Computational Strategies for Toolmarks: Principal Component Analysis and Other Methods
Outline

• Introduction
• Details of Our Approach
 • Data acquisition
 • Methods of statistical discrimination
 • Error rate estimates
 • Measures of association quality
 • Future directions
• All impressions made by tools and firearms can be represented as numerical patterns
 – Machine learning trains a computer to recognize patterns
 • Can give “…the quantitative difference between an identification and non-identification”Moran
 • Can yield identification error rate estimates
 • May be even confidence measures for I.D.s…….
Data Acquisition

- Obtain striation/impression patterns from 3D confocal microscopy
- Store files in ever expanding database
- Data files are available to practitioner and researcher community through web interface
Glock 19 fired cartridge cases
Screwdriver Striation Patterns in Lead

2D profiles

3D surfaces (interactive)
Mean total profile:

Mean “waviness” profile:

Mean “roughness” profile:
Profile Simulator

- We can simulate profiles as well
- Based on DWT MRA
 - May shed light on processed generating surfaces
 - Should be extendable to 2D striations/impressions…

![Graphs showing mean profile, MRA coefficients, real profiles, and simulated profiles.](image)
What Statistics Can Be Used?

- Multivariate statistical pattern comparison!
- Modern algorithms are called machine learning
- Idea is to measure features of the physical evidence that characterize it
- Train algorithm to recognize “major” differences between groups of features while taking into account natural variation and measurement error.
Setup for Multivariate Analysis

- Need a data matrix to do machine learning

\[
X = \begin{bmatrix}
X_{i1} & \ldots & X_{ij} & \ldots & X_{ip} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
X_{ni} & \ldots & X_{nj} & \ldots & X_{np}
\end{bmatrix}
\]

Represent as a vector of values

\{-4.62, -4.60, -4.58, \ldots\}

- Each profile or surface is a row in the data matrix
- Typical length is \(~4000\) points/profile
- 2D surfaces are far longer
- PCA can:
 - Remove much of the redundancy
 - Make discrimination computations far more tractable
 - HIGHESTLY REDUNDANT representation of surface data
• 3D PCA 24 Glocks, 720 simulated and real primer shear profiles:

• ~47% variance retained

• How many PCs should we use to represent the data??
 • No unique answer

• FIRST we need an algorithm to I.D. a toolmark to a tool
Support Vector Machines

- Support Vector Machines (SVM) determine efficient association rules
 - In the absence of any knowledge of probability densities

SVM decision boundary
How many Principal Components should we use?

With 7 PCs, expect ~3% error rate

With 13 PCs, expect ~1% error rate
Error Rate Estimation

- **Cross-Validation**: hold-out chunks of data set for testing
 - Known since 1940s
 - Most common: **Hold-one-out**

- **Bootstrap**: Randomly selection of observed data (with replacement)
 - Known since the 1970s
 - Can yield *confidence intervals around error rate estimate*

- **The Best**: Small training set, BIG test set
18D PCA-SVM Primer Shear I.D. Model, 2000 Bootstrap Resamples

Refined bootstrapped I.D. error rate for primer shear striation patterns = 0.35%
95% C.I. = [0%, 0.83%]
(sample size = 720 real and simulated profiles)
How good of a “match” is it?
Conformal Prediction

• Can give a judge or jury an easy to understand measure of reliability of classification result
 • Confidence on a scale of 0%-100%

• This is an orthodox “frequentist” approach

• Developed from principals known since the 1930s
Empirical Bayes’

• Computer outputs a “match”
 • What’s the probability it is truly not a “match”?

Get it from Bayes’ Rule:

\[
\Pr(S^- | t^+) = \frac{\Pr(t^+ | S^-) \Pr(S^-)}{\Pr(t^+)}
\]

Probability of no actual association given a test/algorithm indicates a positive ID

Name: Posterior error probability (PEP)
Empirical Bayes’

- Use Brad Efron’s machinery for “empirical Bayes’ two-groups model”
 - Get a calibrated PEP model

The SVM alg got these Primer shear IDs wrong
Empirical Bayes’

- Model’s use with crime scene “unknowns”:

This is the estimated posterior probability of no association:

\[P(\text{S} \perp \text{I}, \text{est}) = 0.00027 = 0.027\% \]

Computer outputs “match” for:
unknown crime scene toolmarks-with knowns from “Bob the burglar” tools

This is an uncertainty in the estimate.
Future Directions

- **Extend ImageJ** surface metrology functionality
- **Eliminate alignment** step
 - Try invariant feature extraction
- **Parallel** implementation of computationally intensive routines
- **Standards board** to review statistical methodology/algorithms
Acknowledgements

• Research Team:
 Practitioners/academics
 • Mr. Peter Diaczuk
 • Ms. Carol Gambino
 • Dr. James Hamby
 • Dr. Brooke Kammrath
 • Dr. Thomas Kubic
 • Mr. Chris Lucky
 • Off. Patrick McLaughlin
 • Dr. Linton Mohammed
 • Mr. Jerry Petillo
 • Mr. Nicholas Petraco
 • Dr. Graham Rankin
 • Dr. Jacqueline Speir
 • Dr. Peter Shenkin
 • Mr. Peter Tytell

 Grad/Undergrad students
 • Helen Chan
 • Julie Cohen
 • Aurora Dimitrova
 • Frani Kammerman
 • Loretta Kuo
 • Dale Purcel
 • Stephanie Pollut
 • Chris Singh
 • Melodie Yu
Website Information and Reprints/Preprints:

toolmarkstatistics.no-ip.org/
npetraco@gmail.com
npetraco@jjay.cuny.edu