Operating Instructions

Ecoline

Immersion thermostats E 100
Bath/ Circulation thermostats
E 106 T, E 112 T, E 115 T, E 120 T
E 103, E 111, E 119, E 125
Safety notes

Before operating the equipment please read carefully all the instructions and safety notes.
If you have any questions please phone us!

Follow the instructions on setting up, operation etc. This is the only way to avoid incorrect operation of the equipment and to ensure full warranty protection.

- Transport the equipment with care!
- Equipment and its internal parts can be damaged:
 - by dropping
 - by shock.
- Equipment should only be operated by technically qualified personnel!
- Never operate the equipment without the bath liquid!
- Do not start up the equipment if
 - it is damaged or leaking
 - the supply cable is damaged.
- Switch off the equipment and pull out the mains plug for
 - servicing or repair
 - the supply cable is damaged!
- Drain the bath before moving the equipment!
- Have the equipment serviced or repaired by properly qualified personnel only!

The Operating Instructions include additional safety notes which are identified by a triangle with an exclamation mark. Carefully read the instructions and follow them accurately! Disregarding the instructions may have serious consequences, such as damage to the equipment, damage to property or injury to personnel.

We reserve the right to make technical alterations!
8.2 Maintenance and repair ...24
8.3 Ordering spares ...25
9 TECHNICAL DATA (TO DIN 58966)...26
10 ACCESSORIES ..29
11 CIRCUIT DIAGRAM...31
Explanation of signs

Danger: This sign is used where there may be injury to personnel if a recommendation is not followed accurately or is disregarded.

Note: Here special attention is drawn to some aspect. May include reference to danger.

Reference: Refers to other information in different Sections.
1 Brief operating instructions

This brief instruction shall give you the possibility to operate the unit quickly. For safe operation of the unit it is absolutely necessary to read carefully all the instructions and safety notes!

1. Assemble unit and add items as appropriate (⇒ Section 5).
 Take care of the hose tubing connections (⇒ Section 5.1. and 5.4.).

2. Fill the unit with corresponding liquid. (⇒ Section 5.3.).
 The units are designed for operation with non-flammable and flammable liquids to EN 61010-2-010. ⇒ Take care of the level of the bath liquid! (⇒ Section 5.2.)

3. Connect the unit only to a socket with a protective earth (PE) connection.
 Compare the information on the rating label with the supply details.

4. Using a screwdriver, set the overtemperature cut-out point to a value clearly above ambient temperature (⇒ Section 6.5.1.).

5. Switch on at the mains switch

6. Setting of the functions

 Level 0

 Setpoint selection
 - a) Press the key ▲ or ▼ display flashes
 - b) Setting with ▲ or ▼
 - with key to the next level

 Level 1

 Pump output P
 - a) Start setting with
 - (for carrying out a calibration press key > 3,5 sec) display flashes

 Calibration CAL
 - b) Setting with ▲ or ▼
 - display flashes for about 4 s, new value is accepted
 - new value is accepted immediately by pressing the key

 End of the menu END
 - c) Enter the calibration with the key

 scrolling with ▲ or ▼ in this level

 back to level 0
2 Control and functional elements

- Clamping bracket
- Setting knob
- Pt 100
- Pump housing
- Outlet for bath circulation
- Jet nozzle
- Heater
- Heating
- LED green; Supply ON
- Menu functions
- Mains switch
- Setting of overtemperature switch-off point
- Pump connections
 - inlet
- Pump connections
 - outflow
- Cooling coil connection
- Bath bridge
- Bath cover
3 Unit description

3.1 Unit description

The immersion thermostat E 100 has a device for fixing the immersion thermostat to the bath vessel (clamping bracket). An adapter is supplied for the deep-drawn LAUDA baths 003, 011, 019 and 025.

The type designation of the Ecoline bath/circulation thermostats consists of the control unit E 100 and the type of bath.

Example: Control unit E 100 and bath 003 produces Thermostat Type E 103.

The letter T (for “Transparent”) refers to the baths made of polycarbonate. Type E 103 is supplied with bath cover. For other baths made of stainless steel bath covers are available as accessory (Section 10. Accessories).

3.2 Pumps

All units are supplied with a pressure pump with vario drive. The pump has an outlet with a rotatable bend (Immersion Thermostat) which is connected to the pump nipple for external thermostating circuits (bath/circulation thermostats). An additional outlet provides circulation inside the bath. By turning the setting knob it is possible to choose between both outlets or to divide the flows.

The pump chamber of immersion thermostats is rotatable in a restricted way to reach an optimal circulation. The pump can be used up to viscosities of 150 mm²/s during heating up. To get an optimum accuracy of control a viscosity of 30 mm²/s is recommended.

One of five pump output steps can be selected using the operating menu. On small bath thermostats (e.g. E 103 or E 106 T) and with operation as bath thermostat it is advisable to use output step 1. The advantage is a low heat generation while having a uniform circulation, that means, that the unit can work without cooling down to just above ambient temperature.

When operating as circulation thermostat with an external circuit it is preferable to use a larger flow setting in order to ensure a small temperature difference, especially at higher temperatures and in conjunction with oil as the bath liquid.

The pump pressure outlet can be closed off without causing any damage to the pump.

Pump characteristics (Section 9. Technical data)
3.3 Temperature indication, control, and safety circuit

The unit is provided with a 7-segment LCD-Display (3 ½ places) with additional symbols for indicating bath temperature and settings as well as operating states.

The setpoint is input and additional adjustments can be made using either two or three keys.

A Pt 100 temperature probe is used for measuring the actual temperature and for control. A second Pt 100 serves as temperature probe for the safety circuit (overtemperature protection) which is independent of the control function.

A low-level cut-out switches off the heating on both poles in order to prevent dry operation of the heater. The pump is switched off through the electronics. The setting of the overtemperature cut-out is adjusted with a tool on a potentiometer and is always limited to 5 °C above the operating temperature range.

