RIETVELD REFINEMENT OF REAL STRUCTURE PARAMETERS OF DISORDERED CLAY MINERALS IN PHASE MIXTURES

K. Ufer1) and R. Kleeberg2)

1) Federal Institute for Geosciences and Natural Resources, Hannover, Germany
2) Institute of Mineralogy, TU Bergakademie Freiberg, Freiberg, Germany
clays and hydrocarbons

project:

Nicht-konventionelle Kohlenwasserstoffe (non-conventional hydrocarbons in Germany)

Germany’s potential for shale oil and shale gas

shale: sedimentary rock which contains quartz, carbonates and clay minerals
clay minerals in shales

carbonates

quartz

brittleness diagram

clay
layer silicates – structural units

SiO$_4$ M(O,OH)$_6$ M: Al$^{3+}$, Mg$^{2+}$, Fe$^{2+/3+}$

dioctahedral trioctahedral

peak overlapping, rotational/translational disorder, mixed layer stacking

kaolinite
serpentinite
pyrophyllite
talc
smectite
mica
illite
chlorite
turbostratically disordered smectite

turbostratically disordered smectite
supercell approach

Ufer, K. et al. (2004), Z. Kristallogr., 219, 519-527
Rietveld code BGMN

- fundamental parameter approach
- automatic refinement strategy
- spherical harmonics for correction of preferred orientation
- expression interpreter
- solving linear equation systems (complex)
- manipulation of complex structure amplitudes
- ASCII textfile controlled input and output

turbostratically disordered smectite

BGMN structure input file:

PHASE=smectite SpacegroupNo=5 HermannMauguin=C121
PARAM=A=0.52_0.517^0.521 PARAM=B=0.898_0.894^0.91
PARAM=c0=1.54_1.45^1.6
BETA=100.2

layer==10 // layer: factor for elongation in c direction
C=c0*layer // C: lattice parameter c for supercell…

…
PARAM=GEWICHT=0_0
GEWICHT[1]=GEWICHT*ifthenelse(and(eq(h,0),eq(k,0)),
ifthenelse(mod(l,layer),0,layer),1)

…

* * *

*: quartz, pyrophyllite
artificial mixture “synthetic bentonite”

<table>
<thead>
<tr>
<th></th>
<th>Initial weight-%</th>
<th>calculated wt.-%±3σ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Measurement 0.03° 3 sec 0.02° 20 sec</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R_{exp} 5.2 2.6 R_{wp} 7.1 5.4</td>
</tr>
<tr>
<td>smectite</td>
<td>71-73</td>
<td>72.8±2.7 71.3±1.9</td>
</tr>
<tr>
<td>amorphous</td>
<td>4-6</td>
<td>4.5±3.3 6.0±2.1</td>
</tr>
<tr>
<td>plagioclase</td>
<td>5</td>
<td>4.4±0.4 4.5±0.3</td>
</tr>
<tr>
<td>Alkali feldspar</td>
<td>5</td>
<td>5.3±0.6 5.4±0.5</td>
</tr>
<tr>
<td>calcite</td>
<td>3</td>
<td>2.7±0.5 2.5±0.3</td>
</tr>
<tr>
<td>quartz</td>
<td>10</td>
<td>10.2±0.4 10.3±0.3</td>
</tr>
</tbody>
</table>

10% zincite as internal standard

Ufer, K. et al. (2008), Clays and Clay Minerals, 56, 272-282
stacking disorder

- different kinds of layers
- different interlayer spacings
- translations/rotations from one layer to the next

polytypism:
- muscovite 1M, 2M₁, 3T
- new structures:
 - corrensite
 - rectorite,…

statistical description:
- muscovite 1M_d
- illite / smectite ML

ordered

1M

2M₁

3T

disordered
Recursive calculation of structure factors: DIFFaX

\[\Psi(u) = F(u) + \exp(-2\pi i u \cdot R) \Psi(u) \]

\[\Psi_i(u) = F_i(u) + \sum_{j=1,2} a_{ij} \exp(-2\pi i u \cdot R_{ij}) \Psi_j(u) \]

