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4 Sensitivity Analysis of MesoNetHS 
This section discusses a sensitivity analysis of MesoNetHS, along with a related 
correlation analysis. Sensitivity analysis [90] varies settings of a model’s input 
parameters and assesses resulting changes in model outputs. Correlation analysis [87] 
examines the way in which two measures vary with relation to each other when exposed 
to the same conditions. Here, we conduct a sensitivity analysis to understand the behavior 
of MesoNetHS and to discover relationships between model parameters and responses. 
We use correlation analysis to assess relationships among model responses. The results of 
the sensitivity analysis serve to validate that MesoNetHS reasonably represents 
macroscopic behavior of a network of TCP flows. The results of the sensitivity analysis 
also help to answer some questions raised in the literature regarding the applicability of 
particular findings from small-scale simulations to a larger network. In addition, 
exercising a model over a wide range of its parameter space helps to reveal software 
implementation errors, which can be corrected prior to applying the model in particular 
studies. The related correlation analysis enhances model validity and can be used to 
reduce the number of responses analyzed in future studies. 

The current practice of network modeling omits the use of sensitivity analyses, 
despite the fact that network researchers understand the benefits of such analyses [69a, 
71]. Why is this so? Most network simulators [73-80] are quite detailed, involving 
hundreds of parameters with potential settings that can range over many values. Running 
such simulations with large topologies and billions of TCP flows can be quite a daunting 
task, requiring substantial computational resources. In addition, configuring the 
parameter settings in such simulations can be time-consuming and tedious. Sensitivity 
analysis requires running a simulation through many combinations of settings; thus, 
configuring and computing the required combinations for a detailed model with a large 
parameter space is infeasible. 

Recently, two groups of researchers developed hybrid models [70, 72] that aim to 
reduce the computational requirements and range of parameters necessary to simulate 
TCP flows in reasonably large topologies. MesoNetHS was motivated by the same aims: 
establishing a new class of network models that can simulate many flows operating over 
a large network topology, while maintaining reasonable configurability and 
computational requirements. For example, MesoNetHS has on the order of 20 
fundamental parameters and, depending on specific parameter settings, can simulate tens 
of billions of flows in days or weeks of processing time on commercial servers using 
x86-compatiable chips with cycle speeds of 2.6-3.66 GHz. Thus, it becomes possible to 
contemplate conducting sensitivity analyses for this new class of network models. 

Still, 20 parameters, each with a large possible range (n) of values, can suggest a 
large space of (n20) combinations to consider. To circumvent such a problem, experiment 
designs used in many scientific disciplines have long adopted an approach where the 
range of values for system parameters is limited to a small number of levels, typically 
two or three. As explained previously in Sec. 2, this approach, when applied to 
MesoNetHS, could limit the number of combinations to 220 (just over a million). Still, 
running a million experiments would prove challenging when each experiment requires 
several days of processing time. Of course, individual combinations could be spread 
across independent processors to reduce the latency before all combinations are 



Study of Proposed Internet Congestion-Control Mechanisms NIST 

Mills, et al. DRAFT 4-2 

completed. For example, if 25 (32) processors were available, then 220 simulations could 
be reduced to only 215 serial executions. However, if each simulation required two days, 
then these simulations would still take 216 days to complete. No one is willing to wait 180 
years to collect data for a sensitivity analysis. Adding 32 additional processors to conduct 
the simulations would reduce the latency to around 90 years. Each additional 32 
processors would cut the time further. Perhaps one day soon computation servers will 
offer 216 processors in an affordable package. Such a computation engine would allow us 
to complete 220 MesoNetHS simulations in about one month. In the meantime, we must 
adopt another approach to solve the problem. 

Many scientific disciplines face situations where the number of desired 
experiments (even when considering only two settings per parameter) is unaffordable due 
to issues of cost or time. The best available practice in such situations is to use orthogonal 
fractional factorial (OFF) experiment designs [86] tailored to provide the maximum 
possible information from an affordable number of experiments. For example, if we 
could afford to run only 28 (256) MesoNetHS simulations, then we would use a 220-12 
OFF experiment design. Such a design would select 256 combinations of parameter 
settings that allow us to probe the parameter space in a balanced and orthogonal form. A 
balanced experiment design means that all combinations of parameter settings will be 
given an equal number of observations. An orthogonal experiment design means that 
observations will be spread equally throughout the space of possible parameter 
combinations. The properties of balance and orthogonality yield significant benefits when 
conducting statistical and graphical analyses of experiment data. In addition, properly 
selected combinations of parameters will limit the amount of confounding that arises 
when analyzing experiment data. When confounding arises a particular observed effect 
cannot be clearly attributed to a single factor or interaction of factors. Sometimes, domain 
knowledge can be used to resolve the uncertainty from confounding; however, one 
should strive to create an experiment design that eliminates confounding among at least 
the main effects and as many two-term and three-term interactions as possible. OFF 
experiment designs can be combined to good effect with a ten-step graphical analysis 
technique used in many scientific studies conducted at NIST. We adopt both OFF 
experiment design and the NIST-recommended, ten-step graphical analysis technique in 
conducting the MesoNetHS sensitivity analysis.  

 The remainder of this section is organized into eight subsections. Sec. 4.1 
describes our methodology for experiment design and analysis. Sec. 4.2 describes the 
specific experiment design used for the sensitivity analysis of MesoNetHS. Sec. 4.3 
discusses the execution of the simulations and the data collection techniques. Sec. 4.4 
presents a correlation analysis of the 22 responses collected from each of the experiment 
executions. Sec. 4.5 uses principal components analysis (PCA) as an alternate means to 
investigate relationships among the responses. Section 4.6 details the sensitivity analysis 
of MesoNetHS.  In Sec. 4.7 we consider the effects of buffer sizing on network behavior. 
We conclude in Sec. 4.8.  

4.1 Methodology 
We use a methodology that involves four main elements. First, we design an experiment 
to yield maximum information from the available computing resources. Second, we 
employ correlation and principal-components analyses to identify joint behaviors in 
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system responses. Third, we apply a ten-step graphical analysis to provide insight into the 
main factors driving the macroscopic behavior of the simulation model. In addition, we 
augment our analyses with various exploratory plots designed to shed light on specific 
questions of interest. Below, we elaborate on the elements of our methodology. 

