Table of contents

1 Introduction 5
2 Safety measures 6
3 Installation 8
 3.1 Installing the electrode arm 8
 3.2 Connecting a sensor 12
4 Operating the meter 13
 4.1 Backside layout 13
 4.1.1 Pin assignments RS232 connection 13
 4.2 The display 14
 4.3 Key controls 16
 4.4 Using the softkeys 16
 4.5 Selecting a measurement mode 17
 4.6 Navigating between menus 17
 4.7 Navigating within a menu 17
 4.8 Using the alphanumeric keypad 17
 4.8.1 Alphanumeric input 17
 4.8.2 Entering IDs / PIN 18
 4.8.3 Editing values in a table 18
 4.9 Calibration 19
 4.9.1 Running a one-point pH/ion calibration 19
 4.9.2 Running a multi-point pH/ion calibration 19
 4.10 Automatic buffer recognition 20
 4.11 Sample measurements 20
 4.12 Data transfer 20
 4.13 Temperature compensation 21
5 Setup 22
 5.1 Menu structure of setup 22
 5.2 Sample ID 22
 5.3 User ID 23
 5.4 Stirrer 23
 5.5 Data Transfer Settings 23
 5.6 System settings 24
 5.7 Service 26
 5.8 Instrument self-test 27
6 Menus and settings 28
 6.1 Menu structure of pH/ion 28
 6.2 Sensor ID/SN 28
 6.3 Calibration settings 29
 6.4 Measurement settings 30
 6.5 Endpoint formats 32
6.6 Timed Interval Readings 33
6.7 Temperature settings 33
6.8 Measurement limits 33

7 Data management 34
 7.1 Menu structure of data menu 34
 7.2 Measurement data 34
 7.3 Calibration data 35
 7.4 ISM data 36

8 Maintenance 38
 8.1 Meter maintenance 38
 8.2 Electrode maintenance 38
 8.3 Disposal 38
 8.4 Error messages 39
 8.5 Error limits 41

9 Sensors, solutions and accessories 42

10 Specifications 44

11 Appendix 45
 11.1 Buffer tables 45
 11.1.1 Buffer group 1 (ref. 25 °C) METTLER TOLEDO US 45
 11.1.2 Buffer group 2 (ref. 25 °C) METTLER TOLEDO Europe (default buffer) 45
 11.1.3 Buffer group 3 (ref. 20 °C) Merck standard buffers 46
 11.1.4 Buffer group 4 (ref. 25 °C) DIN (19266) 46
 11.1.5 Buffer group 5 (ref. 25 °C) DIN (19267) 46
 11.1.6 Buffer group 6 (ref. 25 °C) JJG (Chinese) 47
 11.1.7 Buffer group 7 (ref. 25 °C) Technical Buffer 47
 11.1.8 Buffer group 8 (ref. 25 °C) JIS Z 8802 (Japanese) 47

Table of contents 4
1 Introduction

Thank you for purchasing this METTLER TOLEDO instrument. The SevenCompact Series is not only a new generation of intuitive and easy-to-operate bench meters for reliable measurements, they also provide extra security against mistakes and support your workflow in the laboratory.

Mistakes can be reduced to a minimum because of the following characteristics:

- **New ISM®** (Intelligent Sensor Management) technology: the meter automatically recognizes the sensor and transfers the latest set of calibration data from the sensor chip to the meter. The last five calibrations as well as the initial calibration certificate are also stored on the sensor chip. These can be reviewed, transferred and printed. ISM® provides additional security and helps eliminate mistakes.

- **Multi-language graphical user interface** on a large 4.3 inch display with intuitive menu guidance, making the operating instructions primarily a source of reference.

- **GLP and Routine mode** for the needs of any operator: in the routine mode, the deletion of data is prevented and changing those settings that would potentially jeopardize the collection of reliable results, such as measurement settings, are blocked. This provides extra security for routine daily work. Skilled workers are advised to employ the GLP mode to enjoy the instruments’ powerful full functional range.

This instrument supports the workflow of a modern laboratory in all stages of the data collection and archiving process:

- **The electrode arm** can be operated with one hand and moves perfectly straight up and down to bring the electrode in the perfect position for the best measurement performance. This allows faster measurements and poses less risk to tip over the sample vessel and/or damage the head of the sensor!

- **Only one keypress required**: READ starts a measurement and CAL a calibration. It’s so easy!

- **Easy switching between the normal view and the uFocus™**: The normal view has all the measurement parameters and IDs on the display to provide you an instant complete overview. In the uFocus™ only the most important information is shown in large digits, such as measurement value and temperature. This enables you to focus completely on the measurement, without getting distracted by information that is not relevant to you.

- **Easy toggling with the MODE soft key** between the various measurement parameters either before or during a measurement.

- **Versatile data archiving options**: print data, export data to a USB-stick, or send data to a PC with LabX direct software!

- **Versatile data entry procedures**: Enter sample / user and sensor IDs either directly on the instrument, or use a barcode reader or USB-Keyboard to increase efficiency.

At METTLER TOLEDO we are committed to providing you instruments of highest quality and we do all we can to support you in maximizing the lifetime of your instrument:

- **IP54 rating – water and dust protection**: we have designed our instrument in such way, that it withstands drops of aqueous solutions on the housing and connections. This not only provides extra protection, but also allows easy cleaning of the instrument with a damp cloth.

- **Rubber plugs and protective cover** provide extra security against dust and spills of aqueous solutions. Just keep the plug attached to the connections and cover the instrument with the transparent protective cover when not in use.

Have fun and many reliable measurements with our Seven Compact series of pH, Ion and conductivity meters!
2 Safety measures

Measures for your protection

- Never work in an environment subject to explosion hazards! The housing of the instrument is not gas tight (explosion hazard due to spark formation, corrosion caused by the ingress of gases).

Risk of explosion

- When using chemicals and solvents, comply with the instructions of the producer and the general lab safety rules!

Risk of corrosion

Measures for your operational safety

- Never unscrew the two halves of the housing!
- Have the meter serviced only by METTLER TOLEDO Service!
- Any spillage should be wiped off immediately! Some solvents might cause corrosion of the housing.
- Avoid the following environmental influences:
 - Powerful vibrations
 - Direct sunlight
 - Atmospheric humidity greater than 80%
 - Corrosive gas atmosphere
 - Temperatures below 5 °C and above 40 °C
 - Powerful electric or magnetic fields
FCC Rules

This device complies with Part 15 of the FCC Rules and Radio Interference Requirements of the Canadian Department of Communications. Operation is subject to the following conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.
3 Installation

Carefully unpack the meter. Keep the calibration certificate in a safe place. Insert the right adapter clip into the power adapter slot:

3.1 Installing the electrode arm

The electrode arm can be used as a stand alone or it can be attached to the instrument on the left or right side, according to your preferences. The height of the electrode arm can be varied by using the extension shaft part. Use the wrench to attach the extension part.

3 Installation

Carefully unpack the meter. Keep the calibration certificate in a safe place. Insert the right adapter clip into the power adapter slot:

3.1 Installing the electrode arm

The electrode arm can be used as a stand alone or it can be attached to the instrument on the left or right side, according to your preferences. The height of the electrode arm can be varied by using the extension shaft part. Use the wrench to attach the extension part.
Assembly of the electrode arm

- Use the wrench to attach the base to the electrode arm by tightening the screws. The electrode arm can now be used in the stand alone mode.
• To attach the electrode arm to the instrument, remove the plastic covers in a first step.
- Then insert the foot of the meter to the arm base and shift the meter in the direction of the arrow to make the foot fit.

- Use the lock screw to attach the meter to the base of the arm.
3.2 Connecting a sensor

To connect pH or Ion sensors, disconnect the rubber plug from the pH socket. Connect the electrode and make sure that the plugs are properly inserted. If you are using an electrode with a built-in temperature probe or a separate temperature probe, connect the other lead to the ATC socket. Twist the RCA (Cinch) plug to ease the attachment of the sensor.

ISM® sensor

When connecting an ISM® sensor to the meter, one of the following conditions have to be met for the calibration data to be transferred automatically from the chip of the sensor into the meter and is used for further measurements. After attaching the ISM® sensor ...

- The meter must be switched on.
- (If the meter is already switched on) the READ key is pressed.
- (If the meter is already switched on) the CAL key is pressed.

We strongly recommend you to switch off the meter when disconnecting an ISM sensor. In doing so, you make sure that the sensor is not removed while the instrument is reading data from or writing data to the ISM-chip of the sensor.

The ISM icon ISM appears on the display and the sensor ID of the sensor chip is registered and appears on the display.

The calibration history, the initial certificate and the maximum temperature can be reviewed and printed in the data memory.
4 Operating the meter

4.1 Backside layout

- a. BNC socket for mV/pH signal input
- b. RCA (Cinch) socket for temperature signal input
- c. Reference socket for reference electrodes
- d. Digital socket for digital electrodes
- e. RS232 interface
- f. DC power supply socket
- g. USB A interface
- h. USB B interface
- i. Mini DIN socket for METTLER TOLEDO stirrer

4.1.1 Pin assignments RS232 connection

Below the PIN assignments for the RS-232 interface are shown. To this interface can be connected METTLER TOLEDO printers such as RS-P25.

```
Pin 1  NC   Pin 6  NC
Pin 2  TxD (out)  Pin 7  NC
Pin 3  RxD (in)   Pin 8  NC
Pin 4  NC   Pin 9  NC
Pin 5  RSGND
```
4.2 The display

There are two modes for the display: the full-information screen with all the information on the display and the measurement close-up screen (superview) in which the measurement information is shown with large font. Switching between these views is possible by pressing READ for 2 s, both during a measurement or after/before a measurement.

