Proposed “NIST Ballistics Identification System” (NBIS) Using 3D Topography Measurements on Correlation Cells

John Song
National Institute of Standards and Technology (NIST)
Gaithersburg, MD 20899, USA

Measurement Science and Standards in Forensic Firearms Analysis
NIST, Gaithersburg, MD, July 10-11, 2012
Acknowledgements:

The funding is provided by NIST 2012 Forensic Measurements Challenge Program (FMC2012) and by the Law Enforcement Standards Office (OLES) at NIST.

The author is grateful to T.V. Vorburger, R.M. Thompson, W. Chu, and S. Ballou of NIST for their discussion, suggestion, review and comments.

This talk is based on NIST Provisional Patent No. 61610029 filled on March 13, 2012.
Contents:

1. What is the Problem in Current Ballistics Identifications?
2. Basic Concept for Correlation Cells
3. Proposed “Congruent Matching Cells” (CMC) Method
4. CMC for Ballistics Identification
5. CMC for Ballistics Evidence Searches
6. Future work
7. Summary
What is the Problem in Current Ballistics Identifications?

- Need 3D topography measurements for ballistics identifications;
- Need a method to remove the “Invalid Correlation Area”;
- Need a “Universal Identification Criterion” for 3D ballistics identifications;
- Need an error rate reporting procedure;
- Need to increase correlation speed and eliminate manual operations.
Why topography, not imaging?

Ballistics signature = 2D Profile, \(Z = F(x) \) or
3D Topography, \(Z = F(x, y) \)

- lighting conditions,
- surface slope,
- shadowing effects,
- multiple reflections,
- changes in the optical properties, and
- color and reflection ...

Optical image \(I = \Phi(x, y) \) ≠ Topography \(Z = F(x, y) \)

Optical image ≠ Ballistics signature
Effect of Lighting Direction-Matching, or Non-matching?

SRM 2460 #001
Land #1 vs. Land #1 with 6° difference in lighting direction

(By T.B. Renegar, NIST)
SRM 2460-038
Land #1 with
0° to 5°
difference in lighting direction

(By T.B. Renegar, NIST)
Example of Large Variation with Reflectance Microscope

IBIS Max Phase scores for 18 examiners of standard bullets
Mean = 5662, S.D = 1373, Relative variation = 24.2%
Example of High Reproducibility of Topography Measurements

Measurement comparison of four techniques tracing the same SRM bullet:

1. Virtual standard traced on a ATF master bullet used as a reference;
2. Stylus instrument traces a SRM bullet: $CCF_{max} = 99.6\%$;
 \[CCF_{max}: \text{Mean} = 96.5\% \]
 \[\text{S.D.} = 3.5\% \]
 \[\text{Relative Var.} = 3.6\% \]
3. Interferometric microscope: $CCF_{max} = 92.1\%$;
4. Nipkow disk confocal microscope: $CCF_{max} = 99.0\%$;
5. Laser scanning confocal microscope: $CCF_{max} = 95.3\%$.

Contents:

1. What is the Problem in Current Ballistics Identifications?
2. Basic Concept for Correlation Cells
3. Proposed “Congruent Matching Cells” (CMC) Method
4. CMC for Ballistics Identification
5. CMC for Ballistics Evidence Searches
6. Future work
7. Summary
2.1. Valid and invalid correlation area

- Valid correlation area contains individual characteristics of ballistics signature that can be used for ballistics identification.
- Invalid correlation area does not contain individual characteristics and should be eliminated from ballistics identification.
$A = A^+ \cup A^-$, \quad B = B^+ \cup B^-$

$[A \cap B] = [A^+ \cap B^+] \cup [(A^+ \cap B^-) \cup (A^- \cap B^+) \cup (A^- \cap B^-)]$.
2.2. Correlation cells for increasing correlation accuracy

(a) $[A \cap B]$ correlated over the whole area, low accuracy;
(b) $[A \cap B]$ correlated over large cell areas, increased accuracy;
(c) $[A \cap B]$ correlated over small cell areas, even higher accuracy.
2.3. **Cell size**

- Not too large, not too small. To be determined by controlled experiments on paired known-match (KM) and known-non-match (KNM) topographies.

