Design of high-strength Aluminum alloy castings – A case study on the importance of multicomponent diffusion to materials design

Abhijeet Misra, Ph.D.
Sr. Materials Design Engineer
amisra@questek.com
Schematic of **iCMD™** Framework

Phase I: Concept
- Define Goals
- Concept Generation
- Concept Evaluation

Phase II: Design
- Modeling
- Design
- Prototype

Phase III: Qualification
- Design Allowables Data
- Component Demo

Materials by Design®:
- System Engineering & Synthesis, Robust Design & Process Optimization
- **Tools:** iCMD Platform, iSIGHT, D3D

Accelerated Insertion of Materials:
- Uncertainty & Design Allowables Quantification.
- **Tools:** iCMD Platform, iSIGHT, DAKOTA, JMP

Mechanistic Models:
- Process-Structure and Structure-Property Models
- **Tools:** iCMD Platform, PrecipiCalc®, Thermo-Calc, DICTRA, ABAQUS, DEFORM, D3D

Processed Data:
- Thermo-Chemical, Kinetics and Property Databases
- **Tools:** Thermo-Calc, DICTRA, etc.

Proto Data:
- Experimental Data, First Principle Data
- **Tools:** Experiments, FLAPW, VASP, etc.
What Problem Were We Trying to Solve?

- Lightweight turbopump housings have traditionally been constructed as a welded fabrication of mostly wrought components.
- This approach introduces immense complexity and often produces multiple layers of inspection and rework that adversely impact the cost and schedule of part production.
- Transitioning to net shape cast structures is a successful strategy for controlling these costs.
- However, high strength Al alloys are prone to hot-tearing during casting limiting their castability.

Technical Objective:
Develop a hot tearing resistant castable 7xxx-series Al alloy capable of achieving RT yield strength > 70ksi
System Design Chart for Castable 7xxx-series Al Alloys

PROCESSING

STRUCTURE

1. Heat Treat
 • Solution Treat
 • RT Age
 • Elevated Temperature Age

2. Sand Casting
 • Cooling rate
 • Hot Spots

3. Pouring through CRP
 • Cooling rate
 • Exit Temperature

4. Raw Material Melting
 • Alloy Composition
 • Oxygen Content

5. Liquid
 - Sc and Zr content / Primary L1₂
 - Inoculants
 - Mg, Zn, Cu content
 - Primary Constituents ~1 μm (Fe, Mn, etc.)

6. Optimal Grain Structure
7. Minimum Freezing Range
8. Maximum Solidus Temperature
9. Maximum % Eutectic
10. Melt Fluidity
11. UTS = 80, 70, 60 ksi
12. Maximum Elongation

PROPERTIES

PERFORMANCE

- Castability / Hot-Tearing Resistance
- Strength
- Ductility / Embrittlement Resistance

• What structure gives the desired properties?
• What process results in the desired structure?
Integration framework for the design of castable 7xxx aluminum alloys

We have to design for the entire process – not just a single step
Databases – Thermodynamic and Mobility – They form the backbone of CALPHAD-based design
Development of Thermodynamic Database

Multicomponent thermodynamic database for stable and metastable phases successfully developed for Sc-modified 7xxxx Al alloys

- Al-Zn-Mg-Cu description from COST507 database evaluated and revised
- Sc added to revised Al-Zn-Mg-Cu database, including all relevant binary and ternary compounds
- L12 Al3(Sc,Zr) thermodynamics developed, incorporating solubilities of other elements
- Thermodynamic descriptions developed for metastable GP zones and η’

Calculated phase fractions in a 7xxx-series alloy using developed database
Metastable Phase Thermodynamics Description

- Low-temperature aging process of Al alloys – metastable phase variants are the primary strengthening phases
- For 7xxx-series alloys, typical precipitation sequence is:

 \[
 \text{FCC (supersaturated)} \rightarrow \text{GP zones} \rightarrow \eta' \ (T6) \rightarrow \eta \ (T7)
 \]
- Metastable phase descriptions were assessed using measured atom-probe data and DFT calculations
Mobility Database Development for Al based alloys

Liquid Phase

- Precipitation of primary $L1_2 - Al_3(Sc,Zr)$ from liquid is the most important phenomena
- Cannot rely on $D=1e^{-9}m^2/sec$ for all components in liquid
- Parameters for impurity diffusion of elements in liquid Al, liquid Cu, liquid Zn collected from literature.
- Estimates made when experimental data not available
- No interaction parameters included because of lack of experimental data.
- PrecipiCalc simulations carried out in the Al-Sc binary system to verify the liquid diffusivities.