Translation, Probabilities

N=3 FMult=3 // N: number of layer types, FMULT: number of subphases
// rotated layers must be introduced as additional subphase
// 0 deg, 120 deg, 240 deg for tv layer types: total of 3 different subphases

// translation in c for illite (absolute scale)
t1=0.39 // stacking vector to compensate monoclinic shift

// probabilities for different stackings
p0=0.75 // p0: probability of 1M "ordered" stacking
p120=0.15 // 120 deg and 240 deg rotations are equiprobable
p240=0.15

// translation matrix t[n,m]: stacking vector from layer n to layer m
// p[n,m]: probability for the occurrence of translation t[n,m]

\[\begin{align*}
 tx[1,1] &= -tatv \\
 ty[1,1] &= 0.0 \\
 tz[1,1] &= tI/C \\
 p[1,1] &= p0 \\
 tx[1,2] &= -tatv \\
 ty[1,2] &= 0.0 \\
 tz[1,2] &= tI/C \\
 p[1,2] &= p120 \\
 tx[1,3] &= -tatv \\
 ty[1,3] &= 0.0 \\
 tz[1,3] &= tI/C \\
 p[1,3] &= p240 \\
 tx[2,1] &= 0.5*tatv \\
 ty[2,1] &= -tatv*A*cos(30*pi/180)/B \\
 tz[2,1] &= tI/C \\
 p[2,1] &= p240 \\
 tx[2,2] &= 0.5*tatv \\
 ty[2,2] &= -tatv*A*cos(30*pi/180)/B \\
 tz[2,2] &= tI/C \\
 p[2,2] &= p0 \\
 tx[2,3] &= 0.5*tatv \\
 ty[2,3] &= -tatv*A*cos(30*pi/180)/B \\
 tz[2,3] &= tI/C \\
 p[2,3] &= p120 \\
 tx[3,1] &= 0.5*tatv \\
 ty[3,1] &= tatv*A*cos(30*pi/180)/B \\
 tz[3,1] &= tI/C \\
 p[3,1] &= p120 \\
 tx[3,2] &= 0.5*tatv \\
 ty[3,2] &= tatv*A*cos(30*pi/180)/B \\
 tz[3,2] &= tI/C \\
 p[3,2] &= p240 \\
 tx[3,3] &= 0.5*tatv \\
 ty[3,3] &= tatv*A*cos(30*pi/180)/B \\
 tz[3,3] &= tI/C \\
 p[3,3] &= p0
\end{align*} \]

// recursive structure factor calculation
\[F = \text{cat}(i=1, \text{while}(i<N), j=1, \text{while}(j<N), \text{while}(j<i), \text{while}(j<i)) \]
\[FT = \text{detune}(p[i,j], p[i,j] = 2*pi^i * h(tx[i,j], ty[i,j], tz[i,j]), \text{Treal}(i,j) = \text{FT} * \text{cos}(phi[i,j]), \text{Timag}(i,j) = \text{FT} * \text{sin}(phi[i,j]), \text{Freal}(i,j), \text{Fimag}(i,j) = \text{sqrt}(F(i,j)) \]

disorder models

applicable for:
• stacking of different kinds of layers (even with different thicknesses)
• translations of layers parallel to each other
• rotation of layers parallel to each other

existing models:
• illite and glauconite (rotational disorder)*
• illite/smectite mixed layering*
• kaolinite (enantiomorph layers, b/3 translations)
• pyrophyllite (different translation vectors)
• talc (rotational disorder)
• chlorite (b/3 translations)
• opal-ct
• layered double hydroxides*

* published
illite/smectite mixed layered minerals

- 00l reflections
- Smectitic interlayers:
 - Turbostratic disorder
 - Different layer thicknesses
 - Long range ordering ("Reichweite")
 - Reichweite => range of influence

- Hk reflections
- Illitic interlayers:
 - Translational / Rotational disorder

- 2 different effects / classes!