All settings and fault messages are stored in the memory on supply failure or when the mains switch is set to OFF.

The tubular heater is controlled from a modified PID controller through a triac circuit specially designed to be unaffected by supply variations and interference.

3.4 Materials

All parts which come into contact with the bath liquid are made from high-grade materials appropriate to the operating temperature. These are rust-free stainless steel, the plastics PPS, polycarbonate (bath 006 T, 012 T, 015 T, 020 T) and fluoride rubber.

4 Unpacking

After the unit and accessories have been unpacked they have to be examined for possible transport damage. If there is any damage visible on the unit, the forwarding agent or the post office has to be notified so that the shipment can be examined.

Standard accessories:

- Bath cover
 - E 103 only
- Closing plugs
 - on all bath/circulation thermostats
- Warning label
 - on all immersion and bath/circulation thermostats
- Operating Instructions
 - on all immersion and bath/circulation thermostats
5 Preparations

5.1 Assembly and setting up

a) Immersion Thermostat

- Hang the thermostat into the bath to be thermostated (baths ⇒ Section 10. Accessories)
 - In baths made of plastic the heater should not have contact to the sides of the bath!
 - Do not cover the ventilation opening at the back of the unit. Keep clear distance of at least 20 cm.

Adjustment of the pump chamber

- The fixation of the temperature probe has to be moved upwards approx. 15 mm.
- Adjust the pump chamber.
- Move the fixation of the temperature probe downwards again (see ill. on the left)
 - For all LAUDA baths (plastic and deep-drawn baths), please fix the adapter (standard accessory) on the clamping bracket.
 - Turn the jet nozzle to face diagonally into the bath. The outflow for the bath circulation can then be closed.
 - Turn the setting knob to the left (see. ill. 1)

Adjustments of the pump outflows

<table>
<thead>
<tr>
<th>Ill 1</th>
<th>Ill 2</th>
<th>Ill 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting knob turned anticlockwise</td>
<td>Setting knob medium position</td>
<td>Setting knob turned clockwise</td>
</tr>
</tbody>
</table>
Preparations

Operation with cooling coil (☞ Section 10. Accessories)

- Pull the clamping bracket to the back for fixing the cooling coil while releasing it with a screwdriver.
- Push the cooling coil on the clamping bracket.
- Install the clamping bracket again.

Operation with fixing rod (☞ Section 10. Accessories)

- Pull the clamping bracket to the back while releasing it with a screwdriver.
- Install the fixing rod together with the clamping bracket.

Operation with external consumer (☞ Section 5.4.)

- The immersion thermostats have to be fixed carefully at the bath, for they must not fall into the bath.
- In that case don’t touch the bath liquid! Pull out mains plug immediately!

a) Bath/Circulation thermostats

- Place the unit on a flat surface.
 - Do not cover the ventilation openings at the back.
 - Keep a clear distance of at least 20 cm.
 - Put the control unit with the bath bridge on the bath.
 - When operating without an external consumer (bath thermostat) the setting knob has to be turned so that the flow comes out of the outlet for bath circulation (☞ ill. 3, Section 5.1.).
Operation with external consumer (Circulation thermostat) (☞ Section 5.4.)

- At bath temperature above 70°C the label supplied must be affixed on the bath in a clearly visible position.
- When operating as bath thermostat without external consumer the pump outflow connection has to be closed (use closing plugs) or linked to the return.

5.2 Filling and emptying

Filling

- Fill baths up to a maximum level of 20 mm below the bath bridge.
- Optimum operation at 20-40 mm below the bath bridge.
- Operation is possible down to 60 mm below the bath bridge.
- The low-level cut-out operates at approx. 90 mm below the bath bridge

- When using thermal oils it is necessary to allow an expansion of approx. 8%/100 °C.
- When operating with an external consumer the total expansion takes place in the bath.
Preparations

Emptying

- Switch off the thermostat, pull out the mains plug!

a) Immersion thermostat

- Unscrew the thermostat-

- Drain the bath

b) Bath/Circulation thermostat

- Take off the control unit with the bath bridge

- Drain the bath.

- The units are designed for operation with non-flammable and flammable liquids to EN 61010-2-010! Flammable liquids can be operated up to no more than 25°C below the firepoint (⇒ Section 5.3.).

- Observe the appropriate regulation when disposing used thermostating liquid.

- When connecting an external consumer take care that the level of the bath liquid does not drop too much ⇒ fill in bath liquid if necessary.

Do not drain the thermostating liquid when it is hot or very cold (below 0°C)!
5.3 Bath liquids and hose connections

Bath liquids

<table>
<thead>
<tr>
<th>LAUDA Designation</th>
<th>Former designation</th>
<th>Working temperature range</th>
<th>Chemical Designation</th>
<th>Viscosity (kin) at 20°C</th>
<th>Viscosity (kin) at Temperature</th>
<th>Fire-point</th>
<th>Ref.No. Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>from °C to °C</td>
<td></td>
<td>at 20°C</td>
<td>mm²/s</td>
<td></td>
<td>5 l 10 l 20 l</td>
</tr>
<tr>
<td>water</td>
<td>+5...+90</td>
<td>deionised water ➀</td>
<td></td>
<td></td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kryo 30 ➁</td>
<td>G 100 ➁</td>
<td>-30...+90</td>
<td>Mono-ethylene-glycol/water</td>
<td>4</td>
<td>50 at -25°C</td>
<td>--</td>
<td>LZB 109 LZB 209 LZB 309</td>
</tr>
<tr>
<td>Kryo 51</td>
<td>---</td>
<td>-50...+120</td>
<td>Silicone oil</td>
<td>5</td>
<td>34 at -50°C</td>
<td>> 160</td>
<td>LZB 121 LZB 221 LZB 321</td>
</tr>
<tr>
<td>Kryo 20</td>
<td>160 MS</td>
<td>-20...+180</td>
<td>Silicone oil</td>
<td>11</td>
<td>28 at -20°C</td>
<td>> 230</td>
<td>LZB 116 LZB 216 LZB 316</td>
</tr>
<tr>
<td>Ultra 350</td>
<td>330 SCB</td>
<td>-30...+200</td>
<td>synthetic thermal oil</td>
<td>47</td>
<td>28 at +30°C</td>
<td>> 240</td>
<td>LZB 107 LZB 207 LZB 307</td>
</tr>
<tr>
<td>Therm 230</td>
<td>RDS 50</td>
<td>+60...+230</td>
<td>Silicone oil</td>
<td>44</td>
<td>28 ... +60°C</td>
<td>> 362</td>
<td>LZB 117 LZB 217 LZB 317</td>
</tr>
</tbody>
</table>