FCC Solid

- Precipitation of strengthening phases (GP zones, η', η-MgZn$_2$) and secondary $L1_2-Al_3(Sc,Zr)$ are the important phenomena.
- Also important – back diffusion in FCC during solidification
- Full mobility matrix (including binary interaction parameters) assessed for the Al-Mg-Zn-Cu system.
- Sc, Zr, Fe and Mn present in impurity amounts; Impurity mobilities should be sufficient to capture the kinetics of those components.
Calibration and Validation of Mobility Database

Mobility database successfully developed for Sc-modified 7xxxx Al alloys for the Liquid and FCC phases.

Comparison of diffusivity predictions using developed mobility database (solid lines) with experimental data (a) Zn tracer diffusion in Al (b) Cu tracer diffusion in Al-Zn-Mg alloy
In-situ Inoculation Model –

• Inoculation is a commonly practiced method to refine grain structures in cast Al alloys
• Primary L1_2 particles can be designed to form prior to the main solidification and act as in-situ inoculants to refine the FCC grain structure
• This results in better hot tearing resistance and castability
Integration of Primary L1\textsubscript{2} and Inoculation Simulation

Legend:
- **Input Parameter**
- **Modeling Tool**
- **Output**

Solidification: Primary L1\textsubscript{2} & FCC

Homogenization:
- Secondary L1\textsubscript{2}
- Natural Aging: GP Zones
- Aging: \(\eta'\) replacing GP Zones

CALPHAD Thermodynamics and Mobility Databases
- Overall Compositions
- \(\sigma(L1\textsubscript{2}/LIQ)\)
- \(T(t)\)
- \(O_2\) Content
- \(\sigma(FCC/LIQ)\)

Thermo-Calc
- PrecipiCalc Primary L1\textsubscript{2}
- Compositions w/o Primary L1\textsubscript{2}
- L1\textsubscript{2} PSD
- Corrected L1\textsubscript{2} PSD
- FCC Grain Size

PrecipiCalc Inoculation
- \(T_1\) (FCC)

PrecipiCalc Secondary L1\textsubscript{2}
- \(\sigma(L1\textsubscript{2}/FCC)\)
- Sol treat \(T(t)\)

PrecipiCalc GP Zone
- \(\sigma(GP/FCC)\)
- Natural aging \(T(t)\)

PrecipiCalc \(\eta'\) & GP Zone
- \(\sigma(\eta'/FCC)\)
- Aging \(T(t)\)

Quenched-in vacancy & recovery

Strength Model
- \(\eta'\) size/fraction
- FCC Matrix composition

Strength

Secondary L1\textsubscript{2} size/fraction
- Composition w/o L1\textsubscript{2}
- GP Zone size distribution

iCMD Platform
Modeling of Primary L1₂ Precipitation

Continuous cooling samples

<table>
<thead>
<tr>
<th>Cooling Mode</th>
<th>dT/dt (°C/sec)</th>
<th>L1₂ Mean Radius (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>7xxx As-Cast</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exp. (2D)</td>
</tr>
<tr>
<td>Sand Mould</td>
<td>~7.5</td>
<td>6.33</td>
</tr>
<tr>
<td>Iron Wedge</td>
<td>~22</td>
<td>4.09</td>
</tr>
<tr>
<td>Copper Wedge</td>
<td>~200</td>
<td>1.2</td>
</tr>
</tbody>
</table>

- L1₂/liquid interfacial energy adjusted within PrecipiCalc model to match measured L1₂ mean particle size
Heterogeneous Nucleation Treatment for Primary L₁₂

- PrecipiCalc simulations using a homogenous nucleation model predicted a much narrower distribution of primary L₁₂ particle sizes as opposed to measured data.
- Oxygen leads to formation of oxide particles which act as heterogeneous nucleation sites for L₁₂ particles, and broadens PSD width.
- Experimental data was analyzed to correlate measured oxygen content with the width of measured PSD, and a calibration factor was deduced from the correlation.

Particles to the right of dashed red line are active inoculants.

Solid points: Measured data
Black curve: Fit to measured data
Red curve: Calibrated PrecipiCalc PSD

NIST Diffusion Workshop Series, May 3-4, 2012
Inoculation Model Mechanism

Primary L$_{12}$ particles act as inoculants for the formation of fine equiaxed grains.