4.1.1 Experiment Design 
We consider our model in the following form: [y1, y2, … yM] = f(x1, x2, … xN). The 
equation represents the model as a function transforming its N inputs (factors) into M 
outputs (responses). Designing an experiment consists of four main steps. First, we 
identify the N factors (model parameters) whose influence on system behavior we would 
like to investigate. Second, we select the number (L) of levels and then the settings (s1, s2, 
… sL) for each level of each factor (x1s1, x1s2, … xNsL). Third, we specify the 
combinations of factor settings that we intend to simulate. Fourth, we identify the M 
responses we are interested in investigating. We discuss each of these steps in turn.  
 
4.1.1.1 Identify Factors. At a maximum, the factors include all parameters associated 
with a model of interest. Of course, this can be quite a large number; thus, one may wish 
to limit the specific parameters to investigate. Some parameters might specify 
housekeeping details, such as the duration of a simulation, the number or granularity of 
measurement intervals and the seed of random number generators. Typically, these may 
be fixed to specific values during a sensitivity analysis. Fixed parameters are not factors 
to be investigated in a set of experiments. 

If the number of factors is still too large, other reduction steps may be adopted. 
For example, one may fix various factors and conduct sensitivity analyses with a limited 
number of runs. Repeating this process with various groupings of factors may identify 
some parameters as having limited influence on system behavior, at least for the range of 
settings envisioned for a particular experiment. Parameters that appear to have limited 
influence can be fixed during a sensitivity analysis that investigates more significant 
parameters. Domain expertise may also be applied to select various parameters to fix. 
One should exercise care in fixing particular parameters because some important 
elements of system behavior could be missed. Once parameters have been classified as 
fixed or variable for a given set of experiments, the variable parameters become the N 
factors for the experiment.  
  
4.1.1.2 Select Number of Levels and Level Settings for Factors. Selecting the number of 
levels for an experiment determines the maximum number of combinations (LN) that may 
be investigated. The most common practice in engineering experiments is to specify two-
level (L = 2) designs, which yield 2N as the maximum number of combinations. 2N 
designs result in nice properties of balance and orthogonality when OFF designs are used 
to reduce the number of combinations in a particular experiment. For this reason, we 
adopt L = 2 in our sensitivity analysis. 

Given L = 2, one needs to select values for each of the N factors at each of two 
levels. This mapping of levels to factors yields specific parameter values to be used in a 
set of experiment executions. The two levels are typically encoded as a plus (+1) level 
and a minus (-1) level. This form of encoding simplifies many mathematical 
transformations that are applied during experiment design and data analysis. By 
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convention, the larger value of a setting is assigned to the +1 level and the smaller value 
is assigned to the -1 level.1 

Selecting the specific settings for the +1 and -1 levels of each factor is a key step 
that relies on domain expertise of an experimenter. Little general guidance exists because 
specific domains of investigation vary widely. In general, settings should be selected so 
as to be both realistic in the domain and also to stimulate the system sufficiently to reveal 
differences in response. When experiments are done using computers, preliminary 
simulations can be used to probe for the effects of varying specific parameters. No matter 
what settings are chosen, the analysis method relies upon an assumption that responses 
vary linearly over the range of settings investigated. In cases where behaviors are non-
linear, analysis of experiment data could completely miss significant and important 
behaviors. Further, the conclusions from data analysis are limited to the range of settings 
investigated. For this reason, it is often prudent to run a second sensitivity analysis using 
different ranges of settings to confirm conclusions from an initial sensitivity analysis. As 
discussed in Appendix C, we adopt this measure of prudence in our sensitivity analysis. 
Later, we plan to conduct a more complete sensitivity analysis with N = 20; thus, 
covering the entire MesoNetHS parameter space.  
 
4.1.1.3 Select Specific Combinations to Simulate. Ideally, one would run a full factorial 
experiment that simulates all 2N possible combinations of level settings and factors. 
Often, though, executing 2N runs would be unaffordable. For example, we selected (N =) 
11 factors for our sensitivity analysis. A full factorial experiment would require 211 
(2048) runs. We could spread those runs over 16 processors, but each run requires 
between four and 10 hours of processing. We estimated that running a full-factorial 
experiment would require about 32 days of computing time plus overhead associated with 
managing the process. Such overhead includes configuring and monitoring simulations, 
collecting and summarizing data and recovering from various hardware and software 
failures that might arise. This illustrates that there may be other justified reasons for 
reducing the number of experiment runs even when one can afford the processing cost. 

After estimating the time requirements for conducting a full-factorial experiment, 
an investigator must decide on the number of affordable runs. In making this decision, 
one should also consider the confounding effects that would arise for a particular choice. 
For example, suppose we decided to limit the number of affordable runs to 64 instead of 
2048. We would then need to select a subset of (26) combinations from among the 
complete set of 211. Experiment design theory [86] labels such a design as a 211-5 (= 26) 
design. Experiment design theory also specifies which 64 combinations to select and 
reveals the resulting confounding structure for the experiment. 

Fig. 4-1, taken from Dataplot [89], a software package available from NIST, 
shows the +1/-1 encoding of an OFF design as a matrix. Each row in the matrix 
represents a specific experiment run. Each cell in a given row specifies the level setting to 
be used for a designated factor (x1 through x11). Thus, having previously assigned +1/-1 

                                                 
1 Note that due to an encoding error in the design of our sensitivity analysis we inadvertently encoded 
higher network speed (our factor x2) as the -1 level and slower network speed as the +1 level. 
Unfortunately, this can lead to confusion when viewing some of the related plots. Despite this potential for 
confusion, the encoding approach works fine even when larger values are assigned to the -1 setting and 
smaller values to the +1 setting.  
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level settings for each factor, an experimenter need only map level settings according to 
this table to create the specific combination of experiment parameters for each run. 
 

 
 

Figure 4-1. Encoding Template for a 211-5 Orthogonal Fractional Factorial Experiment Design 
 

Experiment design theory also specifies the precise confounding structure 
associated with this experiment design. A 211-5 experiment design has no confounding of 
main effects with two-term interactions, which is a desired property of an experiment 
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design. Some main effects are confounded with some three-term and higher interactions; 
however, most systems are not driven by three-term and higher interactions. From this we 
conclude that a 211-5 OFF design would yield significant information for our sensitivity 
analysis. 