➀ At higher temperatures → Evaporation losses → Use bath covers (⇒ Section 10. Accessories). Distilled water or fully deionised water must only be used with the addition of 0,1g sodium carbonate (Na₂CO₃) /l water, otherwise → danger of corrosion!

② Water content falls after prolonged operation at higher temperatures → mixture becomes flammable (flash point 128 °C).
→ Check the mixture ratio with a densimeter.

- When selecting bath liquids it should be noted that performance must be expected to worsen at the lower limit of the operating temperature range due to increasing viscosity. The full operating range should only be utilised if really necessary.
- The operating ranges of the bath liquids and tubing represent general data which may be limited by the operating temperature range of the unit.

Silicone oil causes pronounced swelling of Silicone rubber → never use Silicone oil with Silicone tubing!

DIN Safety data sheets are available on request
Hose connections

<table>
<thead>
<tr>
<th>Tubing type</th>
<th>Int. dia. Ø mm</th>
<th>Temperature range °C</th>
<th>Application</th>
<th>Ref. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPDM-tubing, uninsulated</td>
<td>9</td>
<td>10 to 120</td>
<td>for all bath liquids except for Ultra 350 and mineral oils</td>
<td>RKJ 111</td>
</tr>
<tr>
<td>EPDM-tubing, uninsulated</td>
<td>12</td>
<td>10 to 120</td>
<td>for all bath liquids except for Ultra 350 and mineral oils</td>
<td>RKJ 112</td>
</tr>
<tr>
<td>EPDM-tubing insulated</td>
<td>12 ext. dia. 35mm approx.</td>
<td>-60 to 120</td>
<td>for all bath liquids except for Ultra 350 and mineral oils</td>
<td>LZS 021</td>
</tr>
<tr>
<td>Silicone tubing, uninsulated</td>
<td>11</td>
<td>-30 to 100</td>
<td>water, water/glycol mixture</td>
<td>RKJ 059</td>
</tr>
<tr>
<td>Silicone tubing insulated</td>
<td>11 ext. dia. 35mm approx.</td>
<td>-60 to 100</td>
<td>water, water/glycol mixture</td>
<td>LZS 007</td>
</tr>
<tr>
<td>Viton</td>
<td>11</td>
<td>-60 to 200</td>
<td>for all bath liquids</td>
<td>RKJ 091</td>
</tr>
</tbody>
</table>

- EPDM-tube, not for Ultra 350 and mineral oils!
- Silicone oil causes pronounced swelling of Silicone rubber → never use Silicone oil with Silicone tubing!
- Protect tubing with hose clips against slipping off.
5.4 Connection of external circuits

a) Immersion thermostats

- Push 11-12 mm int. dia. tubing (☞ Section 5.3.) directly onto the jet nozzle and connect it to the external consumer.
- Hang the return tubing into the bath and fix it!
- We recommend to use the pump set (☞ Section 10. Accessories). In this case
 - screw on the pump connectors.
 - Install the connecting tube.
- Using the setting knob at the pump outflows, divide up the pump flow in accordance to the thermostating task.(☞ Section 5.1)
 - Position ➀ ➔ maximum flow in the external circuit, the setting knob is turned anticlockwise.
 - Position ➁ ➔ flow passes through pump outflow and outlet for bath circulation, the setting knob is in medium position.
 - Position ➂ ➔ external circuit is closed and the outlet for bath circulation fully open, the setting knob is turned clockwise.
- Operate the setting knob only when the bath contents are near ambient temperature.
- When no tubing is connected, close the pump outflow connection with closing plugs even in position ➀.
b) **Bath/Circulation thermostat**

- Connect 11-12 mm int. dia tubing (Section 5.3.) to pump connector

- Pump outflow always in front, return connection always at the back.

- If the cross-section of the tubing is too small → temperature drop between bath and external system due to low flow rate. Increase the bath temperature appropriately.

- Always ensure the maximum possible flow cross-section in the external circuit!

- When the external consumer is placed at a higher level than the thermostat, the pump is stopped and air penetrates into the thermostating circuit the external liquid may drain down into the bath even with a closed system → danger of flooding the thermostat!

- Protect tubing with hose clips against slipping off!

- When no external consumer is connected to the thermostat, the pump outflow connection must be closed (use closing plugs) or linked to the return!
5.5 Cooling the thermostats

At bath temperatures down to just above ambient temperature (approx. 2 – 10°C) it is possible to work without cooling. Additional cooling is required for lower temperatures

Immersion thermostat. → attach the cooling coil (☞ Section 5.1.).

Bath/Circulation thermostats → fitted with cooling coil, as standard..

Cooling possibilities

- down to 20 °C Mains water → keep the water consumption as low as possible!
- down to –20°C flow-through cooler DLK 10/ DLK 25 (depending on bath size and temperature) ☞ Section 10. Accessories
 → use water/glycol mixture (ratio 1:1).

