Error, Confidence & (Un)certainty

Deconstructing Authorship Opinions using a Forced-call Testing Protocol

R. Brent Ostrum
Senior Forensic Document Examiner
Study Purpose

- Conclusion scales have been a topic of discussion for many years in the FDE community

- **Primary goals:**
 - Attempt to validate the conclusion scale – explore how it ‘works’
 - Explore the use of a ‘forced-call’ decision protocol for signature assessments
‘Traditional’ Conclusions

- ASTM/SWGDOC: a set of up to 9 'standard' definitions

- ‘Levels’ intended to reflect confidence of the examiner

- Confidence, in this context, is intended to address concerns about ‘potential error’ in the conclusion
Study Design

- St2ar S-03 skill-task test
 - 18 specimen, 36 genuine Q, 5 disguise Q, 19 simulations Q

<table>
<thead>
<tr>
<th>K-08 (18 Specimen)</th>
<th>Q-02 (19 Simulation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q-27 (5 Disguise)</td>
<td>Q-09 (36 Genuine)</td>
</tr>
</tbody>
</table>
Instructions and ‘Forced Call’ Procedure

• Two-part process
 – ‘Scoring’

• Key metrics:
 – Correct vs misleading (ER) calls – overall and by signature type
 – Confidence ratings
 • Overall pattern
 • Confidence vs elicited ER

• No formal statistical analyses or comparisons
 – More a test of feasibility and general results
 – Performance of FDE vs laypersons (latter is our baseline)
Test Subjects

- **Forensic Document Examiners:**
 - CBSA: 9 examiners
 - Training:
 - Several different programs but deemed equivalent
 - Experience:
 - From 3 to 25+ years
 - Certification:
 - Four examiners ABFDE
 - All conduct casework in this area
 - Other: 24 examiners
 - Limited biographic data available

- **Laypersons:**
 - CBSA laboratory employees: 14
 - Various positions in lab:
 - Admin, Math/data, Chemists/examiner
 - Education:
 - College, BSc, MSc, PhD
 - Self-rated knowledge of handwriting examination (0-10):
 - 10/14 self-rated 0
 - 2/14 self-rated 1
 - 1/14 self-rated 2
 - 1/14 self-rated 3
 - No observed performance difference by self-rating
‘PILOT’

• Many significant limitations in the study
 – Small number of subjects
 – Novel approach for FDE subjects
 – Signature – only one Q writer
 – Non-random samples – ‘convenience’ and self-selected

• Other issues
 – Compensation for laypersons – none

• Some notes:
 – Numbers shown here may change in any future presentation
 – Still collecting data and statistics will likely change
Hypotheses / Expectations

• Error rate (ER) – “elicited miscalls”
 – Protocol should result in higher ER
 – FDE ER < laypersons ER
 – ER will vary by signature type (for both groups)

• Confidence/certainty
 – Expressed uniformly? Any ‘preference’ or skew?
 – FDE confidence < laypersons confidence

• Relationships and calibration
 – Inverse relationship between Confidence and ER (for FDEs)
Correct vs Misleading calls - Forced Calls

Laypersons
FDE
Laypersons
FDE
Laypersons
FDE
Laypersons
FDE
Laypersons
FDE

Overall
Genuine
Disguised
Simulated

FDE Misleading
FDE Correct
Lay Misleading
Lay Correct

%
Confidence Ratings (proportion used)

Confidence Ratings (proportion used)

Percentage of Use

Confidence Rating Expressed

FDE
Laypersons

PROTECTION • SERVICE • INTEGRITY
Confidence Rating vs Miscalls
(Individual Q signatures, Forced calls)

Times Miscalled
(Each data point represents a Q signature call)
Average Confidence versus Error
(Overall - all signatures, Forced calls)
Confidence versus Error (Forced)

Genuine Qs

Disguised Qs

- FDE calls
- Layperson calls

Simulated Qs

- FDE calls
- Layperson calls

PROTECTION • SERVICE • INTEGRITY
Summary FDE vs Laypersons

- Laymen are generally much more confident than FDEs
- Laymen are ‘always’ confident, even when in error

- FDE confidence relationship to error (by type)
 - Overall, there is an inverse relationship
 - Genuine Q show this relationship
 - Disguised and Simulated Q show little, if any, relationship
 - Both Disguised and Simulated Q expressed with low confidence

- FDE ER (forced) is higher than in other studies
- FDE ER is lower than layperson ER (even when forced)
Inconclusive or No Authorship Opinion

• Inconclusive is **not** an ‘authorship’ call
 – Reflects ‘significant’ uncertainty in comparison process
 – Indicates a lack of confidence should any opinion be expressed
 – Perhaps best characterized as an assessment of quality