- As a start point for test, the cell size is estimated as:
 - For breech face correlations: in the range of \((0.25 \text{ mm} \times 0.25 \text{ mm})\) to \((0.5 \text{ mm} \times 0.5 \text{ mm})\);
 - For firing pin and ejector mark correlations: in the range of \((0.08 \text{ mm} \times 0.08 \text{ mm})\) to \((0.16 \text{ mm} \times 0.16 \text{ mm})\);
 - The total cell number is estimated between 50 to 200.

- **Standardized and normalized cell size.**
Contents:

1. What is the Problem in Current Ballistics Identifications?
2. Basic Concept for Correlation Cells
3. Proposed “Congruent Matching Cells” (CMC) Method
4. CMC for Ballistics Identification
5. CMC for Ballistics Evidence Searches
6. Future work
7. Summary
The Consecutively Matching Striae (CMS) Method

Proposed by A. Biasotti and J. Murdock in 1984 for correlation of bullet and toolmark signatures.

At least two groups of at least three consecutive matching striae (CMS) appear in the same relative position, or one group of six consecutive matching striae (CMS) are in agreement in an evidence toolmark compared to a test toolmark.
The Proposed Congruent Matching Cells (CMC) Method

Three characteristic parameters for the correlated cell pairs:

- Registration position in x-y,
- Registration angle θ, and
- Correlation value CCF_{max}.
Three check points for identification of valid and invalid correlation areas

Registration position in x-y, angle θ and CCF_{max}

- When correlation cells are located in the valid correlation areas, all three check points show positive results.
- When correlation cells are located in the invalid correlation areas, all three check points show negative results.
The “Congruent Matching Cells (CMC)”

The Congruent Matching Cells (CMC) are defined by

1) $A_1 A_2 A_3 \ldots \cong B_1 B_2 B_3 \ldots$ congruent x-y positions;
2) $\theta_1 = \theta_2 = \theta_3 \ldots$ same registration angle;
3) $CCF_{\text{max}} \geq CCF_{\text{low}}$, high correlation value.

(CCF_{low} is the low control limit to be determined.)
The numerical identification criterion C

- The numerical identification criterion C
 - When $CMC \geq C$, Match;
 When $CMC < C$, Non-match or No-conclusion.
 - C is determined by controlled experiments on paired known-match (KM) and known-non-match (KNM) topographies.
 - At this point, we use $C = 6$ which may be a very conservative estimation to be revised.
CMC for Ballistics Identification

$CMC \geq C = 6,$
Match
CMC for Ballistics Identification

$\text{CMC} = 0 < C = 6$, Non-match
CMC for Ballistics Identification

$CMC = 3$ and $4 < C = 6$, No-conclusion
How to determine CCF_{low}

Assumed CCF_{max} distributions for the “Congruent Cell Pairs” of the paired KM and KNM topographies. As a start point, we use $CCF_{low} = 60\%$ for test.
How to determine numerical criterion “C”

Assumed CMC distribution for paired KM and KNM topographies. The CMC distribution for KNM topographies ψ_{CMC} may be close to a logarithmic distribution.
Error rate estimation – False negative error

\[E_2 = \sum_{g=c}^{N} E_2(g) = E_2(g=c) + E_2(g=c+1) + \cdots + E_2(g=N) \]

\[= 1 - (E_2(g=0) + E_2(g=1) + \cdots + E_2(g=c-1)). \]

\[E_2(g) = \binom{N}{g} \cdot (P_2)^g \cdot (1 - P_2)^{N-g} \]