1. Measurement value
2. USB device connected
3. PC connected (for LabX direct)
4 Stirrer icon (when stirring is taking place)
5 Data logging icon (timed interval reading)
6 Routine mode icon (user access rights are restricted)
7 Date and time
8 Measurement temperature
9 Endpoint format
10 Temperature compensation

ATC: Temperature sensor connected
MTC: no temperature sensor connected or detected

11 Number of data sets in memory
12 User ID
13 Softkey
14 Softkey
15 Softkey
16 Softkey
17 Sample ID
18 Sensor ID

19 **pH electrode condition** icon
 - Slope: 95-105%
 - Offset: ±(0-20)mV
 - Electrode is in good condition
 - Slope: 94-90%
 - Offset: ±(20-35)mV
 - Electrode needs cleaning
 - Slope: 89-85%
 - Offset: ±(>35)mV
 - Electrode is faulty

20 **ISM® sensor connected**

21 Stability criterion
 - Strict
 - Medium
 - Fast

22 Warning messages

23 Buffer groups or standards
4.3 Key controls

<table>
<thead>
<tr>
<th>Key</th>
<th>Press and release</th>
<th>Press and hold for 2 seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON/OFF</td>
<td>Switch meter on or off</td>
<td>Switch meter on or off</td>
</tr>
<tr>
<td>READ</td>
<td>Start or end measurement (measurement screen)</td>
<td>Switch between measurement close-up screen and full-information screen</td>
</tr>
<tr>
<td></td>
<td>Confirm input or start editing a table</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exit menu and go back to measurement screen</td>
<td></td>
</tr>
<tr>
<td>CAL</td>
<td>Start calibration</td>
<td>Review the last calibration data</td>
</tr>
</tbody>
</table>

Softkeys

The function of the softkeys varies from screen to screen (see “Using the softkeys”).

4.4 Using the softkeys

The meter has four softkeys. The functions assigned to them change during operation depending on the application. The assignment is shown on the bottom line of the screen.

In the measurement screen, the softkeys are assigned as follows:

<table>
<thead>
<tr>
<th>Data</th>
<th>Menu</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access data menu</td>
<td>Access meter settings</td>
<td>Change measurement mode</td>
</tr>
</tbody>
</table>

The other softkey functions are:

- ➡️ Move one position to the right
- ➡️ Move one position to the left
- ➩ Scroll up in the menu
- ➩ Scroll down in the menu
- ➖ Increase value
- ➖ Decrease value
- ➩ Scroll to next data set in memory
- ➩ Delete letters or numbers on alphanumeric keypad
- Delete selected data

<table>
<thead>
<tr>
<th>➡️</th>
<th>Move one position to the right</th>
<th>Edit</th>
<th>Edit table or value</th>
</tr>
</thead>
<tbody>
<tr>
<td>➡️</td>
<td>Move one position to the left</td>
<td>End</td>
<td>End calibration</td>
</tr>
<tr>
<td>➩</td>
<td>Scroll up in the menu</td>
<td>Yes</td>
<td>Confirm</td>
</tr>
<tr>
<td>➩</td>
<td>Scroll down in the menu</td>
<td>No</td>
<td>Reject</td>
</tr>
<tr>
<td>➖</td>
<td>Increase value</td>
<td>Review</td>
<td>Review selected data</td>
</tr>
<tr>
<td>➖</td>
<td>Decrease value</td>
<td>Save</td>
<td>Save data, setting or value</td>
</tr>
<tr>
<td>➩</td>
<td>Scroll to next data set in memory</td>
<td>Select</td>
<td>Select the highlighted function or setting</td>
</tr>
<tr>
<td>➩</td>
<td>Delete letters or numbers on alphanumeric keypad</td>
<td>Start</td>
<td>Begin the reference measurement</td>
</tr>
<tr>
<td>Delete selected data</td>
<td>Trans</td>
<td>Transfer selected data</td>
<td></td>
</tr>
</tbody>
</table>
4.5 Selecting a measurement mode
Press the MODE softkey to switch between the different measurement modes.
The sequence of the alternating measurement modes is:
1. pH
2. mV
3. rel. mV
4. ion

4.6 Navigating between menus
The meter display consists of a measurement frame, softkeys, areas for status icons and underlying menu areas.
To access the menu areas and to navigate between them, use various softkeys (see “Using the softkeys”).

- Press Menu.
 ➔ The Setup menu appears and the pH/Ion tab is highlighted.
- Press ➔ to highlight the Setup tab, or
- Press ➔ to highlight Sensor ID / SN.
- Press EXIT to return to the measurement screen.

4.7 Navigating within a menu
This example is based on the Setup menu, but the procedure applies to the other menus as well.

- Press Menu.
 ➔ The Setup menu appears and the pH/Ion tab is highlighted.
- Press ➔ as often as needed to navigate to a menu item.
- Press Select to move deeper in the menu for the chosen operation.
- Continue navigating with ➔, ➔ or Select until the final destination is reached within the menu.
- Press MODE/EXIT to go back to the previous menu.
 — or —
- Press READ to return to the measurement screen directly.

4.8 Using the alphanumeric keypad

4.8.1 Alphanumeric input
The meter has a screen keypad for entering IDs, SNs and PINs. Both numbers and letters are allowed for these entries.

When entering a PIN, each character entered will be displayed as (*).
Enter Sample ID

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>W</td>
<td>E</td>
<td>R</td>
<td>T</td>
<td>Y</td>
<td>U</td>
<td>I</td>
<td>O</td>
<td>P</td>
</tr>
<tr>
<td>A</td>
<td>S</td>
<td>D</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>X</td>
<td>C</td>
<td>V</td>
<td>B</td>
<td>N</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Press 'Read' to confirm.

1. Press **←** to move left to highlight number or letter, use **→** to move right, and **↓** to move downwards.
2. Press **READ** to confirm the entry.
 - The line where the position of alphanumeric character is being entered blinks.
3. To end and confirm entry, use softkeys to highlight **OK**, and press **READ** to save the ID.
 - or —
4. To delete information, use softkeys to highlight **←** and press **READ** to delete the previously entered character.
 - or —
5. Press **EXIT** to return to the upper level of the menu.
 - The entries are rejected.

4.8.2 Entering IDs / PIN

The four softkeys and **READ** key are used for navigating on the keypad and entering the ID/PIN.

Example: WATER

1. If 1 is highlighted, press **↓** once.
 - **Q** is highlighted.
2. Press **→** once.
 - **W** is highlighted.
3. Press **READ** to enter **W**.
4. Repositioning the highlighted bar to **A**, **T**, **E** and **R**, and press **READ** to enter each letter of sample ID in sequence as described in steps 1 - 3.
5. Reposition the highlighted bar to **OK**, and press **READ** to save the sample ID.

Instead of entering an ID with the alphanumeric keypad, one can also use a USB-keyboard or a USB-barcode scanner. In case a character is entered or scanned that is not present on the instrument keyboard it will display the entry as an underscore (_).

4.8.3 Editing values in a table

The meter has a feature, which allows the user to enter, edit or remove values in tables. (for example, temperature and buffer values for a customized buffer group). This is accomplished by using the softkeys on the display to navigate from cell to cell.
1 Press **READ** to start editing the cell in the table.
 disturbance: The softkeys on the display change.

2 Press **+** and **−** to enter the value and press **READ** to confirm.
 disturbance: The softkeys change back to **youtu** and **down**.

3 Navigate to a cell and press **Delete** to remove a value.

4 To finish editing the table, navigate with the **up** and **down** to highlight **Save**.

5 Press **READ** to confirm the action and exit the menu.

4.9 Calibration

The meter allows you to perform pH/ion calibrations with up to 5 points. Calibration is only possible in the full-information screen. When starting a calibration by pressing the **CAL** key while the instrument displays the close-up screen, it will automatically switch to the full-information screen.

4.9.1 Running a one-point pH/ion calibration

1 Place the electrode in a calibration buffer/standard and press **CAL**.

2 The meter endpoints according to the preselected endpoint mode after the signal has stabilized or after pressing **READ**.

3 Press **End** to accept the calibration.

4 Press **Save** to save the result.

5 Press **Exit** to reject the calibration and return to sample measurement.

- With the one-point calibration only the offset is adjusted. If the sensor was previously calibrated with a multipoint calibration the previously stored slope will remain. Otherwise the theoretical slope (-59.16mV/pH) will be used.

4.9.2 Running a multi-point pH/ion calibration

pH and ion calibrations can be run with this meter for up to 5 points.

1 Run the calibration as described in “Running a one-point pH/ion” (steps 1 - 2).

2 Rinse the electrode with deionized water.

3 Place the electrode in the next calibration buffer.

4 Press **CAL**.

5 Repeat the steps 2 - 4 for all calibration buffers.

6 Press **End** to end the calibration procedure.

- Alternatively, the meter ends the calibration automatically when 5 calibrations are performed. The offset value and slope are shown on the display.

7 Press **scroll down** to next data set
8. Press **Save** to keep the calibration.
9. Press **EXIT** to reject the calibration.

4.10 Automatic buffer recognition

The meter features automatic pH buffer recognition for the predefined buffer groups (see “Appendix”) and the user-defined buffer groups. The buffers within a buffer group are automatically recognized by the meter and displayed during calibration. This feature allows the calibration in any order within a predefined or user-defined pH buffer group.

4.11 Sample measurements

- Place the sensor in the sample and press **READ** to start a measurement.
 - The display shows the readings of the sample.
 - The endpoint format blinks, indicating a measurement is in progress.

As soon as the measurement is stable according to the selected stability criterion, the **Stability** icon appears.

- If the “automatic endpoint” format is selected, the measurement stops automatically as soon as the **Stability** icon appears.
- If the “manual endpoint” format is selected, press **READ** to manually stop the measurement.
- If the “timed endpoint” format is selected, the measurement stops after the preset time.

4.12 Data transfer

It is possible to transfer either all data or a user-defined set of data from the memory to a METTLER TOLEDO printer (for example RS-P26), to a PC by using LabX direct or to a USB memory stick. The following section describes how to proceed with the different configurations.