• Some questions arise:
 – What ‘confidence’ corresponds to inconclusive state?
 – If we ‘eliminate’ calls according to confidence, what is the effect?
 – Is the same effect seen for both FDEs and laypersons?
Correct vs Misleading calls - Forced (adjusted for confidence rating >= 0)
Effect of Confidence Rating adjustment vs ER

<table>
<thead>
<tr>
<th></th>
<th>OVERALL</th>
<th>Genuine Q</th>
<th>Disguised Q</th>
<th>Simulated Q</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lay</td>
<td>FDE</td>
<td>Lay</td>
<td>FDE</td>
</tr>
<tr>
<td>0 or ></td>
<td>29.5</td>
<td>16.1</td>
<td>33.2</td>
<td>16.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 or ></td>
<td>29.5</td>
<td>11.5</td>
<td>33.2</td>
<td>14.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 or ></td>
<td>29.0</td>
<td>8.4</td>
<td>32.6</td>
<td>10.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 or ></td>
<td>28.1</td>
<td>5.2</td>
<td>32.0</td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 or ></td>
<td>27.3</td>
<td>4.9</td>
<td>30.8</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cell values = elicited ER when confidence ratings are ‘adjusted’ by removing calls as per column 1.
Forced Call vs 5-step scale

• Essentially, process of calibration
• Identify Q signatures that elicit a specific opinion
 – Using any desired scale (5, 7, 9, etc)
• Determine confidence rating and/or ER through forced call for those Q signatures
 – Complicated since any given Q may fall into different categories

• Expectation:
 – Inverse relationship between ER and Confidence seen earlier should be apparent using the normal scale
The 'Ideal' Relationship (Dummy Data)

- Conclusion scale is expression of examiner 'confidence'
- Ideal relationship between ER and Confidence
Calibrating the Conclusion Scale

- Specifically 5-level scale used in S-03 (1-5)
- Quasi- ASTM

<table>
<thead>
<tr>
<th>S-03 conclusions</th>
<th># Q calls (total 240)</th>
<th>Weighted Confidence (forced calls)</th>
<th>Weighted Error Rate (forced calls)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong assoc. (1)</td>
<td>30</td>
<td>6.2</td>
<td>11%</td>
</tr>
<tr>
<td>Weak assoc. (2)</td>
<td>55</td>
<td>4.1</td>
<td>13%</td>
</tr>
<tr>
<td>Inconclusive (3)</td>
<td>134</td>
<td>3.2</td>
<td>18%</td>
</tr>
<tr>
<td>Weak non-assoc. (4)</td>
<td>18</td>
<td>3.4</td>
<td>10%</td>
</tr>
<tr>
<td>Strong non-assoc. (5)</td>
<td>3</td>
<td>3.5</td>
<td>11%</td>
</tr>
</tbody>
</table>
Conclusion Category vs Confidence/Error Rate (forced calls)
• Pilot data show the expected form but not perfect
 – Provides limited ‘validation’ of the scale
 – Potential issue might be use of CBSA-only data

• Shape may be due to restricted data set OR possibly representative of a ‘mis-calibration’ in the scale
 – More, and expanded, testing is required to sort out

• Valuable use of testing is QA and ‘re-calibration’
Steps on the Scale

- How many steps or levels are supported? 9?

FDE Average Confidence versus Error
(Overall - all signatures, Forced calls)

All other levels on the scale

Inconclusive / No opinion range (anything < confidence = 3)
The main St2ar S-03 Group

• CBSA group was used for above observations
• Can we use the main test group? 24 subjects (excl. CBSA)

• Unfortunately, some ‘issues’ observed – not yet resolved:
 – 8 FDEs expressed no inconclusive ‘3’ calls
 – 1 subject expressed all ‘1’ calls
 – 3 expressed either ‘1’ or ‘5’ (no 2, 3, or 4)
 – 2 expressed ‘1’, ‘3’ or ‘5’ (no 2 or 4)

• No clear pattern emerged for non-CBSA FDE group
Testing vs. the ‘Real World’

- Do test results like these help in the 'real world'?

- Generalization of results is very difficult
 - Group vs individual results – a lot of between-subject variability
 - No ‘control' over participants/subjects
 - Lack of random selection of subjects
 - Limitations in actual test design
 - % of disguised vs simulated signatures
 - Sample ‘variation’ (or lack thereof) – eg. single writer
Practical considerations

• Value of testing is not clear to some

• Interpretation of any derived or estimated ER is difficult

• Testing should be a QA/QC function first and foremost
 – In FDE, competency is a serious concern