Jagodzinski, H. (1949), Acta Crystallographica, 2, 201-207
illite/smectite mixed layered minerals

model for 00l reflections:
- different junctions of illite, smectite(1w), smectite(2w)
- short- or long-range ordering; Reichweite R0-R3
- proportions (wI, wS) and stacking probabilities (pII, pIS,..)

model for hk reflections:
- n120° rotational disorder (0°, 120°, 240°)
- different translation vectors

global (shared) parameters
- lattice parameter
- atomic positions
- occupancies
- scaling factor, P.O. factor

Bundesanstalt für Geowissenschaften und Rohstoffe

GEOZENTRUM HANNOVER
illite/smectite pure sample

separate but connected models:
n120° rotational disorder
R3 illite/smectite(1w)/smectite(2w)

control file *.sav:
%
% connected parameters
PARAM[3]=GEWICHTconnected=0.01_0
PARAM[4]=prefercconnected=0_-2^2
PARAM[5]=Aconnected=0.52_0.5^0.528
PARAM[6]=tIconnected=1=0.98^1.02
...

structure file 00l.str:
...
// Scaling of intensity and correction of preferred orientation
GEWICHT=GEWICHTconnected
preferc=prefercconnected
GEWICHT[1]=layer*anisosqr(1-preferc/2,1-preferc/2,1+preferc)*GEWICHT
...

structure file hk.str:
...
// Scaling of intensity and correction of preferred orientation
GEWICHT=GEWICHTconnected
preferc=prefercconnected
GEWICHT[1]=layer*anisosqr(1-preferc/2,1-preferc/2,1+preferc)*GEWICHT
...
smectite / IS mixtures

- **Pure IS**
 - $w_I = 0.8718$
 - $p_0 = 0.6597$

- **66.7 wt.-% IS, 33.3 wt.-% smectite**
 - $w_I = 0.8459$
 - $p_0 = 0.6408$
 - 65.1 wt.-% IS
 - 31.9 wt.-% smectite
 - 3.0 wt.-% quartz

- **33.3 wt.-% IS, 66.7 wt.-% smectite**
 - $w_I = 0.8329$
 - $p_0 = 0.5805$
 - 34.1 wt.-% IS
 - 63.8 wt.-% smectite
 - 2.1 wt.-% quartz

- **10.0 wt.-% IS, 90.0 wt.-% smectite**
 - $w_I = 0.7966$
 - $p_0 = 0.5430$
 - 22.0 wt.-% IS
 - 76.6 wt.-% smectite
 - 1.4 wt.-% quartz

- **33.3 wt.-% IS, 66.7 wt.-% smectite**
 - $w_I = 0.8329$
 - $p_0 = 0.5805$
 - 34.1 wt.-% IS
 - 63.8 wt.-% smectite
 - 2.1 wt.-% quartz
artificial mixture “synthetic shale” - QPA

1/3 IS, 2/3 smectite: 30 wt.-%
1/2 quartz, 1/2 calcite: 70 wt.-%

10 wt.-% illite/smectite
20 wt.-% smectite
35 wt.-% quartz
35 wt.-% calcite

refinement result:
11.2 wt.-% illite/smectite
18.4 wt.-% smectite
35.0 wt.-% quartz
35.4 wt.-% calcite
"synthetic shale" – structural parameters

Refinement result:

<table>
<thead>
<tr>
<th></th>
<th>Pure IS</th>
<th>30:70 Mixture</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_l</td>
<td>0.8718</td>
<td>0.8368</td>
</tr>
<tr>
<td>p_0</td>
<td>0.6597</td>
<td>0.333</td>
</tr>
</tbody>
</table>

The diagram shows the X-ray diffraction peaks for different minerals in synchrotron X-ray diffraction (SXRD) data, indicating the structural parameters of the synthetic shale. The peaks are color-coded for different minerals: illite-smectite (yellow), smectite (blue), quartz (green), and calcite (red).
smectite / IS mixtures: simulations

input (simulation)