A reasoning process such as outlined above should be used when selecting 
specific combinations to simulate. Of course, the reasoning process must be tailored to 
the specific number of factors and affordable runs. Experiment design theory provides 
appropriate designs and associated confounding structures for any bounds of interest. The 
NIST Dataplot software [89] also provides encoded experiment designs and confounding 
structures for a range of typical OFF designs, as documented by Hunter and Box [86].   
  
4.1.1.4 Select Responses to Examine. Some simulation models offer one or a few 
responses, so selecting which responses to examine is no issue at all. Other simulation 
models provide a rich array of response data. MesoNetHS, for example, can monitor the 
time-varying average aggregate behavior of the network for about 20 responses, can 
report about six time-varying properties for every router in a topology and can measure 
average throughputs experienced by users in six topologically determined flow classes. 
Summarizing and analyzing all of this data would prove time-consuming. 

Deciding which responses to examine depends on the domain and the nature of 
the model and the purpose of the investigation. For the MesoNetHS sensitivity analysis, 
for example, we decided to examine the macroscopic behavior of the network using 12 
measured responses and four responses computed from measured responses. We also 
decided to investigate the throughput of our six topologically determined flow classes. 
This measurement approach was motivated by a desire to investigate macroscopic 
network behavior and the experience of particular classes of network users. We chose to 
include such a large number of responses because we wanted to investigate response 
correlations. Together, the correlation and sensitivity analyses can be used to investigate 
the correctness of our simulation. Further, the correlation analysis could identify specific 
responses that might be dropped from subsequent investigations due to high correlation 
with other responses.   

4.1.2 Correlation Analysis 
As part of our analysis we wish to investigate the sensitivity of various model responses 
to model inputs. Of course, we are also interested in learning relationships among the 
responses. A reasonable hypothesis might be that correlated responses are influenced by 
the same model inputs. Further, correlated responses might allow us to reduce the number 
of responses analyzed in future experiments. To determine relationships among responses 
we conduct a correlation analysis using the techniques described in this section. First, we 
generate scatter plots among all response pairs. Second, we compute correlations among 
each pair of responses. Third, we combine the selected scatter plots and correlation 
values into a single visualization. The combined visual can be ordered using several 
techniques to reveal correlation groupings. Finally, we select a correlation threshold 
above which we wish to consider correlations, and then generate an ordered index-index 
plot to highlight correlation groups and to help select specific responses for further study. 
We explain these four steps below. To aid our explanation, we use designators for various 
responses. The designators are yN, where y denotes a response and N denotes the number 
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of the response. Here, N may range from 1 to 22. To pique the reader’s interest, we also 
identify selected responses associated with the designators. All 22 responses from our 
sensitivity analysis are identified and defined below in Sec. 4.2. 
 
4.1.2.1 Y-Y Scatter Plots. Scatter plots of each pair of responses can visually reveal linear 
correlations and can also depict additional structure within those correlations. Fig. 4-2 
shows an example scatter plot between two responses from our sensitivity analysis. The 
abscissa gives values for response y22 (average instantaneous throughput among typical 
flows) and the ordinate gives values for response y7 (flow-completion rate). Perhaps 
unsurprisingly, the scatter plot reveals a positive linear correlation among the two 
responses. Higher throughput for typical flows, which are most numerous, leads to higher 
flow-completion rate. Perhaps surprisingly, the scatter plot also reveals a bifurcation in 
correlation structure. Due to the properties of our OFF experiment design, the scatter plot 
can be augmented to reveal the cause underlying this bifurcation. We discuss the use of 
other exploratory plots and analyses below in Sec. 4.1.4. 
 

 
 

Figure 4-2. Sample Scatter Plot of Response y7 vs. y2 
 
4.1.2.2 Correlation Computations. We also compute linear correlations among all pairs 
of responses generated from our sensitivity analysis. We compute the signed values, 
which separate positive and negative correlations, and the absolute values, which allow 
us to order correlations by magnitude. Fig. 4-3 provides a sample table of correlations, 
ordered by magnitude, where magnitude > 0.9. The table consists of four columns: (a) 
absolute value of the correlation between a pair of responses (Yi and Yj), (b) the signed 
value of the correlation, (c) the identifier (i) of the first response in the pair and (d) the 
identifier (j) of the second response in the pair. The table also groups correlations by 
magnitude; here, two groups are shown: (1) correlations > 0.95 and (2) correlations > 0.9 
and < 0.95. In this particular sample, all correlations are positive. 

We also plot a histogram (see Figure 4-4) of the absolute values of all pairs of 
correlations. This gives a concise view of the distribution of correlations. The histogram 
can help us select a threshold above which to consider the correlations. Fig. 4-4, for 
example, suggests that correlations greater than about 0.65 or 0.7 should be considered. 
The figure also indicates that this amounts to around 40 of the 231 correlation pairs 
computed.  
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Figure 4-3. Sample (and Partial) Table of Correlations among Response Pairs 
 

 
Figure 4-4. Sample Histogram of Correlation Magnitudes among Response Pairs 
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4.1.2.3 Combined Matrix Visualization. We can combine the response scatter plots and 
computed correlation values into a matrix visualization providing a concise view of all 
relevant information. Further, we can use color to highlight various correlation groupings. 
Fig. 4-5 gives a 6-x-6 subset taken from our complete matrix for all 22 responses. 
 

 
 

Figure 4-5. Sample 6-x-6 Subset from a Combined Matrix of Scatter Plots and Correlation Values 
 

The diagonal of the matrix identifies a particular response associated with each 
column and row. The scatter plots are displayed to the right and above the diagonal and 
the associated correlation values (multiplied by 100) are displayed to the left and below. 
For example, consider the response y3 (data packets input per time unit), which is third 
on the diagonal in Fig. 4-5. The scatter plot in the cell directly to the right of y3 and 
above y4 (data packets output per time unit) depicts the linear correlation between y3 and 
y4. The cell directly below y3 and to the left of y4 gives the associated correlation: 99. 
Not surprisingly, the correlation is positive and quite high. Similarly, the scatter plot 
related to y2 (proportion of flows that are active) vs. y3 is shown in the cell directly 
above y3 and to the right of y2. The related correlation value (37) is given in the cell 
immediately below y2 and to the left of y3. Perhaps the weakness of this correlation is 
surprising. Other scatter plots and correlation values may be located following a similar 
outline. For example, the scatter plot in the cell in the upper right-hand corner depicts y1 
(number of active flows) vs. y6 (flows completed per time unit) and the related 
correlation value (-6) appears in the cell in the lower left-hand corner of the matrix. 
While the negative direction of the y1-y6 correlation is not surprising, the lack of 
correlation might be unexpected. 

