes
- Measuring Devices
 - Mass/weight, force
 - Dimensional
Conclusion

- Over the course of this discussion, an introduction to the basic instrumentation found within the modern Firearms Unit was presented.
- This included a brief description of:
 - Microscopes
 - Measuring Devices
 - Mass/weight, force
 - Dimensional
 - The types of measurements collected
Conclusion

- Over the course of this discussion, an introduction to the basic instrumentation found within the modern Firearms Unit was presented.
- This included a brief description of:
 - Microscopes
 - Measuring Devices
 - Mass/weight, force
 - Dimensional
 - The types of measurements collected
 - Purpose
Conclusion

- Over the course of this discussion, an introduction to the basic instrumentation found within the modern Firearms Unit was presented.
- This included a brief description of:
 - Microscopes
 - Measuring Devices
 - Mass/weight, force
 - Dimensional
 - The types of measurements collected
 - Purpose
 - Possible issues