Data transfer from the meter to a printer

1. Connect the RS232 cable to the meter and the corresponding interface on the backside of the printer.
2. Select the interface “printer” in the data transfer settings menu (see “Setup: Data Transfer Settings”).
3. Start transfer in the data menu.

For some printers (e.g. RS-P25, RS-P26 and RS-P28), the baud rate settings will be automatically synchronized with those of the instrument.

For other printers the settings for data transfer in the printer need to be adjusted as follows:

- Baud rate: 1200
- Data bits: 8
- Parity: none
- Stop bits: 1

Data transfer from the meter to LabX direct pH

1. Connect the instrument via USB B to the PC. The 📐 icon appears on the display.
2. Select the interface “LabX direct” in the data transfer settings menu (see “Setup: Data Transfer Settings”).
3. Open **LabX direct pH** and select the correct instrument.
4 Select the item and **Transfer** in the data menu to start the transfer.

Data export from the meter to a USB stick

1 Insert the USB stick into the corresponding interface of the meter.
 - The icon \(\psi\) appears on the display.

2 Select the item and **Export to USB-Stick** in the data menu to start the transfer.

 The data will be in text (extension .txt) format. The instrument will create a new folder on the USB-stick in which the name is the date in the international format, i.e. first year, then month and then the day.

 Example: when the date is 25 November 2011, the name of the folder will be: 20111125.

 The data will be written as a text file with a name that consists of the time in 24h format (hr min sec) with a prefix depending on what kind of data is exported. This prefix is M for measurement data and C for calibration data.

 Example: when calibration data are exported at 15:12:25 (3:12:25 pm) the name of the file will be: C151225.txt

 Pressing EXIT during the exporting aborts the process

4.13 Temperature compensation

We recommend the use of either a built-in or a separate temperature probe. If a temperature probe is used, **ATC** and the sample temperature are displayed. If no temperature sensor is used, **MTC** is displayed and the sample temperature should be entered manually.

The meter accepts both NTC 30 kΩ and pT1000 temperature sensors, with selection taking place either automatically or manually (see “Menus and settings: Temperature settings”).

In the pH and ion mode, the meter calculates the temperature-adjusted electrode slope using this temperature and shows the temperature-compensated pH/ion value in the measurement display.
5 Setup

5.1 Menu structure of setup

The individual items of the menu setup are described on the pages following the list below.

1. **Sample ID**
 1. Enter Sample ID
 2. Select Sample ID
 3. Delete Sample ID

2. **User ID**
 1. Enter User ID
 2. Select User ID
 3. Delete User ID

3. **Stirrer**
 1. Stir Before Measurement
 2. Stir During Measurement
 3. Stir Speed
 4. Stirrer Voltage Settings

4. **Data Transfer Settings**
 1. Data Logging
 2. Interface
 3. Printout Format

5. **System settings**
 1. Language
 2. Time and Date
 3. Access Control
 4. Beep
 5. Routine/Expert Mode
 6. Screen Settings

6. **Service**
 1. Software Update
 2. Export Settings to USB-stick
 3. Factory Reset

7. **Instrument Self-test**

5.2 Sample ID

An alphanumeric sample ID with up to 16 characters can be entered. Alternatively, a previously entered sample ID can be selected from the list. If a sample ID has been entered, which is either purely numeric (for example, 123) or ends with a number (for example, WATER123), the following options are available:

1. **<Auto Sequential> On**
 Using this setting will automatically increment the sample ID by 1 for each reading.

2. **<Auto Sequential> Off**
 The sample ID is not incremented automatically.

A maximum of 10 sample IDs are stored in memory and listed for selection. If the maximum of 10 has already been entered, a sample ID can either be deleted manually or the oldest ID will be automatically overwritten by the new ID.

This instrument allows a special process for users that would like to enter the sample ID in a quicker way. When the homescreen is shown, while no measurement or calibration is running, typing on a USB-keyboard or scanning with a barcode reader, results in a jump in the sample ID entry screen and the entered characters are shown. In case a character is entered or scanned that is not present on the instrument keyboard (see “Operating the meter: Entering IDs/PIN”). It will display the entry as an underscore (_).

5.3 User ID

A user ID with up to 16 characters can be entered. Alternatively, a previously entered user ID can be selected from the list.
A maximum of 10 user IDs are stored in memory and listed for selection. If the maximum of 10 has already been entered, a user ID can either be deleted manually or the oldest ID will be automatically overwritten by the new ID.

5.4 Stirrer
The user can connect the METTLER-TOLEDO external magnetic stirrer to the instrument. This stirrer is powered by the instrument and will be automatically switched on/off according to the settings by the user.

1. Stir Before Measurement
 - <Stir Before Measurement> On
 Using this setting will include a stirring period before the measurement starts (after pressing READ). The user can set the time between 3 s and 60 s.
 - <Stir Before Measurement> Off
 No stirring before the measurement will take place.

2. Stir During Measurement
 - <Stir During Measurement> On
 Using this setting will result in stirring during the measurement. When the measurement endpoints, the stirrer is automatically switched off.
 - <Stir During Measurement> Off
 No stirring during the measurement will take place.

3. Stir Speed
 - The user can adjust the stir speed of the stirrer according to his preferences and the characteristics of the sample.
 - A stir speed between 1 and 5 can be selected, with 5 being fastest.

To indicate that the instrument is stirring when the option "Stir Before Measurement" has been selected, the instrument will display the icon 🔄.

5.5 Data Transfer Settings

1. Data Logging
 The meter stores up to 1000 sets of measurement data in the memory. The number of data sets already stored in the memory is indicated by MXXXX on the display. A message appears on the display when the memory is full. To save further measurements if the memory is full, data has to be deleted first. You can select between automatic and manual storage.
 - Automatic storage
 Stores/transfers every endpointed reading to the memory/interface or both automatically.
 - Manual storage
 If “Manual Storage” is set, Store appears on the display as soon as a measurement has endpointed. Press Store to save/transfer endpointed readings. The endpointed reading can only be stored once. When the data is stored, Store disappears from the measurement screen. When the Store key is shown but you go into the menu settings before saving the measurement, the Store key will not be present anymore when you exit the menu settings and return to the measurement screen.
2. Interface
Select to transfer the data in the memory to a Printer, LabX Direct or both. The meter adjusts the baud rate to the following settings in case no automatic baud rate synchronization occurs (only possible with USB and the printers RS-P25, RS-P26 and RS-P28):

1. **Printer**
 - Baud rate: 1200
 - Data bits: 8
 - Parity: none
 - Stop bits: 1
 - Handshake: none

2. **LabX direct**
 The settings between the instrument and PC are adjusted automatically because USB connection is plug-and-play

3. **Printer + LabX direct**
 The settings listed above for 1. and 2. are used.

3. Printout Format
Three different printout formats are available: GLP, Normal and Short. The printouts can be printed in six different languages, depending on which language is currently selected in Setup (English, German, French, Italian, Spanish and Portuguese). For all other languages the printouts will be in English.

* If LabX direct is selected, the printout format is always GLP and English. LabX direct PC software translates the received data into the selected PC language as defined in the regional and language options.

Examples:

<table>
<thead>
<tr>
<th>pH printout GLP</th>
<th>pH printout normal</th>
<th>pH printout short</th>
</tr>
</thead>
<tbody>
<tr>
<td><pH> GLP 24-Jul-05</td>
<td><pH> Normal 24-Jul-05</td>
<td><pH> 0.5 mV 25.0 °C ATC</td>
</tr>
<tr>
<td>10:56 AM BEER</td>
<td>10:56 AM BEER</td>
<td>Auto EP Strict INLAB413</td>
</tr>
<tr>
<td>6.997 pH 0.5 mV</td>
<td>6.997 pH 0.5 mV</td>
<td></td>
</tr>
<tr>
<td>25.0 °C ATC</td>
<td>25.0 °C ATC</td>
<td></td>
</tr>
<tr>
<td>Auto EP Strict INLAB413</td>
<td>Auto EP Strict INLAB413</td>
<td></td>
</tr>
<tr>
<td>122222222</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last cal.: 09-Jun-2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:56 AM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ivy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signature: ___________</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outside limits</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.6 System settings
The system settings menu is protected by a PIN. Upon delivery, the PIN is set to 000000 and is activated. Please change the PIN to prevent unauthorized access.
1. Language
The following languages are available for the system: English, German, French, Spanish, Italian, Portuguese, Chinese, Japanese, Korean and Russian.

2. Time and date
When starting the meter for the first time, the display for entering time and date appears automatically.

In the system settings, two time and four date display formats are available:

- **Time**
 - 24-hour format (for example, 06:56 and 18:56)
 - 12-hour format (for example, 06:56 AM and 06:56 PM)

- **Date:**
 - 28-11-2010 (day-month-year)
 - 11-28-2010 (month-day-year)
 - 28-Nov-2010 (day-month-year)
 - 28/11/2010 (day-month-year)

3. Access control
PIN settings are available for:

1. System settings
2. Deleting data
3. Instrument login

1. Switch PIN protection for the required access control ON. The window for entering an alphanumeric PIN appears.
2. Enter an alphanumeric PIN (max. 6 characters).
 - The input window for PIN verification appears.
3. Confirm PIN.

A maximum of 6 characters can be entered as PIN. In the factory default settings, the PIN for system settings and deleting data is set to 000000 and is activated, no instrument login password is set.

4. Beep
An acoustic signal can be switched on in the following three cases:

1. Key is pressed
2. Alarm/warning message appears
3. Measurement is stable and has endpointed (stability signal appears)

5. Expert/Routine modes
The meter has two working modes:

- **Expert mode**: the factory default setting enables all functions of the meter.
- **Routine mode**: some of the menu settings are blocked.

The concept of the two working modes is a GLP feature that ensures that important settings and stored data cannot be deleted cannot be unintentionally changed under routine working conditions.