Thresholds may be selected for coloring the scatter plots and correlation values in 
the combined matrix visualization. In Fig. 4-5 we chose three colors, based on the 
magnitude of the correlation values. For correlation magnitudes 80 and above, we colored 
the related cells red. We colored cells blue for correlation magnitudes below 80 and 
greater than or equal to 30. The green cells represent correlation magnitudes below 30. 
After coloring, one can scan the matrix to visually group correlations by their strengths. 
The diagonal of the colored matrix may also be reordered, along with the related scatter 
plots and correlation values. Such reordering may readily indentify correlation groupings. 
For example, Fig. 4-5 could be reordered by descending mean, median or maximum 
correlation of each given response with all other responses. Later, in Sec. 4.3, we order 
our matrix by descending mean correlation, which nicely groups correlations among 
response pairs.    
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4.1.2.4 Index-Index Plot. Fig. 4-6 shows an index-index plot involving all 22 responses 
from our sensitivity analysis. Guided by Fig. 4-4, we display only correlations with 
magnitudes above 0.65. The abscissa and ordinate in Fig. 4-6 both list all 22 responses in 
order of numerically increasing designator (N = 1 to 22). Then a grid is formed. A point 
is placed at each grid intersection when the magnitude of the correlation between the 
related pair of responses exceeds 0.65. In Sec. 4.3, we use this index-index plot but we 
reorder the axes in a different form. The resulting correlation groups, not obvious in Fig. 
4-6, become quite apparent after the axes are reordered.  
 

 
 

Figure 4-6. Index-Index Plot Identifying Response Pairs with Correlation Magnitude above 0.65 

4.1.3 Ten-Step Graphical Analysis 
In Sec. 4.6, we adopt a ten-step graphical analysis technique, developed at NIST, to 
evaluate the behavior of our model. The analysis technique allows us to identify the main 
factors influencing system behavior, to discover interactions among factors, to assess 
statistical significance of the factors, to propose linear models that match the data, to 
identify best and worse combinations of factors and to suggest additional factor settings 
that can drive system responses in particular directions. In this section, we introduce the 
technique as a sequence of 10 plot types, using as an example one response, average 
congestion window (CWND), derived from our sensitivity analysis. Our experiment 
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design involved 11 factors. Here, we identity these factors to help explain the analysis 
technique. We postpone a detailed description of the 11 factors until we explain our 
experiment design (Sec. 4.2).  
 
4.1.3.1 Ordered Data Plot. Fig. 4-7 shows an ordered data plot, which graphs a system 
response (ordinate) against every combination of factors (abscissa) investigated in an 
experiment. The data is arrayed from smallest (on the left) to largest (on the right) 
response value. Our sensitivity analysis used 64 combinations of the 11 factors (recall 
Fig. 4-1) and so the plot contains 64 points. The upper left-hand corner of the plot shows 
the number of factors (k =11) and the number of combinations of factors (n = 64). Below 
the abscissa, each point is labeled with the specific combination of factors (x1 to x11) 
that led to the response. 
 

 
 

Figure 4-7. Sample Ordered Data Plot 
 

A legend to the right of the plot gives shorthand names to identify each of the 11 
factors. Here the factors include: propagation delay (PDM/x1), network speed (BRS/x2), 
buffer-sizing algorithm (QSA/x3), average file size (AvFSWO/x4), average think time 
(AvThT/x5), probability that a user downloads a larger file (PrLF/x6), probability that a 
source resides on a fast host (PrFH/x7), scaling factor for the number of sources and 
receivers (SFSR/x8), distribution of sources (SDist/x9) and receivers (RDist/x10) 
throughout the topology, and initial slow-start threshold (SST/x11). 

The plot can reveal the combination of factor settings that lead to the smallest 
(left-most) and largest (right-most) response from the system. In addition, the plot can 
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reveal combinations of factor settings that appear to have greatest influence on the 
response. From Fig. 4-7, we might conclude that the five right-most combinations had 
more significant influence (than other combinations) in increasing the average CWND 
per connection. Examining the factor settings associated with these data points reveals 
some common factors among them. For example, these points all have higher2 network 
speed (x2 = -) and higher initial slow-start threshold (x11 = +) and four of the five points 
have larger (x3 = +) buffer sizes. Looking across the row of settings for network speed 
(factor x2) one can see that higher network speeds (x2 = -) seem to result more often in 
higher average CWND. Similar views can be taken of the other factors. 

As a result of viewing the ordered data plot, an experimenter begins to see how 
various factors could be driving system response. From Fig. 4-7 alone, an experimenter 
knowledgeable in the domain could begin to get a sense that faster networks with less 
congestion, higher initial slow-start threshold and larger buffer sizes lead to higher 
average CWND. More detailed information on the influence of these and other factors 
becomes available from subsequent plots.  
 

 
 

Figure 4-8. Sample Scatter Plot 
 
4.1.3.2 Scatter Plot. Fig. 4-8 shows a sample scatter plot, which groups responses for 
each factor by setting (+ or -) and then plots the responses (ordinate) together with the 

                                                 
2 Recall the miscoding of factor x2: minus is higher network speed and plus is lower network speed. 
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average response (dashed horizontal line). The plot also gives the number of factors (k = 
11) and observations (n = 64). The abscissa shows each factor (x1 to x11) as two vertical 
scatter plots, one when the factor setting is a minus and one when the factor setting is a 
plus. Thus, each individual scatter plot has half of the observations (here 32 of 64). The 
plot shows the distribution of response values and identifies the minimum and maximum 
values. From Fig. 4-8 one can see that average CWND tends to be under 10 for most 
observations, which might suggest that many of the experiment combinations constrained 
CWND. The plot also reveals a clear setting for each factor in order for CWND to 
achieve its maximum value (near 30). This combination of factors will correspond with 
the right-most combination of factors in the ordered data plot. 