- Use insulated tubing!
- When thermostating an external system the equipment must be arranged in the following order: thermostat → external circuit → flow-through cooler → thermostat
Starting up

6 Starting up

6.1 Connection to the supply

Compare the supply voltage against the data on the rating label.

Model according to EMC directive EN 61326-1 Class B.* (* Notice only valid for EU countries)

- Connect the unit only to a grounded mains power socket (PE).
- No warranty when the thermostat is connected to a wrong supply!
- Without external circuit ensure that the pump pressure outflow is closed or linked to the pump return.
- Ensure that the unit is filled in accordance with Section 5.2!

6.2 Switching on

- Using a screwdriver set the overtemperature switch-off point to a value clearly above ambient temperature.
- Switch on at the mains switch. The green LED for "Supply ON" lights up.
- A tone sounds for approx. 0.25 s.
- The unit self-test starts up. All display segments and symbols light up for approx. 1 s. Then the software version is indicated for approx. 1 s.
- Display shows the actual bath temperature. The pump starts up. The values which were active before switching off are entered.
- If necessary add more bath liquid to replace the amount pumped out to the external consumer.
- If the pump does not purge the system immediately. The unit may switch off again although it is filled sufficiently (only when starting up for the first time).
- A double signal tone sounds.

* Notice only valid for EU countries!
Starting up

The display for LEVEL (low-level) appears.

The fault triangle is flashing

Press the key. If necessary repeat several times.

Also press the key if the unit had switched off under a fault condition.

6.3 Setpoint selection

Shortly press one of these keys → adjusted setpoint appears for approx. 4 s.

°C is flashing, in contrast to the actual value.

During the 4 s. start to set the required setpoint using the keys.

Speeding the setting process by:

a) continuous pressing the keys or

b) pressing one key (holding it down) and shortly pressing the other key.

Briefly releasing (1 s) the key (s) and again pressing one of the keys moves the cursor one place to the right.

Display flashes 4 s → the new value is accepted automatically, or

Value is entered immediately with this key.

For safety reasons the setpoint can only be adjusted up to 2 °C above the upper limit of the operating temperature range of the particular unit type.
Starting up

6.4 Menu functions

- Switching from setpoint selection (level 0) to level 1 using the key
- Within one level it is possible to scroll using the keys.
- In principle, after each setting has been made it is entered automatically after approx. 4 s or
- Settings are entered immediately on operating this key

6.4.1 Pump output

- Display shows P and actual pump output step.
- Press the key → display flashes (approx. 4 s)
- During this time start to set the required step with the keys. 0 = pump stopped, heating off
 1 = low pump output
 2, 3, 4 = medium pump output
 5 = maximum pump output
- The pump responds immediately (can be heard). (Setting is entered after approx. 4 s ⇒ Section 6.4.)
- Move forward with key to "User calibration" or
- back with the key to the actual value display.
6.4.2 User calibration

- Remove the external consumers and switch the setting knob of the pump to right side. (⇒ Section 5.4).

- A reference thermometer with necessary accuracy is required. Otherwise the factory calibration should not be altered. The reference thermometer has to be inserted far enough and long enough into the bath.

- It is not allowed to calibrate to more than ± 3 °C. Multiple calibration to more than ± 3 °C cause internal faults (after 2 min “EEE” changing with “1006” or “16”).

- The factory calibration will be lost through overwriting ⇒ please work carefully!!!

and 1x

- Directly from level 0 (actual value display), press key combination on the left or

- with key from pump output.

>2.5 s

1. The display shows CAL. To carry out a calibration, press the key longer than 2.5 s.

2. The actual value appears and flashes approx. 4 s.

or

3. Input the value indicated on the reference thermometer with one of the two keys.

4. The additive calibration must be entered with the key shown on the left.

5. Forward with key to ”END”, then
Starting up

6. with key to actual value display or

7. with key back to pump output.

Example

a) Insert a suitable thermometer into the bath (long enough and far enough).

b) Remove the external consumers and turn the setting knob of the pump outflows to the right side.

c) Set the setpoint to a temperature where you use to work (e.g. set the setpoint to 45°C (⇒ Section 6.3.)

d) Wait until the actual bath temperature has reached the setpoint temperature of 45°C and until the indication on the reference thermometer does not change any more.

e) Remove the reference thermometer, which shows e.g. 44.8 °C.

f) Select CAL on the display and go forward as mentioned under point 1-7 (see above). The actual bath temperature switches from 45°C to 44.8°C and the unit starts to heat up until the actual bath temperature has reached 45°C. (⇒ the reference thermometer should also indicate 45°C).

6.5 Warning and safety functions

6.5.1 Overtemperature protection and testing

- The units are designed for operation with non-flammable and flammable liquids to EN 61010-2-010!

- Set the overtemperature switch-off point. Recommended setting 5°C above required bath temperature.

- Not higher than 25 °C below the firepoint of the bath liquid (⇒ Section 5.3.).

- The actual switch-off point is indicated on the display, e.g. 110°C.
− When the switch-off point is being adjusted by more than 2°C → display shows MAX and actual overtemperature switch-off point with 1°C resolution for approx. 4 s.

− The position of the potentiometer is decisive for the setting. The display is just a help for the setting.

− Setting is possible only up to a upper limit of the operating temperature range + 5 °C.

− When the bath temperature arises above the overtemperature switch-off point.

1. Double signal tone sounds.

2. The display shows the indication for overtemperature the fault triangle is flashing → heating is switched off on both poles, → pump is switched off by the electronics.

− Rectify the cause of the fault.

− Wait until the bath temperature has cooled down below the switch-off point or set the switch-off point at a higher value. When the display shows reset with the key.

− Before the unit is run is running unattended for longer periods overtemperature protection should be tested. Therefore:

− Turn the potentiometer slowly anticlockwise. → The unit must switch off at the bath temperature.