The meter only allows the following functions in the routine mode:
• Calibrating and measuring
• Editing user, sample and sensor IDs
• Editing the MTC temperature
• Editing data transfer settings
• Editing system-settings (PIN-protected)
• Running the instrument self-test
• Storing, viewing, printing and exporting data
• Exporting settings to USB-stick

6. Screen settings

Screen Brightness
The screen brightness can be set from levels 1 to 16.

Screen Saver
The amount of time can be set which passes before the screen saver is activated:
5-99 minutes
If the meter is not operated during this time, the screen saver is activated. Press any key and the
display is activated again, independent of the function of the key.

Screen Color
The display background color blue, grey, red or green can be selected.
The display has a limited lifetime; therefore we recommend activating the screen saver or switching
off the meter when not in operation.
If an instrument login password is set, this password is required after activating the display again.

5.7 Service

1. Software Update
In case a newer software version is available, the user can perform a software update via USB-
stick, by adhering to the following process:

1. Make sure that the firmware is in the root directory of the USB-stick and has a name
 S<xxx>v<yyy>.bin, with <xxx> being the number of the instrument type (220 for pH/Ion me-
 ter and 230 for conductivity meter) and <yyy> being the version number.
2. Connect the USB-stick to the instrument
3. Select the option “software update”
 ⇒ A message appears that the software update is in progress
4. When the software update is completed you need to restart the instrument for the changes to
 become effective.

• After the software update the instrument is switched back to factory settings. All unsaved data
 will be lost and the PIN will be set back to “000000”.
• In case the USB-stick is removed during the update process or the power adapter is plugged
 out, the instrument cannot be switched on anymore. Please contact METTLER TOLEDO service
 in that case.
2. Export Settings to a USB-stick
With this feature the user can export the settings. These can for example be sent via e-mail to a customer service representative in case difficulties occur, so that it is easier for the customer service representative to provide support.

1. Insert the USB stick into the corresponding interface of the meter
 ⇨ The \(\mathcal{U} \) icon appears on the display

2. Select the item and Export Settings to USB-Stick in the service menu to start the transfer
The settings will be in text (extension .txt) format. The instrument will create a new folder on the USB-stick in which the name is the date in the international format, i.e. first year, then month and then the day.

Example: when the data is 25 November 2011, the name of the folder will be: 20111125.

The data will be written as a text file with a name that consists of the time in 24h format (hr min sec) with the prefix S.

Example: when settings are exported at 15:12:25 (3:12:25 pm) the name of the file will be: S151225.txt

Pressing EXIT during the exporting aborts the process

3. Factory Reset
When the factory reset is performed, the instrument will revert back to the original settings when the instrument left the factory. All data will be lost and the PIN is set-back to the original PIN “000000”.

5.8 Instrument self-test
The instrument self-test requires user interaction.

1. In the Setup menu, select “6. Instrument Self-test”.
 ⇨ Selecting the menu item starts the self-test routine.

2. Press the function keys on the keypad one by one in any order.
 ⇨ The self-test result is displayed after a few seconds.
 ⇨ The meter returns to the system settings menu automatically.

- The user needs to finish pressing all seven keys within two minutes, otherwise “Self-test failed!” appears and the procedure has to be repeated.
- If error messages repeatedly appear, contact METTLER TOLEDO Service.
6 Menus and settings

6.1 Menu structure of pH/ion

1. Sensor ID/SN
 1. Buffer Group/Standard
 2. Calibration Mode
 3. Calibration Reminder
2. Calibration Settings
 1. Buffer Group/Standard
 2. Calibration Mode
 3. Calibration Reminder
3. Measurement Settings
 1. Measurement Resolution
 2. Stability Criterion
 3. Ion Measurement Unit
 4. Ion Type
 5. Rel. mV Offset
4. Endpoint Formats
5. Timed Interval Readings
6. Temperature Settings
 1. Set MTC Temperature
 2. Temperature Unit
 3. Temp. Sensor Recognition
7. Measurement Limits

6.2 Sensor ID/SN

1. Enter Sensor ID/SN
An alphanumeric sensor ID with up to 12 characters can be entered. The sensor ID will be assigned to each calibration and measurement value. This is valuable for tracing back data.

The maximum number of sensors for both sensor types (pH and Ion) is 30. When this number has been reached, first a sensor has to be deleted before a new sensor can be created (see the note at the end of this section how to delete a sensor).

If a new sensor ID is entered, the theoretical calibration slope and offset for this type of electrode will be loaded. The sensor has to be newly calibrated.

If a sensor ID is entered, which is already in the memory of the meter and has been calibrated before, the specific calibration data for this sensor ID will be loaded.

When a new ion sensor ID is entered, the ion type for this sensor can be selected. This ion type remains assigned to this sensor until the sensor has been deleted.

When connecting an ISM® sensor to the meter, the meter will:

- Automatically recognize the sensor when it’s turned on (alternatively, when pressing READ or CAL)
- Load the stored sensor ID, sensor SN and sensor type as well as the latest calibration data of this sensor
- Use this calibration for the subsequent measurements

The sensor ID for ISM® sensors can be changed. Sensor SN and sensor type, however, are blocked for modification.

2. Select Sensor ID
Already entered sensor IDs can be selected from a list.

If a sensor ID is selected, which is already in the memory of the meter and has been calibrated before, the specific calibration data for this sensor ID will be loaded.
You can delete a sensor ID with its calibrations in the calibration data menu.

6.3 Calibration settings

Buffer groups/standards

Predefined pH buffer groups

One of eight predefined buffer groups can be selected:

<table>
<thead>
<tr>
<th>Buffer Group</th>
<th>pH Values</th>
<th>Temperature</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>1.68</td>
<td>4.01</td>
<td>7.00</td>
</tr>
<tr>
<td>B2</td>
<td>2.00</td>
<td>4.01</td>
<td>9.00</td>
</tr>
<tr>
<td>B3</td>
<td>2.00</td>
<td>4.00</td>
<td>7.00</td>
</tr>
<tr>
<td>B5</td>
<td>1.09</td>
<td>4.65</td>
<td>6.79</td>
</tr>
<tr>
<td>B7</td>
<td>2.00</td>
<td>4.01</td>
<td>7.00</td>
</tr>
<tr>
<td>B8</td>
<td>1.679</td>
<td>4.008</td>
<td>6.865</td>
</tr>
</tbody>
</table>

Temperature tables for these buffers are programmed in the meter and can be found in the "Appendix".

Customized pH buffer group

A set of user-defined pH buffers with up to 5 different temperatures for each buffer can be created. The temperature difference between pH buffers must be at least 5 °C and the difference between the pH values must be at least 1.

When switching from predefined buffer group to customized buffer group, press **Save** in the table even if no values have changed.

Ion standards

Concentrations for up to 5 standards with one standard temperature can be defined. The ion concentration unit for measurements and calibration can be defined. Six concentration units are available:

- mmol/L
- mol/L
- ppm
- mg/L
- %
- pX

1. Select ion concentration unit
2. Edit table by pressing **Read**
3. Press **+** and **-** to enter the value and press **READ** to confirm.
4. Navigate with the arrows to **Save** and press **READ** to confirm

Calibration mode

Two calibration modes are offered:
- **Segmented**: the calibration curve is made up of linear segments joining the individual calibration points. If high accuracy is required, the segment method is recommended.
- **Linear**: the calibration curve is determined using linear regression. This method is recommended for samples with widely varying values.

These settings apply to both pH and Ion calibration.

Calibration reminder

When the calibration reminder is “On”, the user is reminded to perform a new calibration after a certain user-defined interval (maximum 9999 h) has elapsed.

- **Press READ** to save the interval and another screen appears to select calibration expiration date.

Four different time spans can be programmed. In all four cases, a warning message appears that the electrode should be calibrated.

- **Immediately**
 The meter is immediately blocked for measurement when the predefined interval has elapsed.
- **Reminder + 1h**
 The meter is blocked for measurement 1 hour after the predefined interval has elapsed.
- **Reminder + 2h**
 The meter is blocked for measurement 2 hours after the predefined interval has elapsed.
- **Continue Reading**
 The user can continue measuring when the predefined interval has elapsed.

6.4 Measurement settings

Measurement Resolution

The resolution for pH and mV needs to be set for the display. Up to 3 decimal places can be chosen depending on the unit of measurement (see table below).

<table>
<thead>
<tr>
<th>On display</th>
<th>Description</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>X.XXX</td>
<td>three decimal places</td>
<td>pH</td>
</tr>
<tr>
<td>X.XX</td>
<td>two decimal places</td>
<td>pH</td>
</tr>
<tr>
<td>X.X</td>
<td>one decimal place</td>
<td>pH, mV</td>
</tr>
<tr>
<td>X</td>
<td>no decimal places</td>
<td>mV</td>
</tr>
</tbody>
</table>

In the ion mode, the measurement resolution depends on the concentration and the unit of the measured ion.

Stability Criterion

The **Stability** icon appears according to the following stability criteria:

- **Strict**
 The measured signal should not change by more than 0.03 mV in 8 seconds or by more than 0.1 mV in 30 seconds.
- **Medium**

6.4 Measurement settings

Menus and settings
The measured signal should not change by more than 0.1 mV in 6 seconds.

Fast

The measured signal should not change by more than 0.6 mV in 4 seconds.

- **Stability criterion for ion measurement**

Strict

The measured signal should not change by more than 0.03 mV in 12 seconds or by more than 0.08 mV in 26 seconds.

Medium

The measured signal should not change by more than 0.08 mV in 8 seconds.

Fast

The measured signal should not change by more than 0.3 mV in 4 seconds.

Ion Measurement Units

The ion concentration unit for measurements and calibration can be selected between the following six units: mmol/L, mol/L, ppm, mg/L, %, pX.

