Following the Scent: Development of Canine Training Aids Guided by Measurements

Bill MacCrehan, Stephanie Moore, Michele Schantz
Chemical Sciences Division, NIST
Why do we care?

- Canines are sensitive, selective, mobile detectors
- Outperform portable instruments
- Canine evidence challenged effectively in court
- Lit et al “Handler beliefs affect scent detection dog outcomes”
- Supreme Court currently questioning canine evidence in two cases
What can be done?

- Follow consensus training/certification “best practice” guidelines
- Need a uniform, validated set of training/testing materials with well characterized properties
- Costs of *real* controlled substances = high
- Costs of *non-hazardous* training aids = low
How did we start?

A "snapshot" in time of the volatile content using SPME

C-4 Non-volatile and Volatile Components
Characterizing Odor Release as a Function of Time with SPME

Vapor-time profile for TATP materials (1.4 mg) using direct, automated SPME

Characterizing volatiles in explosives as a **function of time**

SPME with Externally-Sampled Internal Standard (SPME-ESIS)

Measure A/E ratio = Area Analyte/Area ESIS

Calibrate | **Measure**

SPME-ESIS of C-4 Explosive for 2-EH (plastic explosive odorant)

Dynamic, asymmetric sampling
ESIS: 1-Oct 6 s
Analyte: 2-EH 5 min
Training Aid Odor-Delivery Systems

Odorant laden particles

Particle/vapor delivery - via fine particles loaded with odorant(s) - trapped in the nose (not the lungs) and heated to 39 °C

Permeation Devices

Permeation tube/bag delivery (COMPS) - vapor release by diffusion through container

Odorant infused polymer

Odorant(s) infused (3 ways) into PDMS - polydimethylsiloxane (PDMS), easily cast - clear, like firm Jello
SPME-ESIS of Training Aids for 2-EH (plastic explosive odorant)

Dynamic, symmetric sampling 6 s
ESIS: 1-Oct; Analyte: 2-EH

1 % 2-EH infused PDMS
1 % 2-EH on C\textsubscript{18} silica

Vapor Concentration (μg/mL)
Dynamic, asymmetric sampling ESIS: 13C$_3$-TATP 30 s
Analyte: TATP 10 min

SPME-ESIS of Training Aids for TATP

A/E Ratio vs. Hours

TATP on glass
TATP on PRP-1
TATP on SDVB disk
TATP infused PDMS

2,4-DNT too!
Infusing Vapor Components into PDMS

- **Direct** vapor infusion from complex hazardous substances, i.e., 3 types of *Semtex* - *no a priori* knowledge of composition required, i.e., marijuana

- Direct addition of vapor compound(s) to uncured polymer

- Absorbtion from solution of vapor compound

Renders hazardous substances safe to handle
Infused PDMS as a Canine Training Aid

Controlled-release vapor canister

controlled-release holes

“infused” polymer
Conclusions

• Canine detection is highly useful for a wide range of mobile detection needs provided accuracy can be validated

• Important role for ‘best practices’ consensus standards

• Metrology can support development of technology for canine training aid development

The Department of Homeland Security Science and Technology Directorate funded the production of the work presented in this material under HSHQDC-10-00297 with NIST.