Where \(E_2 \) is the false negative error rate, \(N \) is cell number, \(C \) is the numerical identification criterion of CMC (assuming \(C = 6 \)). \(P_2 \) is the combined false negative identification probability of the CMC method.
\[P_2 = \left[P_2^{ccf} + P_2^{\theta} + P_2^{xy} \right]^{1/2} \]
When $N = 100, C = 6, P_2 = 0.01, \quad E_2 = 0.054\%$;

When $N = 100, C = 6, P_2 = 0.02, \quad E_2 = 1.55\%$;

When $N = 200, C = 6, P_2 = 0.01, \quad E_2 = 1.60\%$;

When $N = 100, C = 4, P_2 = 0.01, \quad E_2 = 1.84\%$.

\[E_{2(g)} = C_N^g \cdot (P_2)^g \cdot (1 - P_2)^{N-g} \]
Error rate estimation – False positive error

\[E_1 = \sum_{h = 0}^{h = c - 1} E_1(h) = E_1(h=0) + E_1(h=1) + \cdots + E_1(h=c-1) \]

\[E_1(h) = \binom{h}{N} \cdot (P_1)^h \cdot (1 - P_1)^{N-h}. \]

Where \(E_1 \) is the false positive error rate, \(N \) is cell number, \(C \) is the numerical identification criterion of CMC (assuming \(C = 6 \)), \(P_1 \) is the combined false positive identification probability of the CMC method.
When $N = 100$, $C = 6$, $P_1 = 0.01$, $E_1 = 7.2 \times 10^{-183}$;
When $N = 100$, $C = 6$, $P_1 = 0.02$, $E_1 = 2.7 \times 10^{-154}$;
When $N = 100$, $C = 6$, $P_1 = 0.02$, $E_1 = 2.7 \times 10^{-154}$;
When $N = 200$, $C = 6$, $P_1 = 0.01$, $E_1 = 2.4 \times 10^{-181}$;
When $N = 100$, $C = 4$, $P_1 = 0.01$, $E_1 = 1.6 \times 10^{-189}$;
When $N = 100$, $C = 6$, $P_1 = 0.4$, $E_1 = 9.5 \times 10^{-32}$.
Contents:

1. What is the Problem in Current Ballistics Identifications?
2. Basic Concept for Correlation Cells
3. Proposed “Congruent Matching Cells” (CMC) Method
4. CMC for Ballistics Identification
5. CMC for Ballistics Evidence Searches
6. Future work
7. Summary
Proposed NIST Ballistics Identification System (NBIS)

a) Separate A and B in large cells for correlation;
b) CMC = 6, Matching;
c) CMC = 0, Non-matching;
d) CMC = 4, No-conclusion;
e) For the no-conclusion topographies, align A and B at their common phase angle Θ_0 and separate into small cells for accurate correlation.
Contents:

1. What is the Problem in Current Ballistics Identifications?
2. Basic Concept for Correlation Cells
3. Proposed “Congruent Matching Cells” (CMC) Method
4. CMC for Ballistics Identification
5. CMC for Ballistics Evidence Searches
6. Future work
7. Summary
Three searching parameters of the paired correlation cells for ballistics evidence searches

- Registration position in x-y,
- Registration angle θ, and
- Correlation value CCF_{max}.
Proposed procedure for ballistics evidence searches –
First step: CCF_{max} and θ searches

Ballistic evidence searches: CCF_{max} and θ searches. T_{θ} is a threshold or a searching window for θ.
Proposed procedure for ballistics evidence searches –

Second step: x-y searches

Ballistic evidence searches: x-y searches. T_x and T_y are thresholds or searching windows for x-y searches.
What is the Problem?

- Need 3D topography measurements for ballistics identifications;
- Need a method to remove the “Invalid Correlation Area”;
- Need a “Universal Identification Criterion” for 3D ballistics identifications;
- Need an error rate reporting procedure;
- Need to increase correlation speed and eliminate manual operations.