In some cases, changing measurement units requires the user to first recalibrate before starting a measurement, otherwise an error message will appear. The units of measurement are divided in two groups: 1. mmol/L, mol/L and pX, and 2. ppm, mg/L, %. Changing within a group does not require calibration, but changing between the two groups does.

Ion Type

When using an ion sensor to which previously a sensor ID has been assigned, the ion type that has been assigned to this sensor ID is automatically used.

However, in case one would like to measure without a sensor ID, it is important to assign the correct ion type. This is because the theoretical slope depends on the charge of the ion (see below)

Eight specific and four general ion types are available: F⁻ (fluoride), Cl⁻ (chloride), CN⁻ (cyanide), NO₃⁻ (nitrate), Na⁺ (sodium), K⁺ (potassium), Ca²⁺ (Calcium), Cu²⁺ (cuprous), I⁻, I⁺, I⁻² and I⁺²⁺.

Depending on the type of electrode the theoretical slope differs due to the charge of the ion. The fluoride electrode has e.g. a theoretical slope of +59.16 mV/pX whereas the theoretical slope of a calcium electrode is -29.58 mV/pX. This theoretical value is loaded for a new entered sensor ID until the sensor is calibrated.

Rel. mV Offset

In the rel. mV mode the offset value is subtracted from the measured value. Either an offset value can be entered or it can be determine by measuring the mV of a reference sample.

Offset value

- Enter an offset value in mV between -1999.9 and +1999.9 mV.
Test a reference sample
1. Place electrode into the reference sample.
2. Press **Start** to begin the reference measurement and wait until the measurement display freezes.
 — or —
3. Press **READ** to manually end the measurement.
4. Press **Save** to enter the measured mV value as offset into the meter.

6.5 Endpoint formats

Auto
With the automatic endpoint the selected stability criterion determines the end of an individual reading depending on the behavior of the sensor used. This ensures an easy, quick and precise measurement.

1. Place sensor in the sample.
2. Press **READ**.
 - **A** appears on the display.
 - The measurement ends automatically when the measured value is stable. **ś** appears.
 - If **READ** is pressed before the signal is stable, the endpoint format changes to manual **śM**.

Manual
Unlike **Auto**, user interaction is required to stop the measurement reading in manual mode.

1. Place sensor in the sample.
2. Press **READ**.
 - **M** appears on the display.
 - **ś** appears on the display to signalize measurement stability.
 - Press **READ** to end the measurement. **śM** appears.

Timed
The measurement stops after the set time, which can be set between 5 s and 3600 s.

1. Place sensor in the sample.
2. Press **READ**.
 - **T** appears on the display.
 - **ś** appears on the display to signalize measurement stability.
 - The measurement ends automatically when the set time period expires. **śT** appears.
 - If **READ** is pressed before the signal is stable, the endpoint format changes to manual **śM**.

Information on the display
The following symbols appear in the display, depending on the endpoint setting.
6.6 Timed Interval Readings

A reading is taken every time after a certain interval (1 – 2400 s) defined in the menu has elapsed. When working in the timed-interval reading mode, the interval can be defined by entering the seconds. The measurement series stops according to the selected endpoint format or manually by pressing **READ**. When timed-interval reading is “on”, the **DL** icon appears.

The readings can be stored in the memory, transferred to the interface or both.

6.7 Temperature settings

- **Set MTC temperature**

 If the meter does not detect a temperature probe, **MTC** appears on the display. In this case the sample temperature should be entered manually. An **MTC** value between -30 °C and 130 °C can be entered.

- **Temperature unit**

 Select the temperature unit: °C or °F. The temperature value is automatically converted between the two units.

- The instrument works with NTC30 kΩ and Pt1000 temperature sensors. You can select between automatic recognition or manual selection of the temperature sensor type. For temperatures below 100°C the instrument can reliably distinguish between NTC30 kΩ and Pt1000. At higher temperatures, however, it is necessary to set the type of temperature sensor manually to avoid mistakes.

6.8 Measurement limits

The upper and lower limits for measurement data can be defined. If a limit is either not reached or exceeded (in other words, less than or greater than a specific value), a warning is displayed on the screen and may be accompanied by an acoustic signal. The message “outside limits” also appears on the GLP printout.

<table>
<thead>
<tr>
<th>Preselected format</th>
<th>Start of measurement</th>
<th>Signal stability</th>
<th>Endpointed measurement ¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto endpoint</td>
<td>A</td>
<td>/A</td>
<td>/A</td>
</tr>
<tr>
<td></td>
<td>A Read</td>
<td>↔</td>
<td>/M</td>
</tr>
<tr>
<td>Manual endpoint</td>
<td>M</td>
<td>/Read</td>
<td>/M</td>
</tr>
<tr>
<td></td>
<td>M Read</td>
<td>↔</td>
<td>/M</td>
</tr>
<tr>
<td>Timed endpoint</td>
<td>T</td>
<td>/Read</td>
<td>/T</td>
</tr>
</tbody>
</table>

¹The actual endpoint format (last column) and not the preselected is stored with the data.
7 Data management

7.1 Menu structure of data menu

1. Measurement data
 1.1 Review
 1.2 Transfer
 1.3 Delete
 1.4 Export to USB-stick

2. Calibration data
 2.1 pH
 2.1.1 Review
 2.1.2 Transfer
 2.1.3 Delete
 2.1.4 Export to USB-stick
 2.2 Ion
 2.2.1 Review
 2.2.2 Transfer
 2.2.3 Delete
 2.2.4 Export to USB-stick

3. ISM Daten
 3.1 Initial Calibration Data
 3.2 Calibration History
 3.3 Maximum Temperature
 3.4 Reset ISM

7.2 Measurement data

Review

All
All stored measurement data can be reviewed; the most recent data saved appears on the display.

- Press Transfer to send the measurement data (current single set) to the printer or PC.

Partial
The measurement data can be filtered according to 3 criteria.

- Memory number (from MXXXX to MXXXX)
- Sample ID
- Measurement mode

Memory number
1 Enter the memory numbers of the data and press Select.
 ⇒ The measurement data is displayed.
2 Scroll through the measurement data to review all measurements between the two memory numbers.
3 Press **Transfer** to send the measurement data (current single set) to the printer or PC.

Sample ID

1 Enter the sample ID and press **OK**.

 ➔ The meter finds all stored measurements with this sample ID.

2 Scroll through the measurement data to review all measurements with the entered sample ID.

3 Press **Transfer** to send the measurement data (current single set) to the printer or PC.

Measurement mode

1 Select a measurement mode from list. The meter finds all stored measurements of the selected measurement mode.

2 Scroll through the measurement data of the selected measurement mode.

3 Press **Transfer** to send the measurement data (current single set) to the printer or PC.

Transfer

All or partially stored measurement data can be transferred by filtering the measurement data. The filter works as described above in “Review”.

- Press **Select** to send the filtered measurement data to the printer or PC.

Delete

All or partially stored measurement data can be deleted by filtering the measurement data. The filter works as described above in “Review”.

Deletion is protected by a PIN. Upon delivery, the PIN is set to 000000. Change the PIN code to prevent unauthorized access.

Export to USB-stick

All or partially stored measurement data can be transferred to a USB-stick. The filter works as described above in “Review”. More information about the file format is given in “Operating the meter: Data transfer”.

- Press **Transfer** to export the filtered measurement data to the USB-stick.

7.3 Calibration data

Calibration data can be reviewed, transferred and deleted. The latest calibration per sensor ID is stored in the memory. When using ISM-Sensors, the latest 5 calibration data can be viewed/printed (See “Data management: ISM data”).

Review

1 Press **Select**.

 ➔ A list of calibrated sensor IDs appears.

2 Select a sensor ID from the list.

 ➔ The calibration data is shown for this sensor ID — or —

3 Press and hold **CAL** for 3 seconds in the measurement screen.

4 Press **Transfer** to send the displayed calibration data to a printer or PC.
Transfer
1 Press Select.
 ⇒ A list of calibrated sensor IDs appears.
2 Select a sensor ID from the list.
 ⇒ The calibration data of the selected sensor ID is transferred to a printer or PC.

Delete
1 Press Select.
 ⇒ A list of sensor IDs appears.
2 Select a sensor ID from the list.
3 Press Yes when the message “Selected data will be deleted. Please confirm” appears.
 — or —
4 Press Exit to cancel.
 ⇒ After deletion, the sensor ID disappears from the list in the sensor ID menu.

- An active sensor ID cannot be deleted.
- This menu is protected by a deletion PIN code. Upon delivery, the PIN code is set to 000000.
 Change the PIN code to prevent unauthorized access.

Export to USB-stick
Stored calibration data per sensor ID can be transferred to a USB-stick.
1 Press Select.
2 Select a sensor ID from the list.
3 Press Transfer to export the calibration data of the selected sensor ID to the USB-stick.

7.4 ISM data
SevenCompact meter incorporates Intelligent Sensor Management (ISM®) technology. This inge-
nious functionality provides extra security, safety and eliminates mistakes. The most important fea-
tures are:

Extra security!
• After connecting the ISM® sensor, the sensor is automatically recognized and the sensor ID and serial number are transferred from the sensor chip to the meter. The data is also printed on the GLP printout.
• After calibration of the ISM® sensor, the calibration data is automatically stored from the meter to the sensor chip. The most recent data is always stored where it should be – on the sensor chip!

Extra safety!
After connecting the ISM® sensor, the five most recent calibrations are transferred to the meter. These can be reviewed to see the development of the sensor over time. This information provides an indication if the sensor should be cleaned or renewed.

Eliminate mistakes!
After connecting an ISM® sensor, the last set of calibration data is automatically used for measure-
ments.
Additional features are described below.
Initial calibration data
When an ISM® sensor is connected, the initial calibration data in the sensor can be reviewed or transferred. The following data is included:

- Response time
- Temperature tolerance
- Membrane resistance
- Slope (at pH 7) and offset
- Type (and name) of electrode (for example, InLab Expert Pro ISM®)
- Serial number (SN) and ordering (ME) number
- Production date

Calibration history
The last 5 calibrations data stored in ISM® sensor including current calibration can be reviewed or transferred.