Mechanism of grain initiation and growth (Greer et al., Acta Mat., 2000):

- Onset of growth is controlled by **growth constraint** rather than by nucleation.
- Initial FCC nucleus grows readily across the face of nucleant particle to form thin coating.
- Further growth possible only by reducing the radius of curvature of its interface with the melt (free growth). This radius cannot go below the critical r^* for nucleation unless the undercooling is increased, thus reducing r^*. The Critical condition for free growth is particle size $d = 2r^*$

Greer’s Inoculation Model implemented in PrecipiCalc:

1. Primary L$_{12}$ PSD from previous step.
2. Melt cools below FCC liquidus temp.
3. **Free growth** of FCC grains allowed to occur on the largest inoculant particles which satisfy criterion $d=2r^*$ (r^*=critical radius for nucleation).
4. As undercooling increases, r^* decreases, and smaller L$_{12}$ particles are activated as nucleants.
5. Growing FCC grains release latent heat, slowing the rate of cooling
6. Eventually the temperature rises (**recalescence**) – no more initiation of free growth, controlling the refinement of grain size.
Output of FCC Grain Inoculation Model

Predicted 7xxx Grain Size Contours with Varying Cooling Rate and Oxygen Content

<table>
<thead>
<tr>
<th>Mould</th>
<th>G.S (µm) (Meas.)</th>
<th>G.S (µm) (Pred.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>73</td>
<td>65</td>
</tr>
<tr>
<td>Iron</td>
<td>54</td>
<td>59.5</td>
</tr>
<tr>
<td>Copper</td>
<td>17</td>
<td>22.2</td>
</tr>
</tbody>
</table>

Inoculation model predictions.

MAGMA Simulation for Component castings

Cooling rates explored in wedge casting trials.

Sand mold
GS - 73 microns
Globular

Iron mold
GS - 54 microns
Equiaxed dendritic

Copper mold
GS - 17 microns
Globular

NIST Diffusion Workshop Series, May 3-4, 2012
Solidification: DICTRA simulations

- Segregation within the grains can be modeled using DICTRA solidification simulations
- This enables us to design the subsequent homogenization/solution heat-treatment to eliminate all microsegregation

Solute Segregation

Solidification Curve
Precipitation and Strength Model -

• Low-temperature aging process of Al alloys – metastable phase variants are the primary strengthening phases
• For 7xxx-series alloys, typical precipitation sequence is:
 FCC (supersaturated) \(\rightarrow\) GP zones \(\rightarrow\) \(\eta'\) (T6) \(\rightarrow\) \(\eta\) (T7)
Strength Model Flow Chart

Solidification:
- Primary L_1 & FCC

Temperature

Time

Legend:
- Input Parameter
- Modeling Tool
- Output

Homogenization:
- Secondary L_1
- Natural Aging:
 - η' replacing GP Zones
-Aging:
 - η' replacing GP Zones

CALPHAD Thermodynamics and Mobility Databases

- Overall Compositions
- $\sigma(L_1/\text{LIQ})$
- $T(t)$
- O_2 Content
- $\sigma(\text{FCC/LIQ})$

- PrecipCalc
 - Primary L_1
 - Compositions w/o Primary L_1
 - PSD Width Correction
 - Corrected L_1 PSD

- Thermo-Calc
- $T_1(\text{FCC})$
- L_1 PSD
- FCC Grain Size

- PrecipCalc Inoculation

- iCMD Platform

- PrecipCalc Secondary L_1
 - $\sigma(L_1/\text{FCC})$
 - Sol treat $T(t)$

- PrecipCalc GP Zone
 - $\sigma(\eta'/\text{FCC})$
 - Aging $T(t)$

- PrecipCalc η' & GP Zone
 - Quenched-in vacancy & recovery

- Strength Model
 - η' size/fraction
 - FCC Matrix composition

- Strength

Secondary L_1
 - size/fraction

Composition w/o L_1
 - GP Zone size distribution

GP Zone size distribution

η' size/fraction

Materials By Design®

NIST Diffusion Workshop Series, May 3-4, 2012
Modeling Secondary L_{12} Precipitation

- PrecipiCalc model was calibrated to existing literature data for secondary L_{12} precipitation.
- Solid lines: PrecipiCalc Simulations; Data points: Experimental literature data.
- Accurately reproduced in region of practical interest.
Modeling GP zone Precipitation

- GP zones precipitate homogenously at RT – act as nucleating sites for subsequent η' formation
- Role of quenched-in vacancies is extremely important – used as a multiplication factor to diffusivity matrix
- Accurately reproduced in region of practical interest