− Step 1 - 2 (see above) must follow.

− Set the overtemperature switch-off point again above the bath temperature and wait until the indication appears on the display, then

− reset with the key.
6.5.2 Low-level protection and testing

- Double signal tone sounds, if the bath liquid falls so much that the heater is no longer covered with liquid completely.

1. The display shows LLL (low-level) and the fault triangle is flashing
 - heating is switched off on both poles,
 - pump is switched off by the electronics

2. Top up the bath ⇒ Section 5.2 and reset with the key.

- If necessary repeat several times in case that the pump does not purge immediately.

- Testing at regular intervals by lowering the bath level. Place a hose on the pump connector and pump some of the bath liquid into a suitable container.

- Step 1 - 2 must follow.

![Warning]
- Bath temperature during this test not below 0°C or higher than 50°C, otherwise danger of burn injuries!
- If there is any irregularity when testing the safety devices, switch off the unit immediately and pull out the mains plug!
- Have the unit checked by the LAUDA service or the local service organisation!

6.5.3 Pump motor monitoring

- In case of pump motor overload or a blockage the heating and the pump are switched off.

 - Double signal tone sounds.

 - The display shows PPP and the fault triangle is flashing
 - Rectify the cause of the fault, i.e. clean the pump or check the viscosity, then
 - reset with the key.
6.5.4 Other error messages

- Other error messages shown on display. EEE changes with error code, e.g. 0.

→ various temperature probe faults.

- If the fault report is repeated → pull out the mains plug and try whether the motor can be rotated by the fan blade inserting a screwdriver into the ventilation opening at the back of the unit.
- Error code 0 ...255 → microprocessor error.
- Error code 1000...1255 → slave processor error.
- Indication can be used for remote diagnosis.

→ pump fault, proceed as in Section 6.5.3.

- After rectifying the fault, reset with the key.
7 Safety notes

7.1 General safety notes

A laboratory thermostat is intended for heating and pumping liquids according to the needs of the user. This leads to hazards by high temperatures, fire, and the general hazards by the use of electrical energy.

The user is largely protected through the application of the appropriate standard specifications.

Additional hazards may arise from the type of material being thermostated, e.g. when going above or below certain temperature levels or through breaking of the container and reaction with the thermostating liquid.

It is not possible to cover all possibilities; they remain largely within the responsibility and the judgement of the user.

The unit must only be used as intended and as described in these Operating Instructions. This includes operation by suitably instructed qualified personnel.

The units are not designed for use under medical conditions according to EN 60601-1 or IEC 601-1!

7.2 Other safety notes

- Connect the unit to a grounded mains power socket.

- Parts of the bath cover may reach surface temperatures above 70 °C when operating at higher temperatures. Take care when touching it!

- Use suitable hoses ➞ Section 5.3.

- Protect tubing with hose clips against slipping off. Prevent kinking of tubing!

- Check tubing from time to time for possible material defects.

- Heat transfer tubing and other hot parts must not come into contact with the supply cable!

- When using the thermostat as circulation thermostat, failure of tubing may lead to leaking of hot liquid and become a danger to personnel and objects.

- When no external consumer is connected to the thermostat the pump outflow connection must be closed (use closing plugs) or linked to the return.

- Don’t change the pump connections with the connections of the cooling coil!

- Allow for expansion of the bath oil at elevated temperatures

- Depending on the bath liquid used and the mode of operation it is possible for toxic vapours to be
produced. Ensure appropriate ventilation!

- Immersion thermostats have to be fixed carefully at the bath vessels!

- Only use bath vessels which are appropriate for the intended operating temperatures!

- When changing the bath liquid from water to oil, for temperatures above 100 °C, carefully remove all traces of water, also from tubing and from the external consumer, otherwise → danger of burns through delayed boiling!

- The cooling coil with the cooling water has only to be used for operating temperatures below 100°C. At higher temperatures → danger of hot vapour to be produced!

- Always pull out the mains plug before cleaning, maintenance or moving the thermostat!

- Repairs on the control unit and the refrigeration system must be carried out by properly qualified personnel only!

- Values for temperature control and indicating accuracy apply under normal conditions according to DIN 58966. High-frequency electromagnetic fields may under special conditions lead to unfavourable values. This does not affect the safety.
8 Maintenance

8.1 Cleaning

Before cleaning the unit, pull out the mains plug!

<table>
<thead>
<tr>
<th>![Warning]</th>
</tr>
</thead>
</table>

The unit can be cleaned with water adding a few drops of detergent (washing up liquid), using a moist cloth.

Water must not enter the control unit!

<table>
<thead>
<tr>
<th>![Warning]</th>
</tr>
</thead>
</table>

- Carry out appropriate detoxification if dangerous material has been spilled on or inside the unit.
- Method of cleaning and detoxification are decided by the special knowledge of the user. In case of doubt please contact the manufacturer!

8.2 Maintenance and repair

Before any maintenance and repair work pull out the mains plug!

Repair on the control unit must only be carried out by properly qualified personnel!

<table>
<thead>
<tr>
<th>![Warning]</th>
</tr>
</thead>
</table>

LAUDA thermostats are largely maintenance-free. If the thermostating liquid becomes dirty it has to be replaced (⇒ Section 5.2.).

- If a fuse blows (⇒ supply indication not alight) fit only fuses as specified (2 x T 16 A; 1 x T 2.5 A, size 5 x 20 ⇒ fuses are inside the unit.)

UL 487-1

F1; T 16 A

F2; T 16 A

F3; T 2.5 A
8.3 Ordering spares

When ordering spares please quote instrument type and serial number from the rating label. This avoids queries and supply of incorrect items.

We shall always be happy to deal with queries and to receive suggestions and criticism.