Maximum temperature
The maximum temperature that the ISM® sensor has been exposed to during measurement is monitored automatically and can be reviewed for the evaluation of the electrode lifetime.

Reset ISM®
The calibration history in this menu can be deleted. This menu is protected by a deletion PIN. Upon delivery, the PIN for deletion is set to 000000. Change the PIN to prevent unauthorized access.
8 Maintenance

8.1 Meter maintenance

Never unscrew the two halves of the housing!

The meters do not require any maintenance other than an occasional wipe with a damp cloth. The housing is made of acrylonitrile butadiene styrene/polycarbonate (ABS/PC). This material is sensitive to some organic solvents, such as toluene, xylene and methyl ethyl ketone (MEK).

Any spillage should be wiped off immediately.

8.2 Electrode maintenance

Make sure the pH electrode is always kept filled with the appropriate filling solution.

For maximum accuracy, any filling solution that may have “crept” and encrusted the outside of the electrode should be removed with deionized water.

Always store the electrode according to the manufacturer’s instructions and do not allow it to dry out.

If the electrode slope falls rapidly, or if the response becomes sluggish, the following procedures may help. Try one of the following, depending on your sample.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fat or oil build-up</td>
<td>Degrease the membrane with cotton wool soaked in either acetone or a soap solution.</td>
</tr>
<tr>
<td>pH sensor membrane has dried out</td>
<td>Soak the tip of the electrode overnight in 0.1M HCl</td>
</tr>
<tr>
<td>Protein build-up in the diaphragm of a pH sensor</td>
<td>Remove deposits by soaking the electrode in an HCl/pepsin solution.</td>
</tr>
<tr>
<td>Silver sulfide contamination of pH sensor</td>
<td>Remove deposits by soaking electrode in a thiourea solution.</td>
</tr>
</tbody>
</table>

Run a new calibration after treatment.

Note
Cleaning and filling solutions should be handled with the same care as that given to toxic or corrosive substances.

8.3 Disposal

In compliance with European Directive 2002/96/EC on Waste Electrical and Electronic Equipment (WEEE), this instrument must not be disposed of together with domestic waste. This also applies to countries outside the EU, per their specific requirements.

Please dispose of this product in accordance with local regulations at the collecting point specified for electrical and electronic equipment.

If you have any questions, please contact the responsible authority or the distributor from which you purchased this instrument.

Should this instrument be passed on to other parties (for private or professional use), the content of this regulation must also be related.

Thank you for your contribution to environmental protection.
8.4 Error messages

<table>
<thead>
<tr>
<th>Message</th>
<th>Description and Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH/mV/ion/temperature exceeds max. limit</td>
<td>Measurement limits are activated in the menu settings and measured value is outside these limits.</td>
</tr>
<tr>
<td>pH/mV/ion/temperature below min. limit</td>
<td>• Check the sample. averyr • Check sample temperature.</td>
</tr>
<tr>
<td></td>
<td>• Make sure that the pH electrode wetting cap has been removed and that the electrode is properly connected and placed in the sample solution.</td>
</tr>
<tr>
<td>Memory is full</td>
<td>Max. 1000 measurement data can be stored in the memory.</td>
</tr>
<tr>
<td></td>
<td>• Delete all or partial data in the memory, otherwise you will not be able to store new measurement data.</td>
</tr>
<tr>
<td>Please calibrate electrode</td>
<td>Calibration reminder has been switched on in the menu settings and last calibration has expired.</td>
</tr>
<tr>
<td></td>
<td>• Calibrate the electrode.</td>
</tr>
<tr>
<td>Active sensor cannot be deleted</td>
<td>Deleting the calibration data of the selected sensor ID is not possible, because it is currently the active sensor ID in the meter shown on the display.</td>
</tr>
<tr>
<td></td>
<td>• Enter new sensor ID in the menu settings.</td>
</tr>
<tr>
<td></td>
<td>• Select another sensor ID from the list in the menu settings.</td>
</tr>
<tr>
<td>Wrong buffer</td>
<td>Meter cannot recognize the buffer or standard/buffer has been used twice for calibration/two buffers differ less than 60 mV.</td>
</tr>
<tr>
<td></td>
<td>• Make sure that you have the correct buffer and that it is fresh.</td>
</tr>
<tr>
<td></td>
<td>• Make sure that the buffer has not been used more than once during the calibration.</td>
</tr>
<tr>
<td>Slope out of range</td>
<td>The calibration result is outside the following limits: Slope < 85% or > 110%, Offset < -60 mV or > + 60 mV.</td>
</tr>
<tr>
<td></td>
<td>• Make sure that you have the correct buffer and that it is fresh.</td>
</tr>
<tr>
<td></td>
<td>• Check mV signal of electrode, clean or replace the electrode.</td>
</tr>
<tr>
<td>Standard temp. out of range</td>
<td>The ATC measured temperature is out of pH calibration buffer range: 5 … 50 °C.</td>
</tr>
<tr>
<td>Buffer temp. out of range</td>
<td>• Keep the buffer/standard temperature within the range.</td>
</tr>
<tr>
<td></td>
<td>• Change the temperature setting.</td>
</tr>
<tr>
<td>Message</td>
<td>Description and Resolution</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Temperature differs from setting</td>
<td>ATC measured temperature differs by more than 0.5°C from the user-defined value/temperature range.</td>
</tr>
<tr>
<td></td>
<td>• Keep the buffer/standard temperature within the range.</td>
</tr>
<tr>
<td></td>
<td>• Change the temperature setting.</td>
</tr>
<tr>
<td>ISM® sensor communication error</td>
<td>Data has not been transferred correctly between ISM® sensor and meter. Reconnect the ISM® sensor and try again.</td>
</tr>
<tr>
<td>Self-test failure</td>
<td>Self-test has not been completed within 2 minutes or meter is defective.</td>
</tr>
<tr>
<td></td>
<td>• Restart self-test and finish within 2 minutes.</td>
</tr>
<tr>
<td></td>
<td>• Contact METTLER TOLEDO service if problem persists.</td>
</tr>
<tr>
<td>Wrong settings</td>
<td>Entered value differs by less than 1 pH unit/5°C from other preset values.</td>
</tr>
<tr>
<td></td>
<td>• Enter a higher/lower value in order to get a bigger difference.</td>
</tr>
<tr>
<td>Out of range</td>
<td>Either entered value is out of range.</td>
</tr>
<tr>
<td></td>
<td>• Enter a value which is within the range shown on display.</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>Measured value out of range.</td>
</tr>
<tr>
<td></td>
<td>• Make sure the electrode wetting cap has been removed and that the electrode is properly connected and placed in the sample solution.</td>
</tr>
<tr>
<td></td>
<td>• If no electrode is connected, put the shorting clip in the socket.</td>
</tr>
<tr>
<td>Wrong password</td>
<td>The entered PIN is not correct.</td>
</tr>
<tr>
<td></td>
<td>• Re-enter the PIN.</td>
</tr>
<tr>
<td></td>
<td>• Reset to factory settings, all data and settings will be lost.</td>
</tr>
<tr>
<td>Passwords do not match</td>
<td>The confirmation PIN does not match with the entered PIN.</td>
</tr>
<tr>
<td></td>
<td>• Reenter PIN.</td>
</tr>
<tr>
<td>Program memory error</td>
<td>Meter recognizes internal error during start-up.</td>
</tr>
<tr>
<td></td>
<td>• Switch the meter off and back on.</td>
</tr>
<tr>
<td></td>
<td>• Contact METTLER TOLEDO service if the problem persists.</td>
</tr>
<tr>
<td>Message</td>
<td>Description and Resolution</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Data memory error</td>
<td>The data could not be stored into memory.</td>
</tr>
<tr>
<td></td>
<td>• Switch the meter off and back on.</td>
</tr>
<tr>
<td></td>
<td>• Contact METTLER TOLEDO service if the problem persists.</td>
</tr>
<tr>
<td>No matching data found in memory</td>
<td>The entered filter criterion does not exist.</td>
</tr>
<tr>
<td></td>
<td>• Enter a new filter criterion.</td>
</tr>
<tr>
<td>Sensor ID already exists, previous SN will be overwritten</td>
<td>Two sensors with the same ID but different SN are not allowed in the meter. If a different SN has been entered for this sensor ID previously, the old SN will be overwritten.</td>
</tr>
<tr>
<td></td>
<td>• Enter a different Sensor ID in order to keep the previous ID and SN.</td>
</tr>
<tr>
<td>Update failed</td>
<td>The software update process failed. This could be due to the following reasons:</td>
</tr>
<tr>
<td></td>
<td>• The USB stick is not connected or it is disconnected during the update process</td>
</tr>
<tr>
<td></td>
<td>• The update software is not in the correct folder</td>
</tr>
<tr>
<td>Export failed</td>
<td>The exporting process failed. This could be due to the following reasons:</td>
</tr>
<tr>
<td></td>
<td>• The USB stick is not connected or it is disconnected during the exporting process</td>
</tr>
<tr>
<td></td>
<td>• The USB stick is full</td>
</tr>
</tbody>
</table>

8.5 Error limits

<table>
<thead>
<tr>
<th>Message</th>
<th>Range not accepted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out of range, determine again</td>
<td>pH</td>
</tr>
<tr>
<td></td>
<td>(-2.000) or (> 20.000)</td>
</tr>
<tr>
<td>Buffer/standard temp. out of range</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>(-2000.0) or (> 2000.0)</td>
</tr>
<tr>
<td>Offset out of range</td>
<td>(I_{Eref1}-E_b) (> 60) mV</td>
</tr>
<tr>
<td>Slope out of range</td>
<td>Slope (< 85%) or (> 110%)</td>
</tr>
<tr>
<td>Wrong buffer</td>
<td>(I_{\Delta E_{ref1}}) (< 10) mV</td>
</tr>
<tr>
<td>Invalid pH for user-defined buffer</td>
<td>(I_{\Delta pH}) (< 1) pH</td>
</tr>
<tr>
<td>ATC measured temperature is different to the user-defined value</td>
<td>(</td>
</tr>
</tbody>
</table>
9 Sensors, solutions and accessories