Can “3D topo-measurements on correlation cells” solve all these problems? Probably
Contents:

1. What is the Problem in Current Ballistics Identifications?
2. Basic Concept for Correlation Cells
3. Proposed “Congruent Matching Cells” (CMC) Method
4. CMC for Ballistics Identification
5. CMC for Ballistics Evidence Searches
6. Future work
7. Summary
Future work

• Develop a correlation program using “synchronous processing” for dozens even hundreds cell correlations at the same time.

• Experimental verification of the proposed method using the KM and KNM topographies and optical intensity images.

• Optimize the correlation parameters: cell size n, cell number N, the low control limits CCF_{low} and the thresholds T_x, T_y and T_θ.
Future work

- Develop the numerical identification criterion C for proposed CMC method; develop an error rate report procedure.

- Develop the NIST Ballistics Identification System (NBIS).

- Test NBIS by KM and KNM topographies.

- Conduct evidence searches with the NIBIN database and estimate the error rate.
Initial test result: - For a pair of KM breech face signatures (#32 vs. #13), numerous paired correlation cells show high CCF_{max} values (> 60%) and the same spatial distribution pattern.
- For the KNM breech face signatures (not shown), no paired correlation cells show high CCF_{max} values ($CCF_{max} < 60\%$, not shown).

By W. Chu
Initial test result:

- A strong correlation between the theoretical and tested registration positions of the paired cells from KM breech face signatures (#32 vs. #13, left).
- No correlation can be seen for KNM breech face signatures (#32 vs. #04, right).

By W. Chu
Summary

- 3D topography measurement on correlation cells is proposed for NBIS. All parameters and algorithms are traceable to length standards, and are in the public domain subject to open tests.

- The proposed Congruent Matching Cells (CMC) using three identification parameters \((CCF_{max}, x-y\text{ and } \psi)\) can promote high accuracy ballistics identifications and evidence searches. It can be used for correlation of both geometrical topographies and optical images.
Summary

• “Synchronous processing” of correlation cells can largely increase correlation speed.

• CMC can promote objective and fully automated identifications by eliminating manual operations (such as image trimming), and by combining breech face and firing pin correlations as a single step.

• An error rate report procedure will be developed as scientific support to ballistics identifications and court proceedings.
Comments and suggestions are welcome: Email: Song@NIST.gov; Phone: 301 975 3799

For permission of commercial use, please contact: Email: Robert.Thompson@NIST.gov; Phone: 301 975 2118

Questions?
(Continued)

- By using different cell sizes, each contains \((n \times n)\) pixels \((n = 10, 20, 50, 100, 200, 500...\)), separate topography A and B as \((r \times s)\) arrays of cells A \((r, s)\) and B \((r, s)\) at their initial phase position \((x_0, y_0, \theta_0)\);
- Correlation of each corresponding paired cells A \((r, s)\) and B \((r, s)\);
- Draw frequency distribution curves for the paired cells for both the KM and KNM cartridges at different cell sizes;
- It is possible that the strong correlation between the cell size \((n \times n)\) and \(CCF_{max}\) only happens for the KM cartridges.
- Optimization of the cell size \((n \times n)\), by
 1) The highest \(CCF_{max}\) on the KM curves;
 2) The maximum separation between the KM and KNM distributions.
6.4 Registration reproducibility

- If the two correlated cartridges A and B are repeatedly measured and correlated from day to day, the variation range \((k = 2)\) of their initial phase position \((x_0, y_0, \theta_0)\) represents the registration reproducibility \(R(x_0, y_0, \theta_0)\).

\[R(x_0, y_0, \theta_0) = R(2\sigma_{x_0}, 2\sigma_{y_0}, 2\sigma_{\theta_0}) \] \hspace{1cm} (5)

where \(\sigma_{x_0}, \sigma_{y_0}, \sigma_{\theta_0}\) represent the standard deviation of \(x_0, y_0, \theta_0\).

- The registration reproducibility may be different with the type of signatures (breech face, firing pin and ejector mark); the type of guns and ammos and the type of matchings (matching or non-matching).