LAUDA DR. R. WOBSER
GMBH & CO.KG
P.O. Box 1251
97912 Lauda-Königshofen
GERMANY
Phone: (+49) (0) 9343/ 503-0
Fax: (+49) (0) 9343/ 503-222
E–mail info@lauda.de
Internet http://www.lauda.de
9 Technical data (to DIN 58966)

Common technical data

<table>
<thead>
<tr>
<th></th>
<th>E 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature range</td>
<td>°C</td>
</tr>
<tr>
<td>Setting resolution</td>
<td>°C</td>
</tr>
<tr>
<td>Indication resolution</td>
<td>°C</td>
</tr>
<tr>
<td>Indication accuracy</td>
<td>°C</td>
</tr>
<tr>
<td>Temperature control</td>
<td>°C</td>
</tr>
<tr>
<td>Safety features</td>
<td>FL</td>
</tr>
</tbody>
</table>

Additional functions

<table>
<thead>
<tr>
<th>Power consumption</th>
<th>kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>230 V; 50/60 Hz</td>
<td>1.6</td>
</tr>
<tr>
<td>115 V; 60 Hz</td>
<td>1.4</td>
</tr>
<tr>
<td>100 V; 50/60 Hz</td>
<td>1.1</td>
</tr>
</tbody>
</table>

FL: suitable for flammable and non-flammable liquids; NFL: only suitable for non-flammable liquids

Immersion thermostats

<table>
<thead>
<tr>
<th></th>
<th>E 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature range</td>
<td>°C</td>
</tr>
<tr>
<td>" with water cooling</td>
<td>°C</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>°C</td>
</tr>
<tr>
<td>Heater power</td>
<td>°C</td>
</tr>
<tr>
<td>230 V; 50/60 Hz</td>
<td>1.5</td>
</tr>
<tr>
<td>115 V; 60 Hz</td>
<td>1.3</td>
</tr>
<tr>
<td>100 V; 50/60 Hz</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Pressure pump with choice of 5 output steps

Max. discharge pressure	bar
Max. flow rate	l/min
Pump connections	mm
Bath depth	mm
Usable depth	mm
Overall size (WxD)	mm
Height (H)	mm
Weight	kg

<table>
<thead>
<tr>
<th>Ref. No.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>230 V; 50/60 Hz</td>
<td>LCE 0221</td>
</tr>
<tr>
<td>115 V; 60 Hz</td>
<td>LCE 4221</td>
</tr>
<tr>
<td>100 V; 50/60 Hz</td>
<td>LCE 6221</td>
</tr>
</tbody>
</table>

at pump output step 1

with additional cooling

at pump output step 5

baths ⇒ section 10. Accessories

Units to EU-Directive 89/336/EWG (EMC) and 73/23/EWG (low-voltage) with CE-mark.

We reserve the right to make technical alterations!
Bath/Circulation Thermostats

<table>
<thead>
<tr>
<th>Feature</th>
<th>E 103</th>
<th>E 111</th>
<th>E 119</th>
<th>E 125</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature range ➀</td>
<td>°C</td>
<td>23</td>
<td>to</td>
<td>120</td>
</tr>
<tr>
<td>Operating temperature range ➀ with water cooling</td>
<td>°C</td>
<td>20</td>
<td>to</td>
<td>120</td>
</tr>
<tr>
<td>Operating temperature range ➁</td>
<td>°C</td>
<td>-20</td>
<td>to</td>
<td>120</td>
</tr>
<tr>
<td>Heater power</td>
<td>kW</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>230 V; 50/60 Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115 V; 60 Hz</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 V; 50/60 Hz</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. discharge pressure ➇</td>
<td>bar</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. flow rate ➇</td>
<td>l/min</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump connections</td>
<td>mm</td>
<td>nipples 13 mm dia.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bath depth ➉</td>
<td>mm</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Usable depth ➉</td>
<td>mm</td>
<td>130</td>
<td>130</td>
<td>130</td>
</tr>
<tr>
<td>Height top edge of bath ➉</td>
<td>mm</td>
<td>178</td>
<td>178</td>
<td>178</td>
</tr>
<tr>
<td>Overall size (WxD)</td>
<td>mm</td>
<td>168x271</td>
<td>331x360</td>
<td>331x360</td>
</tr>
<tr>
<td>Height</td>
<td>mm</td>
<td>349</td>
<td>349</td>
<td>349</td>
</tr>
<tr>
<td>Weight</td>
<td>kg</td>
<td>6</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Ref. No.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230 V; 50/60 Hz</td>
<td>LCB 0691</td>
<td>LCB 0693</td>
<td>LCB 0695</td>
<td>LCB 0697</td>
</tr>
<tr>
<td>115 V; 60 Hz</td>
<td>LCB 4691</td>
<td>LCB 4693</td>
<td>LCB 4695</td>
<td>LCB 4697</td>
</tr>
<tr>
<td>100 V; 50/60 Hz</td>
<td>LCB 6691</td>
<td>LCB 6693</td>
<td>LCB 6695</td>
<td>LCB 6697</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Feature</th>
<th>E 106 T</th>
<th>E 112 T</th>
<th>E 115 T</th>
<th>E 120 T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature range ➀</td>
<td>°C</td>
<td>23</td>
<td>to</td>
<td>100</td>
</tr>
<tr>
<td>Operating temperature range ➀ with water cooling</td>
<td>°C</td>
<td>20</td>
<td>to</td>
<td>100</td>
</tr>
<tr>
<td>Operating temperature range ➁</td>
<td>°C</td>
<td>-20</td>
<td>to</td>
<td>100</td>
</tr>
<tr>
<td>Heater power</td>
<td>kW</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>230 V; 50/60 Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115 V; 60 Hz</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 V; 50/60 Hz</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. discharge pressure ➇</td>
<td>bar</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. flow rate ➇</td>
<td>l/min</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bath opening (WxD)</td>
<td>mm</td>
<td>135x105</td>
<td>300x190</td>
<td>300x365</td>
</tr>
<tr>
<td>Bath depth ➉</td>
<td>mm</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Usable depth ➉</td>
<td>mm</td>
<td>130</td>
<td>130</td>
<td>130</td>
</tr>
<tr>
<td>Height top edge of bath ➉</td>
<td>mm</td>
<td>178</td>
<td>178</td>
<td>178</td>
</tr>
<tr>
<td>Height</td>
<td>mm</td>
<td>349</td>
<td>349</td>
<td>349</td>
</tr>
<tr>
<td>Weight</td>
<td>kg</td>
<td>6</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Ref. No.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230 V; 50/60 Hz</td>
<td>LCM 0091</td>
<td>LCM 0261</td>
<td>LCM 0263</td>
<td>LCM 0265</td>
</tr>
<tr>
<td>115 V; 60 Hz</td>
<td>LCM 4091</td>
<td>LCM 4261</td>
<td>LCM 4263</td>
<td>LCM 4265</td>
</tr>
<tr>
<td>100 V; 50/60 Hz</td>
<td>LCM 6091</td>
<td>LCM 6261</td>
<td>LCM 6263</td>
<td>LCM 6265</td>
</tr>
</tbody>
</table>

