Non-ambient Diffraction in the Laboratory Environment

Pamela Whitfield

Accuracy in Powder Diffraction IV, NIST, April 2013
Overview

• Why work in the lab when synchrotron data is better?
 • ‘A bird in the hand….’ (i.e. access!)

• Commercial stages
 • Some example developments
 • Sample displacement – the old irritant…

• DIY setups
 • Considerations and ‘mind-set’
 • Low temperature capillary – high speed data with mirror optics & PSD
 • High gas pressure – a special case and big headache?
 • Iron ore sintering - high speed data collection using curved PSD
Commercial vendors…

- Some developments…
 - Tensile test stage
 - Dome stages for 2D detectors
 - Extremely-low temperature
 - Close-cycle coolers → cryogen-free cold stream
 - Combined XRD-DSC (Rigaku)

Anton-Paar TS 600

Oxford Cryosystems Phenix

mri BTS-BASIC

Cryo Industries close cycle cooler
Sample displacement – different approaches

- Z-stepper motor on HTK1200 oven

Triclinic-hexagonal phase transition of $\text{Ca}_{10}(\text{AsO}_4)_6\text{F}_2$ apatite in HTK1200 equipped with z-stepper motor

- Has to be properly calibrated

Parallel-beam geometry

- No sample displacement peak shifts

Can have confidence that these shifts are real...

\(\alpha \rightarrow \beta \)-quartz transition

shift in \(\alpha \)-quartz lattice expansion only

\(\text{Al}_2\text{O}_3 \) 104 reflection with displacement (twin mirrors)
Parallel-beam: the down-side

- Lower peak resolution
- Choice of Soller slits a factor….

Comparison of the main quartz reflection from different optics
No-one sells what you want? now the fun starts…

• Mind set – it’s a complete system, not just a stage

• Some engineering restrictions
 • Size
 • Stage weight (vertical goniometers)
 • Access to pass-throughs
 • $\theta-\theta$ (don’t foul arms!)
 • Door closure

Example where engineering restrictions complicate things:

Bulk (clearance+heat)
Heavy – 10kg
High pressure line pass-through transducer, thermocouples & heaters
Low temperature capillary work

• System specced and built specifically for rapid low T non-ambient phase studies with large capillaries
 (before Oxford Cryo Compact was available!)

• Laminar flow along capillary axis minimizes LN2 usage without icing (goniometer heat shield needed)

• Vertical goniometer
 • Limited space for nozzle

• Long transfer line not good (if you can get it inside)
 • Put dewar inside the cabinet?
Look familiar?

Figure 1. Experimental Diagram

Figure 2. Experimental Mess
NH$_4$NO$_3$ phase transitions

- Focussing mirror optics, cryoflow with linear PSD
- Snapshots, 8° window, 2 second datasets every 2°C
- Continuous temperature ramp (0.1°C/s)

Proof of concept. Phase transitions of NH$_4$NO$_3$
Something more practical….

- Ability to automate complex ramp-soak programs
- 4 minute datasets - shorter than ramp/dwell times
- 48 datasets in ~7 hours

Phase behaviour of the Li-battery electrolyte solvent dimethyl carbonate
Beyond CuK$_\alpha$...

- Engineering for high pressures often dictates use of higher energies for optimal usage..

- 1$^{\text{st}}$ mainstream company to venture down this route.....?

- Anton-Paar HPC-900
 - 100 bar pressure for H$_2$, etc
 - Requires MoK$_\alpha$
 - Not a simple add-on
DIY under pressure?

• Home-designed and built pressure vessels?
• Space for sample stage and ancillary stuff limited
• The elephant in the cupboard
 • The pressure codes (ASME in North America) 😞
 • Restricts the materials you can use
 • What conditions you can use them under (max stress, temp)
 • Design concepts and validation
 • QC and manufacture

Just one of the ASME pressure codes…
DIY thought process... 300bar, 300°C

- 3 years from concept to delivery
- No modifications – have to think of everything 1st time!