Quenched-in vacancies

Annealing of vacancies

$$S = \frac{C_{Vq}}{C_{V}^{298}} = \exp\left[\frac{-E_f}{k_B \left(\frac{1}{T_q} - \frac{1}{298}\right)}\right]$$

$$\frac{C_{V}^{Excell}}{C_{V}^{Equilibrium}} = 1 + S \exp(-K_1 t)$$

$$K_1 \approx \rho \nu \lambda^2 \exp\left(-\frac{E_m}{k_B T}\right)$$
Modeling Eta-prime Precipitation

- η’ particles are the primary strengthening particles in 7xxx series Al alloys in the T6 peak-aged condition, and nucleate heterogeneously on existing GP zones upon heating to T>70°C

- Typical T6 treatment temperatures for 7xxx-type alloys are 120-150°C, at which point most GP zones dissolve and the predominant precipitates are η’ particles

- Accurately reproduced in region of practical interest
Characterization of Precipitates in a 7xxx Alloy

Secondary L₁₂

460°C/20hrs (TEM)

ST+ 30°C/2 days (LEAP)

SHT+ 30°C/2 days + 140°C/10hrs (LEAP)

Eta-prime

GP zone

30 10 5 0 -5 -10 -15 -20

300 250 200 150 100 50

-5 350 300 250 200 150 100 50

X

Materials By Design®

www.questek.com

NIST Diffusion Workshop Series, May 3-4, 2012

23
Validation of PrecipiCalc model predictions

- PrecipiCalc model predictions show good agreement with experimentally measured data for a 7xxx-series alloy.
Strength Modeling: Calibration

- Mechanistic precipitation strength model for Al-alloys developed at QuesTek, based on:
 - Orowan by-pass and Friedel shear-cutting models.
 - Solid solution strengthening: atomic size and elastic modulus mismatch.
 - Dislocation strengthening: based on Nes’s dislocation recovery model.
 - Hall-Petch grain size effect.
- Strength model was first calibrated to literature data.
- Developed model was used to predict the strength of aged SSA018 alloy, at different thermal treatment conditions.

\[
\sigma_y = M\left(\tau_0 + \tau_d + \tau_s + \tau_p\right)
\]

\[
\tau_p = \left(\sum_i \left(\tau_{p,i}\right)^{\frac{1}{k}}\right)
\]

\[
\tau_d(t) = \alpha \mu b \sqrt{\rho(t) + \frac{k_1 \theta}{b \delta(t)}}
\]

Data and model prediction

Prediction/Data ratio
Comparison of Measured Yield Strength Values with Predictions

Most predictions are within ±5 ksi.

Explanation of T6 temper:
- For SSA0xx alloys: 460°C/48hrs+RT/2days+120°C/19hrs
- For 99Des alloys: 475°C/1hr+RT/3days+160°C/1-5hrs
- For wrought 7xxx alloys: 465°C/1hr+RT/1day(assumed) + 120°C/24hrs

Data Source
Design Optimization – Design of high strength 7xxx-series castable alloys by using the developed models
Strength-Solidification Maps with Varying Zn, Mg, and Cu

Constraints:
- Strength
- Freezing range
- Scheil solidus temperature
- % Eutectic

Blue lines: Yield strength iso-contours (ksi)
Green lines: % Eutectic (Scheil)
Red lines: Scheil Freezing range (°C)
Yellow lines: Scheil solidification Temperature (°C)

NIST Diffusion Workshop Series, May 3-4, 2012
Simulation of Casting Process: Primary L$_{12}$ <R> and FCC Grain Size

Assumed 80 ppm O
Alloys were designed to achieve a cast FCC grain-size of ~50\(\mu\text{m}\) (for optimal hot-tearing resistance), and yield strength levels of 70ksi and 78ksi.

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Grain size (microns)</th>
<th>YS (ksi)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Predicted</td>
<td>Measured</td>
</tr>
<tr>
<td>M1</td>
<td>54</td>
<td>48.5</td>
</tr>
<tr>
<td>H1</td>
<td>48</td>
<td>45</td>
</tr>
</tbody>
</table>

Alloys showed good resistance to hot-tearing in dog-bone testing due to in-situ inoculation and solidification optimization.
Summary

• Alloy design involves number of complex structures and processes
 – We have to account for all of these different structures/processes
• Multicomponent diffusion plays a key role in almost all processing steps
 – Without accurate databases designs will be empirical and limited – impossible to design for complex industrial processes
• The required fidelity of the databases is driven largely by the design needs
 – We need to be able to accurately model the “region of interest”
• Top-down approach
 – Design framework drives model/database development