50 wt.-% smectite (40% 1w)
50 wt.-% IS (R0, 40% 1w)

wl=0.6
p0=0.333

parameter reduction,
additional information:

wl=0.6 (fixed) + chemical composition of IS

output (refinement)

42.5 wt.-% smectite
57.5 wt.-% IS

wl=0.4765
p0=0.411

input (simulation)

50 wt.-% smectite (0% 1w)
50 wt.-% IS (R0, 0% 1w)

wl=0.6
p0=0.334

output (refinement)

50.5 wt.-% smectite
49.5 wt.-% IS

p0=0.334
combined refinement

Preparation of random powder sample and oriented mounts under different conditions ("multi-specimen")

Suspension of clay minerals on glass slides or ceramic tiles

15 global parameters

I/S(1w,2w) 6 individual parameters

EG intercalated I/S 7 individual parameters

I/S1w2w 1Md, cv/tv, 120° rot. 18 individual parameters

Air-dried

EG intercalated

Rand. powdered

wl=0.86+-0.0012

Sakharov, B.A. et al. (1999), Clays and Clay Minerals, 47, 555-566
statistical tools for sample selection

Posidonia shale
72 core samples, 1 sample per meter

correlation matrix from XRF chemical data

cluster analysis from XRD data
QPA with 4 different models

Reichweite 0
\[R_{wp} = 7.45\% \]

Reichweite 1
\[R_{wp} = 7.40\% \]

Reichweite 2
\[R_{wp} = 7.41\% \]

Reichweite 3
\[R_{wp} = 7.56\% \]
QPA with different models

<table>
<thead>
<tr>
<th>Mineral Type</th>
<th>IS, R0 (%)</th>
<th>IS, R1 (%)</th>
<th>IS, R2 (%)</th>
<th>IS, R3 (%)</th>
<th>Turbostratic (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Illite/Smectite</td>
<td>32.9</td>
<td>32.3</td>
<td>32.4</td>
<td>33.4</td>
<td>15.6</td>
</tr>
<tr>
<td>Smectite</td>
<td>15.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaolinite</td>
<td>21.5</td>
<td>21.3</td>
<td>21.3</td>
<td>21.4</td>
<td>15.7</td>
</tr>
<tr>
<td>Chlorite</td>
<td>4.3</td>
<td>4.7</td>
<td>5.0</td>
<td>4.6</td>
<td>16.7</td>
</tr>
<tr>
<td>Muskovite 2M1</td>
<td>8.5</td>
<td>8.7</td>
<td>8.6</td>
<td>8.5</td>
<td>19.3</td>
</tr>
<tr>
<td>Quartz</td>
<td>18.0</td>
<td>18.0</td>
<td>17.9</td>
<td>17.8</td>
<td>16.2</td>
</tr>
<tr>
<td>Calcite</td>
<td>5.2</td>
<td>5.2</td>
<td>5.2</td>
<td>5.1</td>
<td>5.0</td>
</tr>
<tr>
<td>Siderite</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.6</td>
</tr>
<tr>
<td>Ankerite</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
<td>2.4</td>
<td>2.3</td>
</tr>
<tr>
<td>Plagioclase (16An)</td>
<td>1.2</td>
<td>1.2</td>
<td>1.3</td>
<td>1.1</td>
<td>2.9</td>
</tr>
<tr>
<td>Rutile</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Anatase</td>
<td>1.5</td>
<td>1.5</td>
<td>1.4</td>
<td>1.4</td>
<td>1.8</td>
</tr>
<tr>
<td>Pyrite</td>
<td>2.6</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.8</td>
</tr>
</tbody>
</table>

Notes
- QPA independent of the choice of model for Reichweite even with wrong smectite model the same sum of clay
conclusion

• disordered clay minerals can reliably be quantified in mixtures with the Rietveld method

• even mixtures of very similar structures like smectite and IS can be quantified, if the degree of disorder is not too high and sensible constraints/fixations were made

• for a reliably structural characterisation detailed examinations are necessary

• the sum of all clay minerals can be achieved even with unfavorable models