Notes

- ➀ at pump output step 1
- ➀ with additional cooling
- ➁ at pump output step 5
- ➂ baths ➞ section 10. Accessories
- Units to EU-Directive 89/336/EWG (EMC) and 73/23/EWG (low-voltage) with CE-mark.
- We reserve the right to make technical alterations!
Technical data

Pump characteristics

Immersion thermostats
measured with water

![Graph showing immersion thermostats](image)

Bath/Circulation thermostats
measured with water

![Graph showing bath/circulation thermostats](image)
Immersion thermostats

<table>
<thead>
<tr>
<th>Accessories</th>
<th>Ref. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling coil</td>
<td>HOK 064</td>
</tr>
<tr>
<td>Pump set (pressure and return connection)</td>
<td>LCZ 0638</td>
</tr>
<tr>
<td>Fixing rod</td>
<td>LCZ 0637</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bath</th>
<th>Materials</th>
<th>Max. Temp (°C)</th>
<th>Volume (l)</th>
<th>Inner size (WxDxH)</th>
<th>Ref. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>006 T</td>
<td>polycarbonate</td>
<td>100</td>
<td>5 to 7</td>
<td>130x420x160 *</td>
<td>LCZ 0628</td>
</tr>
<tr>
<td>012 T</td>
<td>polycarbonate</td>
<td>100</td>
<td>9 to 13</td>
<td>300x315x160</td>
<td>LCZ 0629</td>
</tr>
<tr>
<td>015 T</td>
<td>polycarbonate</td>
<td>100</td>
<td>10 to 5</td>
<td>416x130x310</td>
<td>LCZ 0630</td>
</tr>
<tr>
<td>020 T</td>
<td>polycarbonate</td>
<td>100</td>
<td>14 to 20</td>
<td>300x490x160</td>
<td>LCZ 0631</td>
</tr>
<tr>
<td>003</td>
<td>deep-drawn stainless steel</td>
<td>150</td>
<td>2.5 to 3.5</td>
<td>135x240x150 *</td>
<td>LCZ 0620</td>
</tr>
<tr>
<td>011</td>
<td>deep-drawn stainless steel</td>
<td>150</td>
<td>9 to 12</td>
<td>300x329x150 *</td>
<td>LCZ 0621</td>
</tr>
<tr>
<td>019</td>
<td>deep-drawn stainless steel</td>
<td>150</td>
<td>12 to 18</td>
<td>300x505x150 *</td>
<td>LCZ 0622</td>
</tr>
<tr>
<td>025</td>
<td>deep-drawn stainless steel</td>
<td>150</td>
<td>19 to 25</td>
<td>300x505x200 *</td>
<td>LCZ 0623</td>
</tr>
<tr>
<td>006</td>
<td>stainless steel</td>
<td>200</td>
<td>3.5 to 5.5</td>
<td>150x260x160</td>
<td>LCZ 0624</td>
</tr>
<tr>
<td>012</td>
<td>stainless steel</td>
<td>200</td>
<td>8 to 13</td>
<td>300x305x160</td>
<td>LCZ 0625</td>
</tr>
<tr>
<td>020</td>
<td>stainless steel</td>
<td>200</td>
<td>13 to 20</td>
<td>300x480x160</td>
<td>LCZ 0626</td>
</tr>
<tr>
<td>026</td>
<td>stainless steel</td>
<td>200</td>
<td>19 to 26</td>
<td>300x480x200</td>
<td>LCZ 0627</td>
</tr>
<tr>
<td>040</td>
<td>stainless steel</td>
<td>200</td>
<td>30 to 40</td>
<td>300x750x200</td>
<td>LCZ 029</td>
</tr>
</tbody>
</table>

* Measured at top edge of bath, slightly reduced downwards
Bath / Circulation thermostats

<table>
<thead>
<tr>
<th>Accessories</th>
<th>suitable for</th>
<th>Ref. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bath cover</td>
<td>E 111</td>
<td>HDQ 079</td>
</tr>
<tr>
<td>Bath cover two parts</td>
<td>E 119, E 125</td>
<td>LCZ 0632</td>
</tr>
<tr>
<td>Stainless steel gable cover</td>
<td>E 220 T</td>
<td>LCZ 011</td>
</tr>
<tr>
<td>Stainless steel gable cover</td>
<td>E 119, E 125</td>
<td>LCZ 0634</td>
</tr>
<tr>
<td>Cover plate</td>
<td>E 115 T</td>
<td>LSZ 0115</td>
</tr>
<tr>
<td>Rising platform 8 steps</td>
<td>E 103</td>
<td>LCZ 0645</td>
</tr>
<tr>
<td>Rising platform 8 steps</td>
<td>E 1206 T</td>
<td>LCZ 0648</td>
</tr>
<tr>
<td>Rising platform 8 steps</td>
<td>E 112 T, E 111, E 120 T, E 119, E 125</td>
<td>LCZ 0635</td>
</tr>
<tr>
<td>Through-flow cooler DLK 10 to -10 °C</td>
<td></td>
<td>LFD 005</td>
</tr>
<tr>
<td>Through-flow cooler DLK 25 to -30 °C</td>
<td></td>
<td>LFD 108</td>
</tr>
</tbody>
</table>