<table>
<thead>
<tr>
<th>Parts</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISM® sensors with multi-pin head</td>
<td></td>
</tr>
<tr>
<td>InLab®Micro Pro ISM, 3-in-1 pH sensor, glass shaft, 5 mm shaft diameter, ATC, refillable</td>
<td>51344163</td>
</tr>
<tr>
<td>InLab®Power Pro ISM, 3-in-1 pH sensor, glass shaft, ATC, pressurized SteadyForce™ reference system</td>
<td>51344112</td>
</tr>
<tr>
<td>InLab®Pure Pro ISM, 3-in-1 pH sensor, glass shaft, immovable glass sleeve, ATC, refillable</td>
<td>51344172</td>
</tr>
<tr>
<td>InLab®Routine Pro ISM, 3-in-1 pH sensor, glass shaft, ATC, refillable</td>
<td>51344055</td>
</tr>
<tr>
<td>InLab®Science Pro ISM, 3-in-1 pH sensor, glass shaft, movable glass sleeve, ATC, refillable</td>
<td>51344072</td>
</tr>
<tr>
<td>InLab®Solids Pro ISM, 3-in-1 pH sensor, glass shaft, open junction, sharp membrane, ATC</td>
<td>51344155</td>
</tr>
<tr>
<td>ISM®cable-2 m</td>
<td>51344291</td>
</tr>
<tr>
<td>ISM®cable-5 m</td>
<td>51344292</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parts</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solutions</td>
<td></td>
</tr>
<tr>
<td>pH 2.00 buffer solution, 250 mL</td>
<td>51350002</td>
</tr>
<tr>
<td>pH 2.00 buffer solution, 6 x 250mL</td>
<td>51350016</td>
</tr>
<tr>
<td>pH 4.01 buffer sachets, 30 x 20mL</td>
<td>51302069</td>
</tr>
<tr>
<td>pH 4.01 buffer solution, 250 mL</td>
<td>51350004</td>
</tr>
<tr>
<td>pH 4.01 buffer solution, 6 x 250mL</td>
<td>51350018</td>
</tr>
<tr>
<td>pH 7.00 buffer sachets, 30 x 20mL</td>
<td>51302047</td>
</tr>
<tr>
<td>pH 7.00 buffer solution, 250mL</td>
<td>51350006</td>
</tr>
<tr>
<td>pH 7.00 buffer solution, 6 x 250mL</td>
<td>51350020</td>
</tr>
<tr>
<td>pH 9.21 buffer sachets, 30 x 20mL</td>
<td>51302070</td>
</tr>
<tr>
<td>pH 9.21 buffer solution, 250mL</td>
<td>51350008</td>
</tr>
<tr>
<td>pH 9.21 buffer solution, 6 x 250mL</td>
<td>51350022</td>
</tr>
<tr>
<td>pH 10.01 buffer sachets, 30 x 20mL</td>
<td>51302079</td>
</tr>
<tr>
<td>pH 10.01 buffer solution, 250mL</td>
<td>51350010</td>
</tr>
<tr>
<td>pH 10.01 buffer solution, 6 x 250mL</td>
<td>51350024</td>
</tr>
<tr>
<td>pH 11.00 buffer solution, 250 mL</td>
<td>51350012</td>
</tr>
<tr>
<td>pH 11.00 buffer solution, 6 x 250 mL</td>
<td>51350026</td>
</tr>
<tr>
<td>Rainbow I (3 x 10 sachets 20 mL 4.01/7.00/9.21)</td>
<td>51302068</td>
</tr>
<tr>
<td>Rainbow II (3 x 10 sachets 20 mL 4.01/7.00/10.01)</td>
<td>51302080</td>
</tr>
<tr>
<td>HCl/Pepsin solution (removes protein contamination)</td>
<td>51350100</td>
</tr>
<tr>
<td>Reactivation solution for pH electrodes</td>
<td>51350104</td>
</tr>
<tr>
<td>Thiourea solution (removes silver sulfide contamination)</td>
<td>51350102</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parts</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication</td>
<td></td>
</tr>
<tr>
<td>RS-P25 printer</td>
<td>11124300</td>
</tr>
<tr>
<td>RS-P26 printer</td>
<td>11124303</td>
</tr>
<tr>
<td>RS-P28 printer</td>
<td>11124304</td>
</tr>
<tr>
<td>Barcode reader</td>
<td>21901297</td>
</tr>
<tr>
<td>USB Cable for Barcode reader</td>
<td>21901309</td>
</tr>
<tr>
<td>Parts</td>
<td>Order No.</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>LabX® direct pH PC software</td>
<td>51302876</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Guides</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guide to ion selective measurement</td>
<td>51300075</td>
</tr>
<tr>
<td>Guide to pH measurement</td>
<td>51300047</td>
</tr>
</tbody>
</table>
10 Specifications

S220 pH meter

<table>
<thead>
<tr>
<th>Measurement range</th>
<th>pH</th>
<th>-2.000...20.000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mV</td>
<td>-2000.0...2000.0 mV</td>
</tr>
<tr>
<td>pH ATC</td>
<td></td>
<td>-5...130°C</td>
</tr>
<tr>
<td>pH MTC</td>
<td></td>
<td>-30...130°C</td>
</tr>
</tbody>
</table>

Ion	pH	0.000...1000.0%
	mV	0.000...10000 ppm
	pH-ATC	1.00E-9...9.99E+9 mg/L
	pH-MTC	1.00E-9...9.99E+9 mmol/L
		1.00E-9...9.99E+9 mol/L

Resolution	pH	0.1/0.01/0.001
	mV	1/0.1
	pH Temperature	0.1°C
	Ion	3 or 4 digits

Limits of error pH	± 0.002 pH
Limit of error ion	± 0.2 mV
Limit of error pH	± 0.1°C

Limits of error ion	± 0.5% (this limit only applies for meter)
Limit of error pH	± 0.2 mV
Limit of error pH	± 0.1°C

pH calibration	Up to 5 points
Limit of error ion	± 0.5% (this limit only applies for meter)
Limit of error pH	± 0.2 mV
Limit of error pH	± 0.1°C

pH Calibration buffer	7 predefined groups
Limit of error ion	1 user-defined group of 5 buffers
Limit of error pH	± 0.5% (this limit only applies for meter)
Limit of error pH	± 0.2 mV
Limit of error pH	± 0.1°C

Outputs	RS232, USB A, USB B
Power requirements	DC9-12V-10W
Size/weight	204 x 174 x 74 mm
	890 g

Display	TFT
pH input	BNC, impedance > 3 * 10e+12 Ω
Temperature input	RCA (Cinch), NTC 30kΩ, Pt1000
Digital sensor input	Mini-LTW

Ambient conditions	Temperature	5...40°C
	Relative humidity	5%...80% (non-condensing)
	Installation category	II
	Pollution degree	2
	Altitude	Up to 2000 m above sea level

Materials	Housing	ABS/PC reinforced
	Window	Polymethyl methacrylate (PMMA)
	Keypad	Membrane keypad: Polyethylene terephthalate (PET)
11 Appendix

11.1 Buffer tables
The meters automatically correct for the temperature dependence of the pH buffer using the values given in the tables below.

11.1.1 Buffer group 1 (ref. 25 °C) METTLER TOLEDO US

<table>
<thead>
<tr>
<th>Temperature</th>
<th>pH</th>
<th>Temperature Compensation</th>
<th>pH 298K</th>
<th>Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7.09</td>
<td>4.00</td>
<td>10.25</td>
<td>1.67</td>
</tr>
<tr>
<td>10</td>
<td>7.06</td>
<td>4.00</td>
<td>10.18</td>
<td>1.67</td>
</tr>
<tr>
<td>15</td>
<td>7.04</td>
<td>4.00</td>
<td>10.12</td>
<td>1.67</td>
</tr>
<tr>
<td>20</td>
<td>7.02</td>
<td>4.00</td>
<td>10.06</td>
<td>1.68</td>
</tr>
<tr>
<td>25</td>
<td>7.00</td>
<td>4.00</td>
<td>10.01</td>
<td>1.68</td>
</tr>
<tr>
<td>30</td>
<td>6.99</td>
<td>4.01</td>
<td>9.97</td>
<td>1.68</td>
</tr>
<tr>
<td>35</td>
<td>6.98</td>
<td>4.02</td>
<td>9.93</td>
<td>1.69</td>
</tr>
<tr>
<td>40</td>
<td>6.97</td>
<td>4.03</td>
<td>9.89</td>
<td>1.69</td>
</tr>
<tr>
<td>45</td>
<td>6.97</td>
<td>4.04</td>
<td>9.86</td>
<td>1.70</td>
</tr>
<tr>
<td>50</td>
<td>6.97</td>
<td>4.06</td>
<td>9.83</td>
<td>1.71</td>
</tr>
</tbody>
</table>