Interpreting Fig. 4-8, an experimenter can see the following settings leading to 
highest average CWND: shorter propagation delay (x1 = -), higher network speed (x2 = -
), larger buffer sizes (x3 = +), larger file sizes (x4 = +), longer think times (x5 = +), 
higher probability of transferring larger files (x6 = -)3, lower probability of fast hosts (x7 
= +)4, more sources (x8 = +), less uniform distribution of sources (x9 = -), more uniform 
distribution of receivers (x10 = +), and higher initial slow-start threshold (x11 = +). The 
experimenter might wonder which of the factors and settings are most influential. The 
next plot provides this information. 
 
4.1.3.3 Main Effects Plot. Fig. 4-9 gives a sample main effects plot, which is the most 
essential plot to identify the factors and settings driving a system’s response. The basic 
framing of the plot is similar to that of the scatter plot; however, each vertical scatter plot 
is replaced by an average of the response. For each factor, the averages are connected 
with a line that indicates the magnitude and direction the response changes when moving 
from a minus to a plus setting for the factor. On the abscissa, each factor is annotated 
with the absolute change in response and with the percentage of the range of the response 
that the change represents. 

Fig. 4-9 reveals that the most influential factor in determining CWND is network 
speed (70% difference in response) followed by three closely grouped factors: buffer-
sizing algorithm (54% difference), initial slow-start threshold and think time (each with a 
53% difference). The distribution of sources also has a significant (50%) influence. 
Notice that the plot reveals a smaller number of sources and receivers (x8 = -) lead to a 
(27%) larger average CWND than a larger number of sources – this is true despite the 
fact that the ordered data plot and scatter plot showed that the largest CWND was 
achieved when the number of sources was at its higher setting. In fact, a domain expert 
will understand that fewer sources sharing the same network mean that each source may 
transmit faster, which is reflected in a larger CWND. Thus, the main effects plot clearly 
reveals the true nature of the influence of the factors and settings on the response. 

In thinking about the main effects, an experimenter with domain knowledge might 
be quite pleased with the meaning of these results regarding the validity of the model. 
Fewer, simultaneously active, flows (x5 = +, x8 = - and x9 = -), higher network speeds 
(x2 = -) together with more buffers (x3 = +) should permit higher CWND. Under these 
circumstances, the ability to increase the CWND to a higher threshold via initial slow-

                                                 
3 The coding for factor x6 was reversed (plus was a lower probability and minus was a higher probability). 
4 The coding for factor x7 was also reversed (plus was a lower probability and minus was a higher 
probability). 
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start (x11 = +) should also lead to higher CWND, because CWND increases faster during 
initial slow start. 
 
 

 
 

Figure 4-9. Sample Main Effects Plot 
 
4.1.3.4 Interaction Effects Matrix. Figure 4-10 shows a sample interaction effects matrix. 
The purpose of this plot is to determine if interactions among factors have a significant 
influence on the response. If this plot reveals no such interaction effects, then an 
experimenter can conclude that the system response is driven primarily by main effects. 
The plot might also reveal interactions that an experimenter expected based on domain 
knowledge. On the other hand, the plot could reveal significant, unexpected effects due to 
interactions, which requires further investigation by the experimenter. 

The interaction effects matrix takes the form of a half matrix containing rows and 
columns of plots, where each plot shows how the average response changes when moving 
from a minus to a plus setting for some combination of factors. The left-most plot in each 
row (also the bottom-most plot in each column) gives the main effects plot (from Fig. 4-
9) for a specific factor (x1 in the top row and x11 in the bottom row). Each of the 
remaining plots in a given row (or column) show how the average response changes 
when moving from a minus to a plus setting for two factors (the factor beginning the row 
or column and each of the other factors). 
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Figure 4-10. Sample Interaction Effects Matrix 
   

An experimenter may scan the matrix starting from each main effect plot. Scan up 
(the related column) and also right across (the related row) to compare the influence of 
each main factor to the influence of possible two-factor interactions. Scanning the matrix 
in Fig. 4-5 shows that, for the most significant main effects (x2, x3, x5, x8, x9 and x11), 
the influence of the main effect is greater than the influence of any interactions. This 
suggests that system response is driven by main effects and not two-factor interactions. 
 
4.1.3.5 Block Plots. Block plots provide an elementary test of statistical significance for 
the influence of main effects. Given a full factorial experiment design, one can compare 
the average response for a minus setting of a factor to a plus setting under all possible 
combinations of other factors. This can provide a large amount of visual information; 
thus, typically only a subset of these plots is generated. Further, given an OFF experiment 
design a reduced amount of information is available for generating block plots; thus, such 
plots are not as useful for OFF experiment designs. Still, block plots can prove useful in 
confirming findings about main effects. 

Fig. 4-11 shows sample box plots for each of the 11 factors used in the sensitivity 
analysis of MesoNetHS. Each plot shows the average response for four combinations of 
secondary factors when the main factor of the plot is set to a minus and a plus. The box 
plots reinforce the findings of the main effects plot: the most significant factors are 
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network speed (x2), buffer sizes (x3), think time (x5), number (x8) and distribution (x9) 
of sources and initial slow-start threshold (x11). This is revealed by the fact that one 
particular setting for each of these factors always leads to a higher value for CWND. This 
is true no matter what combination of other factors is used. Results are mixed for the 
other five factors. 

 
 

 
 

Figure 4-11. Sample Box Plots 
 
4.1.3.6 Youden Plot. A Youden plot, see Fig. 4-12, graphs the average response for each 
factor (and two-factor interaction) when the factor (or factors) are set to a minus against 
the average response when set to a plus. In Fig. 4-12 the average CWND for minus 
settings are plotted on the abscissa and for plus settings on the ordinate. For unimportant 
factors, the values should be nearly the same (and appear in the center of the graph). For 
important factors, values should lie toward the upper-left and lower-right corners of the 
graph.  

Examining Fig. 4-12 reveals that the most important factors are network speed 
(x2), buffer size (x3), think time (x5), source distribution (x9) and initial slow-start 
threshold (x11). The number of sources (x8) is not as important. Recall that the main 
effects plot identified x8 as of less importance than the other effects; thus, the Youden 
plot supports the earlier finding. The plot also reveals some information about the 
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influence of interactions. The distribution of receivers (x10) has a combined effect with 
the distribution of sources (x9) and the think time (x5) has a combined effect with initial 
slow-start threshold (x11). These interaction effects (also revealed in the interaction 
effects matrix, Fig. 4-10) are less important than the main effects. 
 