For further information please contact us.
11 Circuit diagram
Circuit diagram

230V; 50Hz ◆ 230V; 50/60Hz ◆ [230V; 60Hz] at serial no: X01

E 1xx E 2xx E 3xx

A 1 Printed circuit board „Mains“ UL 487-1 UL 487-1 UL 487-1
A 2 Printed circuit board „Display“ UL 488-1A UL 488-1B UL 488-1C
A 3 Printed circuit board serial interface RS 232/RS 485 ------- UL 490 UL 490
A 4 Printed circuit board Mains LED-Backlight ------- ------- UL 492
A 5 Printed circuit board Display LED-Backlight ------- ------- EAO 015

B 1 Pt100 probe safety circuit ETP 057 ETP 057 ETP 057
B 2 Pt100 probe actual value

E 1 Heater 1,5 kW EH 168 ------- -------
E 2 Heater 2,25 kW ------- EH 169 EH 169

M 1 Pump motor EM 109 EM 109 EM 109

S 1 Mains switch EST 101 EST 101 EST 101

U 3 SSR (BRT22H) Y 1 output A1 ------- EYI 158 -------

X 1 Mains connection EKN 001 EKN 001 EKN 001
X 2 Lock screw 2x EQZ 048 2x EQZ 048
X 8 Connection socket Cooling (Stakei 2) ------- ------- EQK 004
X 10 Connection socket Cooling unit (Stakei 200) ------- ------- EQD 037
X 13 Housing 2pol. ------- ------- EQF 067
X 21 Plug strip terminal 12pol. EQF 079 EQF 079 EQF 079
X 23 Line up terminal 2pol. ------- ------- EZK 063

115V; 60Hz ◆ [100V; 50/60Hz] at serial no: X01

E 1xx E 2xx E 3xx

A 1 Printed circuit board „Mains“ UL 499 UL 499 UL 499
A 2 Printed circuit board „Display“ UL 488-1A UL 488-1B UL 488-1C
A 3 Printed circuit board serial interface RS 232/RS 485 ------- UL 490 UL 490
A 4 Printed circuit board Mains LED-Backlight ------- ------- UL 492
A 5 Printed circuit board Display LED-Backlight ------- ------- EAO 015

B 1 Pt100 probe safety circuit ETP 057 ETP 057 ETP 057
B 2 Pt100 probe actual value

E 1 Heater 1,3 kW at 115V 1,0 kW at 100V EH 171 EH 171 EH 171

M 1 Pump motor EM 109 EM 109 EM 109

S 1 Mains switch EST 101 EST 101 EST 101

U 3 SSR (BRT22H) Y 1 output A1 ------- EYI 158 -------

X 1 Mains connection EKN 003 EKN 003 EKN 003
X 2 Lock screw 2x EQZ 048 2x EQZ 048
X 8 Connection socket Cooling (Stakei 2) ------- ------- EQK 004
X 10 Connection socket Cooling unit (Stakei 200) ------- ------- EQD 037
X 13 Housing 2pol. ------- ------- EQF 067
X 21 Plug strip terminal 12pol. EQF 079 EQF 079 EQF 079
X 23 Line up terminal 2pol. ------- ------- EZK 063
Hiermit bestätigen wir, daß nachfolgend aufgeführtes LAUDA-Gerät (Daten vom Typenschild):
We herewith confirm that the following LAUDA-equipment (see label):
Par la présente nous confirmons que l’appareil LAUDA (voir plaque signalétique):

<table>
<thead>
<tr>
<th>Typ / Type / Type</th>
<th>Serien-Nr. / Serial no. / No. de série</th>
</tr>
</thead>
</table>

mit folgendem Medium betrieben wurde
was used with the below mentioned media
a été utilisé avec le liquide suivant

Darüber hinaus bestätigen wir, daß das oben aufgeführte Gerät sorgfältig gereinigt wurde,
die Anschlüsse verschlossen sind, und sich weder giftige, aggressive, radioaktive noch
andere gefährliche Medien in dem Gerät befinden.

Additionally we confirm that the above mentioned equipment has been cleaned, that all connectors are closed
and that there are no poisonous, aggressive, radioactive or other dangerous media inside the equipment.

D’autre part, nous confirmons que l’appareil mentionné ci-dessus a été nettoyé correctement, que les
tubulures sont fermées et qu’il n’y a aucun produit toxique, agressif, radioactif ou autre produit nocif ou
dangeureux dans la cuve.

<table>
<thead>
<tr>
<th>Stempel / Seal / Cachet</th>
<th>Datum / Date</th>
<th>Betreiber / Responsible person / Personne responsable</th>
</tr>
</thead>
</table>

Formblatt / Form / Formulaire: Unbedenk.doc
Erstellt / published / établi: LSC
Änd.-Stand / config-level / Version: 0.1
Datum / date: 30.10.1998

LAUDA DR. R. WOBSE R GmbH & Co. KG
Pfarstraße 41/43
D - 97922 Lauda-Königshofen
Internet: http://www.lauda.de
Tel.: +49 (0)9343 / 503-0
Fax: +49 (0)9343 / 503-222
E-mail: info@lauda.de

UNBEDENKEN.DOC