11.1.2 Buffer group 2 (ref. 25 °C) METTLER TOLEDO Europe (default buffer)

<table>
<thead>
<tr>
<th>Temperature</th>
<th>pH</th>
<th>Temperature Compensation</th>
<th>pH 298K</th>
<th>Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7.09</td>
<td>4.01</td>
<td>9.45</td>
<td>2.02</td>
</tr>
<tr>
<td>10</td>
<td>7.06</td>
<td>4.00</td>
<td>9.38</td>
<td>2.01</td>
</tr>
<tr>
<td>15</td>
<td>7.04</td>
<td>4.00</td>
<td>9.32</td>
<td>2.00</td>
</tr>
<tr>
<td>20</td>
<td>7.02</td>
<td>4.00</td>
<td>9.26</td>
<td>2.00</td>
</tr>
<tr>
<td>25</td>
<td>7.00</td>
<td>4.01</td>
<td>9.21</td>
<td>2.00</td>
</tr>
<tr>
<td>30</td>
<td>6.99</td>
<td>4.01</td>
<td>9.16</td>
<td>1.99</td>
</tr>
<tr>
<td>35</td>
<td>6.98</td>
<td>4.02</td>
<td>9.11</td>
<td>1.99</td>
</tr>
<tr>
<td>40</td>
<td>6.97</td>
<td>4.03</td>
<td>9.06</td>
<td>1.98</td>
</tr>
<tr>
<td>45</td>
<td>6.97</td>
<td>4.04</td>
<td>9.03</td>
<td>1.98</td>
</tr>
<tr>
<td>50</td>
<td>6.97</td>
<td>4.06</td>
<td>8.99</td>
<td>1.98</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.10</td>
</tr>
</tbody>
</table>
11.1.3 Buffer group 3 (ref. 20 °C) Merck standard buffers

<table>
<thead>
<tr>
<th></th>
<th>pH</th>
<th>ionic strength</th>
<th>capacity</th>
<th>capacity</th>
<th>ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7.07</td>
<td>4.04</td>
<td>9.16</td>
<td>2.01</td>
<td>12.41</td>
</tr>
<tr>
<td>10</td>
<td>7.05</td>
<td>4.02</td>
<td>9.11</td>
<td>2.01</td>
<td>12.26</td>
</tr>
<tr>
<td>15</td>
<td>7.02</td>
<td>4.01</td>
<td>9.05</td>
<td>2.00</td>
<td>12.10</td>
</tr>
<tr>
<td>20</td>
<td>7.00</td>
<td>4.00</td>
<td>9.00</td>
<td>2.00</td>
<td>12.00</td>
</tr>
<tr>
<td>25</td>
<td>6.98</td>
<td>4.01</td>
<td>8.95</td>
<td>2.00</td>
<td>11.88</td>
</tr>
<tr>
<td>30</td>
<td>6.98</td>
<td>4.01</td>
<td>8.91</td>
<td>2.00</td>
<td>11.72</td>
</tr>
<tr>
<td>35</td>
<td>6.96</td>
<td>4.01</td>
<td>8.88</td>
<td>2.00</td>
<td>11.67</td>
</tr>
<tr>
<td>40</td>
<td>6.95</td>
<td>4.01</td>
<td>8.85</td>
<td>2.00</td>
<td>11.54</td>
</tr>
<tr>
<td>45</td>
<td>6.95</td>
<td>4.01</td>
<td>8.82</td>
<td>2.00</td>
<td>11.44</td>
</tr>
<tr>
<td>50</td>
<td>6.95</td>
<td>4.00</td>
<td>8.79</td>
<td>2.00</td>
<td>11.33</td>
</tr>
</tbody>
</table>

11.1.4 Buffer group 4 (ref. 25 °C) DIN (19266)

<table>
<thead>
<tr>
<th></th>
<th>pH</th>
<th>ionic strength</th>
<th>capacity</th>
<th>capacity</th>
<th>ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6.95</td>
<td>4.00</td>
<td>9.40</td>
<td>1.67</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>6.92</td>
<td>4.00</td>
<td>9.33</td>
<td>1.67</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>6.90</td>
<td>4.00</td>
<td>9.28</td>
<td>1.67</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>6.88</td>
<td>4.00</td>
<td>9.22</td>
<td>1.68</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>6.86</td>
<td>4.01</td>
<td>9.18</td>
<td>1.68</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>6.85</td>
<td>4.02</td>
<td>9.14</td>
<td>1.68</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>6.84</td>
<td>4.02</td>
<td>9.10</td>
<td>1.69</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>6.84</td>
<td>4.04</td>
<td>9.07</td>
<td>1.69</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>6.83</td>
<td>4.05</td>
<td>9.04</td>
<td>1.70</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>6.83</td>
<td>4.06</td>
<td>9.01</td>
<td>1.71</td>
<td></td>
</tr>
</tbody>
</table>

11.1.5 Buffer group 5 (ref. 25 °C) DIN (19267)

<table>
<thead>
<tr>
<th></th>
<th>pH</th>
<th>ionic strength</th>
<th>capacity</th>
<th>capacity</th>
<th>ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1.08</td>
<td>4.67</td>
<td>6.87</td>
<td>9.43</td>
<td>13.63</td>
</tr>
<tr>
<td>10</td>
<td>1.09</td>
<td>4.67</td>
<td>6.84</td>
<td>9.37</td>
<td>13.37</td>
</tr>
<tr>
<td>15</td>
<td>1.09</td>
<td>4.66</td>
<td>6.82</td>
<td>9.32</td>
<td>13.16</td>
</tr>
<tr>
<td>20</td>
<td>1.09</td>
<td>4.66</td>
<td>6.80</td>
<td>9.27</td>
<td>12.96</td>
</tr>
<tr>
<td>25</td>
<td>1.09</td>
<td>4.65</td>
<td>6.79</td>
<td>9.23</td>
<td>12.75</td>
</tr>
<tr>
<td>30</td>
<td>1.10</td>
<td>4.65</td>
<td>6.78</td>
<td>9.18</td>
<td>12.61</td>
</tr>
<tr>
<td>35</td>
<td>1.10</td>
<td>4.65</td>
<td>6.77</td>
<td>9.13</td>
<td>12.45</td>
</tr>
<tr>
<td>40</td>
<td>1.10</td>
<td>4.66</td>
<td>6.76</td>
<td>9.09</td>
<td>12.29</td>
</tr>
<tr>
<td>45</td>
<td>1.10</td>
<td>4.67</td>
<td>6.76</td>
<td>9.04</td>
<td>12.09</td>
</tr>
<tr>
<td>50</td>
<td>1.11</td>
<td>4.68</td>
<td>6.76</td>
<td>9.00</td>
<td>11.98</td>
</tr>
</tbody>
</table>
11.1.6 Buffer group 6 (ref. 25 °C) JJG (Chinese)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1.680</td>
<td>4.003</td>
<td>6.864</td>
<td>9.182</td>
<td>12.460</td>
</tr>
<tr>
<td>30</td>
<td>1.688</td>
<td>4.019</td>
<td>6.844</td>
<td>9.105</td>
<td>12.130</td>
</tr>
<tr>
<td>35</td>
<td>1.694</td>
<td>4.029</td>
<td>6.838</td>
<td>9.072</td>
<td>11.975</td>
</tr>
<tr>
<td>40</td>
<td>1.700</td>
<td>4.042</td>
<td>6.834</td>
<td>9.042</td>
<td>11.828</td>
</tr>
<tr>
<td>45</td>
<td>1.706</td>
<td>4.055</td>
<td>6.833</td>
<td>9.015</td>
<td>11.697</td>
</tr>
</tbody>
</table>

11.1.7 Buffer group 7 (ref. 25 °C) Technical Buffer

<table>
<thead>
<tr>
<th></th>
<th>2.02</th>
<th>4.01</th>
<th>7.09</th>
<th>10.65</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2.01</td>
<td>4.00</td>
<td>7.06</td>
<td>10.39</td>
</tr>
<tr>
<td>10</td>
<td>2.00</td>
<td>4.00</td>
<td>7.04</td>
<td>10.26</td>
</tr>
<tr>
<td>15</td>
<td>2.00</td>
<td>4.00</td>
<td>7.02</td>
<td>10.13</td>
</tr>
<tr>
<td>20</td>
<td>2.00</td>
<td>4.00</td>
<td>7.00</td>
<td>10.00</td>
</tr>
<tr>
<td>25</td>
<td>1.99</td>
<td>4.02</td>
<td>6.99</td>
<td>9.87</td>
</tr>
<tr>
<td>30</td>
<td>1.99</td>
<td>4.02</td>
<td>6.98</td>
<td>9.74</td>
</tr>
<tr>
<td>35</td>
<td>1.98</td>
<td>4.03</td>
<td>6.97</td>
<td>9.61</td>
</tr>
<tr>
<td>40</td>
<td>1.98</td>
<td>4.04</td>
<td>6.97</td>
<td>9.48</td>
</tr>
<tr>
<td>45</td>
<td>1.98</td>
<td>4.06</td>
<td>6.97</td>
<td>9.35</td>
</tr>
</tbody>
</table>

11.1.8 Buffer group 8 (ref. 25 °C) JIS Z 8802 (Japanese)

<table>
<thead>
<tr>
<th></th>
<th>1.668</th>
<th>3.999</th>
<th>6.951</th>
<th>9.395</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1.670</td>
<td>3.9998</td>
<td>6.923</td>
<td>9.332</td>
</tr>
<tr>
<td>10</td>
<td>1.672</td>
<td>3.999</td>
<td>6.900</td>
<td>9.276</td>
</tr>
<tr>
<td>15</td>
<td>1.675</td>
<td>4.002</td>
<td>6.881</td>
<td>9.225</td>
</tr>
<tr>
<td>20</td>
<td>1.679</td>
<td>4.008</td>
<td>6.865</td>
<td>9.180</td>
</tr>
<tr>
<td>25</td>
<td>1.683</td>
<td>4.015</td>
<td>6.853</td>
<td>9.139</td>
</tr>
<tr>
<td>30</td>
<td>1.688</td>
<td>4.024</td>
<td>6.844</td>
<td>9.102</td>
</tr>
<tr>
<td>35</td>
<td>1.694</td>
<td>4.035</td>
<td>6.838</td>
<td>9.068</td>
</tr>
<tr>
<td>40</td>
<td>1.700</td>
<td>4.047</td>
<td>6.834</td>
<td>9.038</td>
</tr>
</tbody>
</table>