 

 
 

Figure 4-12. Sample Youden Plot 
 
4.1.3.7 |Effects| Plot. The |Effects| plot, Fig. 4-13, displays the absolute magnitude of a 
change in response due to specific factors and interactions. The abscissa identifies the 
factors or interactions for which the corresponding magnitude of the change in response 
is plotted on the ordinate. The factors are ordered by decreasing magnitude from left-to-
right on the abscissa. This plot should confirm the information given in previous plots 
regarding the influence of factors and interactions. The average value for the response is 
given in the upper left-hand corner of the plot. The plot may be augmented (as here) with 
a rank-ordered list of factors (and interactions) and the associated (signed) magnitude of 
the effects. 

Fig. 4-13 confirms earlier findings: the main factors influencing CWND include 
(in order) network speed (x2), buffer size (x3), initial slow-start threshold (x11), think 
time (x5) and source distribution (x9). The chart next lists x9 again; however, this is a 
mistake in labeling. Consulting the interaction effects matrix (Fig. 4-10) reveals that the 
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second x9 should be an x2-x11 interaction. This demonstrates the cross-checking value of 
the redundancy included in the analysis technique. 
 
 

 
 

Figure 4-13. Sample |Effects| Plot 
 
 
4.1.3.8 Half-Normal Probability Plot of |Effects|. A half-normal probability plot of 
|Effects|, Fig. 4-14, classifies effects as important or unimportant. The abscissa of a half-
normal probability plot represents the ordering of a theoretically normal distribution of 
values. The ordinate represents the |Effects|, which are plotted in order from least to 
greatest. Unimportant effects would tend to have mean difference centered on zero; thus, 
when plotting the |Effects| for such data, one would expect plotted values to begin around 
zero and ascend linearly. Data following this pattern implies that the effects can be 
considered to have a zero value with some residual, normally distributed, variance. Data 
departing from linearity indicates a statistically significant effect. 

As illustrated in Fig. 4-14 the values to the right of the plot identify which factor 
(or interaction) is responsible for the plotted value on the ordinate. Interpreting Fig. 4-14 
indicates the value of CWND is driven mainly by five factors: network speed (x2), buffer 
size (x3), think time (x5), initial slow-start threshold (x11) and source distribution (x9). 
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The plot shows relative importance: x2, followed by the grouping of x3, x5, x11 and then 
finally x9. This finding is consistent with information obtained from previous plots. 
 
 

 
 

Figure 4-14. Sample Half-Normal Probability Plot of |Effects| 
 
4.1.3.9 Cumulative Residual Standard Deviation Plot. The cumulative residual standard 
deviation (SD) plot, Fig. 4-15, provides information sufficient to construct a linear model 
to represent experiment data. The ordinate of the plot gives the residual error between the 
data and a fitting function when adding terms representing the set of factors (and 
interactions) represented on the abscissa. The first term on the abscissa is the residual SD 
when describing the data using only the average (which defines a horizontal line). Then, 
the residual standard deviations are plotted as the influence of each factor is added in 
order of decreasing reduction in SD. The factors are identified on the abscissa. 

Typically, one hopes for a model where the most important factors can explain 
most of the standard deviation in the data. If this holds, then a fairly simple linear model 
can describe the data. A plot demonstrating such a case would exhibit a large reduction in 
SD after the main factors are included in the model. In our example, when we include the 
five most important factors (x2, x3, x5, x9 and x11), Fig. 4-15 shows a remaining error of 
about 3.5. The encouraging news from Fig. 4-15 is that the five most important factors 
reduce the SD the most (and in the expected order). On the other hand, the residual SD is 
still rather high after including these factors; thus, the resulting linear model could likely 
not be used for interpolation or prediction. 
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Figure 4-15. Sample Cumulative Residual Standard Deviation Plot 
 
4.1.3.10 Contour Plot of Two Dominant Factors. The contour plot aims to suggest other 
factor settings that could alter system response in predictable directions. While one could 
plot each pair of factors together, a typical approach is to construct a contour plot from 
the two most important factors. Fig. 4-16 shows a sample contour plot from the two main 
factors, x2 (network speed) and x3 (buffer size), influencing CWND. The most important 
factor is plotted on the abscissa and the second most important factor is plotted on the 
ordinate. The axes are labeled with an origin (0) and then the two settings (-1 and +1) for 
each factor. A point is placed at the each combination of factors (x2, x3) = {(-1, -1), (+1, 
-1), (+1, +1), (-1, +1)}. These four points are connected with a dashed line to form a 
rectangle. Each point is labeled with the value of the response for the associated 
combination of the two factors. Based on the fitted model developed when generating the 
cumulative residual SD plot, contour lines are added to form a contour plot. 

 As Fig. 4-16 shows, the combination of (-1, +1) – higher network speed and 
larger buffer size – produces the largest CWND (10.69…). The contour lines indicate that 
increasing network speed and buffer size would lead to larger CWND values, while 
decreasing network speed and buffer size would lead to smaller CWND values. Under 
some experiments and conditions, the contour plot could reveal directions in which to 
alter factor settings to create more optimal responses or suggest how responses might 
change as factor settings are altered. 
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Figure 4-16. Sample Contour Plot of Two Dominant Factors 

4.1.4 Other Exploratory Plots and Analyses 
Using an orthogonal fractional factorial (OFF) design opens the possibility for a range of 
exploratory plots and analyses to supplement the correlation analysis and ten-step 
graphical analysis presented so far. For example, bifurcations in response-response 
scatter plots can be explored by altering the scatter plot symbols to reflect factor settings. 
As a sample, recall Fig. 4-2, a scatter plot of y7 vs. y22, which revealed a bifurcation. 
One means to explore the underlying reason for the bifurcation is to plot points as -, when 
associated with minus settings for each factor, and as +, when associated with plus 
settings. Fig. 4-17 illustrates the twelve scatter-plots for y7 vs. y22. The first plot, upper 
left-hand corner, repeats the scatter plot from Fig. 4-2. The remaining plots encode the 
plus (in blue) and minus (in red) settings responsible for the responses given each of the 
11 factors (x1 through x11). 