Cover retention. Strong enough but removable using 12 tapered pins

Holes for tapered pins

Heavy-duty! Strong enough at temp with ASME allowables + a bit

Corrosion-resistant C22 Ni superalloy. Adjustable Ta knife-edge

Fittings also need to be corrosion-resistant
300bar NRC pressure vessel

- Window is the weak-spot
 - Swagelok-type seal (regulator comfort!)
 - Be window material for transmission
 - Be corrosion protection?
 - Strength? (structural grade SR200)
- Windows 6¼ mm thick Be
 - 2μm Ta coating
- Interior flooded with water/steam
- Interior beampath ca. 15 mm
- Penetration is key…..
The exception rather than the rule…

- In this case AgK\(\alpha\) (22 keV) needed for increased transmission
- Has consequences….
 - Getting hold of a tube
 - 1.5kW versus 3kW (LFF)
 - Require new PSD optimized for higher energies
 - Pd \(\beta\)-filter effects even worse
- Difference between no signal and some signal
 - Increase in accuracy = \(\infty\) 😊

Calculated transmission through the GEN1 pressure stage at different energies
Can you actually see anything?

- Worst case - fully flooded with cold water
- Total beampath
 - 12.5mm Be, 8µm Ta, 15mm water

View through dummy windows

SRM1976 plate
20 minute scan
AgKα
500µm Lynxeye (no monochromator/mirror – budget cut!)
Anything else easy in comparison...

- Autoclave conditions \(~190^\circ C\)
- \(161\text{psi steam} + 100\text{psi CO}_2\)
Iron Ore Sintering - *In Situ* X-ray Diffraction

Industrial sinter machine

Heating Regime 25-1350-25°C
pO₂ = 5 x 10⁻³ atm

High-temperature chamber
Detector
X-rays
Gas inlet

Australian Synchrotron
Introduction – Industrial Context

- Iron ore sintering = important stage of the steelmaking process
- SFCA is the ‘glue’ phase for sinter

SFCA and SFCA-I bonding matrix

- **Iron ore fines**
 - < 6.3 mm Fe₂O₃, FeOOH

- **CaCO₃ flux**
- **~1300°C**

- **SFCA** = Silico-Ferrite of Calcium and Aluminium
 - SFCA = $M_{14}O_{20}$, SFCA-I = $M_{20}O_{28}$, M = Fe, Ca, Si, Al

Results – Heating, 25-1350°C

Fe$_3$O$_4$ + melt

SFCA
SFCA-I

CaFe$_2$O$_4$

Ca$_2$Fe$_{2-x}$Al$_x$O$_5$

*New phase

Iron Ore Sinter Studies
Laboratory Based *in situ* Data Collection

- Beamtime hard to get
 - Waiting time ~ 6 months
- Once phases known from synchrotron experiments – use lab instrumentation
- INEL CPS120
 - Incident beam, multilayer mirror for high intensity
- CoK$_\alpha$

![Image of lab diffractometer setup]

- High temperature chamber to 1500°C
- X-ray optics
- Gas inlet
- Gas outlet
- Detector
- Strip heater
- Lab diffractometer setup
Iron Ore Sinter Studies

Laboratory Based *in situ* Data Collection

- Heating rate
 - 20°C min⁻¹, 25 → 600°C
 - 10°C min⁻¹, 600 → 1350°C

- Data collection time
 - 30 sec for 120° 2θ

- Resolution not as good as synchrotron but most information still visible

- Problem
 - Industry not so interested if conditions not close to real processing conditions
Actual Industrial Heating Rates? Attempt to Emulate in Laboratory

- Heating rate
 - 200°C min⁻¹, 25 → 1350°C

- Data collection time
 - 6 sec for 120° 2θ

- Major and some minor phases still apparent

Typical industrial time-temperature profile
Conclusions

• Lab studies still have a role to play
 • Easy access and the freedom to ‘play’

• Think holistically!
 • In-situ stages don’t work in isolation
 • Source, optics and detector can be changed/tweaked
 • Integration with diffractometer systems desirable but not vital

• Think beyond CuKα

• High gas pressure is a real pain (or the regulations are)
 • “abandon hope all ye who pass here!”
Acknowledgements

• Ian Madsen
 • Iron ore sintering study

• Cryo Industries of America
 • Customizing one of their cryo systems for my needs…

• Jim Ross (NRC-DFS) and All-Weld
 • High pressure gas cell
Questions?

"If I have 3 bones and Mr. Jones takes away 2, how many fingers will he have left?"