High Performance Hybrid Pixel Detector and its Applications

4/22/2013

Yasukazu Nakaye, Ph.D.
Rigaku Co.
Why we need 2D?

Counting and Integrating

Types of Detectors

Specification and Performance
Outline

Why we need 2D?

Counting and Integrating

Types of Detectors

Specification and Performance
Why we need 2D?

What is important for “Accuracy”?

All Limited by Detector!

Higher data quality
What is the “Ideal” X-ray Detector

X-ray Photon

Direction (α, β)

Position (x, y)

Energy, Phase

Detector

Never misses photons!

Why we need 2D?
Why we need 2D?

Single Crystal

Powder
 • Texture
 • Orientation

Ideal Powder

2D

1D

6/24
Outline

Why we need 2D?
Counting and Integrating
Types of Detectors
Specification and Performance
Counting and Integrating

X-ray Photon

Photon Integrating
- Integrates all charge generated by photon and noise.

Photon Counting
- Discriminate X-ray pulse from noise by height.
Detector Materials

<table>
<thead>
<tr>
<th>Photon Integrating</th>
<th>Photon Counting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphor</td>
<td>Semiconductor</td>
</tr>
<tr>
<td>• CCD</td>
<td>• HPAD (Hybrid Pixel Array Detector)</td>
</tr>
<tr>
<td>• CMOS</td>
<td></td>
</tr>
<tr>
<td>IP (Image Plate)</td>
<td>Gas</td>
</tr>
<tr>
<td></td>
<td>• MWPC (Multi-Wire Proportional Counter)</td>
</tr>
<tr>
<td></td>
<td>• MPGD (Micro-Pattern Gas Detector)</td>
</tr>
<tr>
<td>X-ray Film</td>
<td></td>
</tr>
</tbody>
</table>
Outline

Why we need 2D?

Counting and Integrating

Types of Detectors

Specification and Performance
Charge Coupled Device (CCD)

Single Pixel
Electrons are integrated in a potential well

X-ray Photon

Phosphor

Gate electrodes

Similar to shift register
Complimentary Metal-Oxide Semiconductor (CMOS)

Similar to random access memory
Types of Detectors

Micro-Pattern Gas Detector (MPGD)

Direct Detection by Gas

- Delay line readout: Global count rate limitation

Window

Gas ionization

Micromesh

X-ray Photon

Conversion

Amplification

HV_{drift}

HV_{amp}

Readout strips
Hybrid Pixel Array Detector (HPAD) : Closest one to the Ideal Detector

Direct detection

X-ray Photon

Sensor

ROIC

CSA
Shaper
Comparator
Counter
Compare HPAD to CCD, CMOS and MPGD

<table>
<thead>
<tr>
<th>Types of Detectors</th>
<th>Photon Integrating</th>
<th>Photon Counting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CCD</td>
<td>CMOS</td>
</tr>
<tr>
<td>Sensitivity at Cu K (electron/photon)</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>Read noise (electron, rms)</td>
<td>~ 20</td>
<td>~ 200</td>
</tr>
<tr>
<td>Dynamic range</td>
<td>10^4</td>
<td>10^4</td>
</tr>
<tr>
<td>Dark Current (photons/sec/µm²)</td>
<td>~ 10^{-7}</td>
<td>~ 10^{-5}</td>
</tr>
<tr>
<td>Readout time</td>
<td>~ 1000 ms</td>
<td>~ 500 ms</td>
</tr>
</tbody>
</table>
Outline

Why we need 2D?

Counting and Integrating

Types of Detectors

Specification and Performance
Comparison of photon integrating and counting

<table>
<thead>
<tr>
<th></th>
<th>Photon Integrating</th>
<th>Photon counting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detector Material</td>
<td>Phosphor (CCD, CMOS), IP, Film</td>
<td>Semiconductor, Gas</td>
</tr>
<tr>
<td>Energy resolution</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Dark Current</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Read noise</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Dead time</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Application Fields</td>
<td>Lab, SR, XFEL</td>
<td>Lab, SR</td>
</tr>
</tbody>
</table>
Detective quantum efficiency
HPAD (Si 300 μm) 99 % @ 8.04 keV
MWPC, MPGD (3 atm, 1 mm) 80 % @ 8.04 keV

Spatial resolution
HPAD = 1 pixel (∼ 100 μm)
MPGD ∼ 250 μm FWHM Gaussian

Count rate
HPAD local 100 kcps / pixel
MPGD local 100 kcps / pixel
global 2 Mcps
HPAD Chip Specifications

<table>
<thead>
<tr>
<th>Detector</th>
<th>Medipix 2</th>
<th>PXD-18k*</th>
<th>XPAD3</th>
<th>PILATUS II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel Size</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Count rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy resolution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Read time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Specification and Performance

Zero dead time Measurement

Read time: 7 ns (571 fps)

Read time: 3.7 ms (183 fps)

Exposure time 1.75 ms / frame

Switch between 2 Counters
Time Delay Integration (TDI)

Integrated Image

Increases sensitivity & area
Decreases “wall time”
Time Delay Integration (TDI)

Sample: LaB$_6$
Scan Speed: 10°/min
Cu Target: 40 kV, 30 mA

TDI Image

Single Image

60 deg 40 deg 20 deg
Summary

2D detector
 • More information and shorter measurement time

Photon counting
 • Very high signal to background ratio

Hybrid pixel array detector
 • High quantum efficiency and spatial resolution

Fast readout (Zero dead time mode)
 • In-situ measurement

HPAD promises us a higher quality of data.
Thank You
Copyright notice

Copyright © 2013 — Rigaku Corporation and its Global Subsidiaries. All Rights Reserved.

The textual, photographic, video, audio, and combined audiovisual materials and documents resulting from the promotional or educational activities of Rigaku Corporation and its Global Subsidiaries, including the material contained on the various Corporate Web sites, are protected under U.S., Japanese and international laws as copyrighted works. Anyone who displays, reproduces, copies, creates derivative works, or sells our textual, photographic, multimedia, PowerPoint, video or audiovisual programs for commercial or non-commercial purposes without our permission violates the copyright laws and is liable for copyright infringement.

Likewise, Rigaku Corporation (and its Global Subsidiaries) trademarks and service marks are protected by state, federal, and international trademark laws. Any person who uses our marks for commercial or non-commercial purposes without our permission on goods or services in such a way that it dilutes the distinctive quality of our marks or that creates the likelihood of confusion with our marks is liable for trademark infringement.

Liability for copyright or trademark infringement involves the potential for significant civil damages, including, in particular cases, statutory damages, liability for up to three times actual damages, and attorney’s fees.

If you have any questions regarding this notice, please send an e-mail to info@rigaku.com.