Immediately, examining Fig. 4-17, one can see that factor x4 (average file size) is 
responsible for the bifurcation. Shorter file sizes result in higher completion rates (y7) 
and yet lead to lower average throughputs for typical flows (y22). Thinking this through 
reveals a sensible explanation. Shorter files spend a higher percentage of their transfer in 
TCP slow start, during which throughputs are lower. On the other hand, shorter files are 
generally transferred more quickly because they involve fewer packets. Since shorter files 
are transferred more quickly, more flows are completed per unit of time; thus, the flow 
completion rate is higher. Longer files spend a higher percentage of their transfer beyond 
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TCP slow start, during which throughputs are higher. On the other hand, longer files 
require transferring more packets. Since it takes longer to transfer more packets, fewer 
flows are completed per unit time. Thus, the explanation for the bifurcation, as revealed 
in the y7-y22-x4 plot in Fig. 4-17, matches an explanation that appears reasonable to a 
domain expert. Such analysis and reasoning can help to verify a model’s correctness, or 
to reveal flaws.   
 

 
 

Figure 4-17. Sample Y-Y-X plot for Responses y7 and y22 
 

OFF experiment designs open the possibility for other exploratory plots and 
analyses. For example, one can combine factor settings to create additional conditions 
and then compare the relative effects of varying each of the combined factor settings on 
the ordering of selected responses. For example, one could combine the two-level settings 
for factors x1 through x3 (propagation delay, network speed and buffer size) to create 23 
= 8 conditions, and then examine the relative influence of varying each of the factors on 
selected responses. We use such an approach in Sec. 4.7 to explore the relative effects on 
system response due to changing network speed, propagation delay and buffer size. We 
defer a specific explanation of the technique to Sec. 4.7. 

An experimenter might also apply the ten-step graphical analysis technique to 
variations in analyses of the responses. For example, one could conduct a principal 
components analysis (PCA) on the 22 responses and then apply the ten-step graphical 
analysis to the main principal components identified by the PCA. Sometimes, such 
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analyses may reveal additional information about system behavior. We give an example 
of this technique in Sec. 4.6.2. 

4.2 Experiment Design for MesoNetHS Sensitivity Analysis   
This section outlines the experiment design used for the MesoNetHS sensitivity analysis, 
and explains the rationale underlying the design. The design consists of a 211-5 orthogonal 
fractional factorial (OFF) design, which requires 64 simulation runs. We compared the 
results of the simulation runs through 22 responses. Below, we summarize MesoNetHS 
parameters and we identify the 11 parameters chosen as factors in our OFF design. We 
then explain the levels, and related settings, chosen for each factor. We summarize the 64 
specific combinations simulated. We close by defining the 22 responses examined.  

4.2.1 MesoNetHS Factors 
For this sensitivity analysis, MesoNetHS parameters may be divided into six general 
categories: (1) simulation-control parameters, (2) parameters controlling user behavior, 
(3) parameters adapting the characteristics of the network, (4) parameters altering the 
properties of sources and receivers, (5) parameters controlling the startup pattern of 
sources and (6) parameters related to TCP operation. We describe the specific parameters 
in each category. Parameter descriptions may identify a parameter’s range as an integer 
or a float. In such cases, one should assume that an integer may take on values between -
2,147,483,648 and +2,147,483,647. A float may take on values in the range of 1.797-308 
to 1.797+308. The range of any other parameter types will be given explicitly. For more 
detail on these parameters see Sec. 3.2. 

As we discuss the MesoNetHS parameters, we identify (highlighted in blue bold) 
which were chosen as factors for our sensitivity analysis and we give our reasoning. In 
each table, we also give (highlighted in red) the fixed values assigned to the excluded 
parameters. At the end of the section, we recap the parameters included as factors in the 
sensitivity analysis.  
 

Table 4-1. Simulation-Control Parameters 
 
Parameter Definition Range 

P1 Number of time steps in a measurement interval (200) Integer 
P2 Number of measurement intervals (6000) Integer 
P3 Number of measurement intervals in a measurement buffer (6000) Integer 
P4 Run number (1 to 64, signifying a combination of factors) Integer 
P5 Random number seed (200000) Integer 
P6 Duration of each time step (0.001 s) Float 

 
4.2.1.1 Simulation Control Parameters. Simulation control is affected by six parameters, 
as defined in Table 4-1. The sensitivity analysis will not consider the response of 
MesoNetHS to variations in simulation-control parameters. Thus, five of these 
parameters will simply be fixed (to the values shown in Table 4-1) across all experiment 
runs. The maximum propagation delay in our experiments will be around 200 time steps, 
which we select for our basic measurement interval duration. We set our fundamental 
time-step duration to 1 millisecond; thus, each measurement interval captures about 200 
milliseconds (i.e., five measurement intervals cover one second). We run each simulation 
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for 6000 measurement intervals, which is (6000/5 =) 1200 seconds (20 minutes). We set 
our random number seed to a fixed value for all simulations because we are more 
interested in capturing changes due to parameter variations than variations due to 
randomness. We vary the run number from 1 to 64 to identify the particular configuration 
of factors used in specific experiments.  
 
4.2.1.2 Parameters Controlling User Behavior. Eight parameters, shown in Table 4-2, 
determine how individual users (sources) behave over the course of a simulation. The 
MesoNetHS sensitivity analysis considers only typical web traffic; thus, parameters (P12-
P14) dealing with jumbo file transfers will be assigned fixed values (see Table 4-2) that 
cause them to be deactivated. The five remaining parameters (P7-P11) are candidates to 
include as factors in the experiments. 
 

Table 4-2. Parameters Controlling User Behavior 
 
Parameter Definition Range 

P7 Shape parameter for the distribution of web-object sizes (1.5) Float 
P8 Average size (in packets) of web objects Integer 
P9 Average think time (in time steps) between web clicks Integer 
P10 Probability a user decides to download a larger document Float 

P11 Factor by which web-object size is multiplied if it is a larger 
document  (10) Integer 

P12 Proportion of simulation time that elapses before jumbo file transfers 
begin (1.0) Float 

P13 Proportion of simulation time that elapses before jumbo file transfers 
end (1.0) Float 

P14 Factor by which web-object size is multiplied if it is a jumbo file (100) Integer 
 

We decided to fix the value of parameters P7 and P11; thus, we selected only 
three parameters to control user behavior during the sensitivity analysis. We chose to fix 
P7 (= 1.5) because experiments with P7 set to 1.2 and 1.5 revealed little difference in 
results. We chose to fix P11 (= 10) because varying the size of web objects (P8) will also 
implicitly vary the size of larger documents. Further, preliminary sensitivity analyses 
with P11 set to either 5 or 10 showed little influence on the results. 
 
4.2.1.3 Parameters Adapting Network Characteristics. Nine parameters, shown in Table 
4-3, may be varied to adapt characteristics of a network topology defined for a 
MesoNetHS simulation. We decided to vary only three of these parameters during the 
sensitivity analysis. We wanted to be able to vary propagation delay, network speed and 
buffer sizes. Parameter P15 can alter the base propagation delays defined in a network 
topology. Network speed can be influenced by six parameters (P16-P21). We chose only 
to vary the backbone speed (P17), which has the effect of varying the speeds of the other 
routers because their speeds are expressed in terms of backbone-router speed. Thus, even 
though we fix parameters P18-P21 to the values given in Table 4-3, the speeds of the 
associated routers vary as we vary P17. We chose not to vary the speedup of backbone 
routers (P16 is fixed to 1) because our anticipated scenario of simulated web traffic held 
little chance to overwhelm the backbone routers with traffic. 
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Table 4-3. Parameters Adapting Network Characteristics 
 
Parameter Definition Range 

P15 Factor by which to multiply basic propagation delays defined 
within a simulated topology Float 

P16 Multiplier used to speed up backbone routers (1) Integer 
P17 Backbone router speed (in packets per time step) Integer 
P18 Divisor used to reduce the speed of POP routers relative to 

backbone routers (4) Integer 

P19 Divisor used to reduce the speed of access routers relative to POP 
routers (10) Integer 

P20 Multiplier used to increase the speed of directly connected access 
routers over typical access routers (10) Integer 

P21 Multiplier used to increase the speed of fast access routers over 
typical access routers (2) Integer 

P22 Identification of a specific buffer-sizing algorithm to adopt Integer 
(1 to 3) 

P23 Multiplier used to increase or reduce buffer sizes as computed by 
the algorithm selected by parameter P22 (1.0) Float 

 
Buffer sizes can be varied by choosing among several algorithms to calculate 

buffers in each router. This choice is controlled by P22, which we varied for our 
sensitivity analysis. Another parameter, P23, may be used to refine buffer sizing, either 
increasing or decreasing the basic buffer sizes computed by a chosen algorithm. For our 
sensitivity analysis, we decided simply to stick with the choice among alternate 
algorithms; thus, we fixed the value of P23 to 1.0. 
 
4.2.1.4 Parameters Altering Properties of Sources and Receivers. Nine parameters, 
shown in Table 4-4, control the properties of sources and receivers within the model. 
Controllable properties include: the speeds of hosts on which sources and receivers 
operate, the relative number of sources and receivers and the distribution of sources and 
receivers within the network topology. 
 

Table 4-4. Parameters Altering Properties of Sources and Receivers 
 
Parameter Definition Range 

P24 Speed (packets per time step) of basic host (1) Integer 
P25 Speed (packets per time step) of fast host (8) Integer 
P26 Probability a host is fast Float 
P27 Base number of sources under an access router (100) Integer 
P28 Multiplier by which to scale the base number of sources Float 
P29 Probability source is located under a typical access router  Float 
P30 Probability source is located under a fast access router Float 
P31 Probability receiver is located under a typical access router  Float 
P32 Probability receiver is located under a fast access router Float 

 
In our sensitivity analysis, we are interested in examining the effects on responses 

as the number and speed of sources and receivers is changed and as the distribution of 
sources and receivers is altered in the topology. This requires varying the six parameters 
(P26, P28-P32) highlighted in Table 4-5. We decided there is no need to vary the speeds 
of either basic or fast hosts; so, we simply fix the speed of each (P24 = 1 and P25 = 8). 
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Varying the probability a host is fast and the number of sources and receivers in the 
network should provide sufficient variation for fast and slow hosts in the network. 
Similarly, we decided not to vary the base number of sources (P27 = 100) under an 
access router because the number of sources and receivers are determined by multiplying 
the base number by a scaling factor (P28). Thus, varying P28 varies sufficiently the 
number of sources and receivers in a topology. 

MesoNetHS permits the distribution of sources and receivers to be varied by 
reallocating some sources and receivers among the three classes of access router (normal, 
fast and directly connected). Two parameters (P29 and P30) control the allocation of 
sources (note that the probability a source is allocated to a directly connected access 
router is equal to 1 – P29 – P30). Similarly, two parameters (P31 and P32) control the 
allocation of receivers. We chose to combine the three probabilities associated with 
sources into a single factor and also to combine the three probabilities associated with 
receivers into a single factor. Thus, the six highlighted parameters in Table 4-5 will 
comprise only four factors in our sensitivity analysis. 
 
4.2.1.5 Parameters Controlling Source Startup Pattern. Sources are started randomly in 
stages: some portion start in the ON state, some portion enter the ON state after about 1/3 
of the average think time, some portion enter the ON state after about 2/3 of the average 
think time and the remaining sources enter the ON state after about the average think 
time. This startup pattern is controlled by three parameters (P33-P35) as shown in Table 
4-5. Subtracting the value of these three parameters from one reveals that half of the 
sources start after about the average think time: 1 – 0.25 – 0.08 – 0.17 = 0.50. 
 

Table 4-5. Parameters Controlling Source Startup Pattern 
 
Parameter Definition Range 

P33 Portion of sources that start ON (0.25) Float 

P34 Portion of sources that come ON after about 1/3 average think time 
(0.08) Float 

P35 Portion of sources that come ON after about 2/3 average think time 
(0.17) Float 

 
For two reasons, we decided not to vary parameters controlling source startup 

pattern. First, we discard the first half of our observations and consider only the second 
half. Thus, the influence of startup pattern should be no longer evident in the data. 
Second, we conducted preliminary sensitivity analyses where we varied the startup 
pattern, along with other parameters, and found that such variations had no influence on 
the long-term results. 
 
4.2.1.6 Parameters Related to TCP Operation. MesoNetHS includes only three 
parameters, given in Table 4-6, controlling the operation of standard TCP. Given lack of 
widespread agreement on the choice of initial slow-start threshold for TCP, we were 
interested in exploring the influence of the threshold on network performance. We 
decided to fix the other two parameters: initial congestion window (P36 = 2) and 
threshold (P38 = 100) for switching from exponential slow-start increase to logarithmic 
increase. 
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Table 4-6. Parameters Related to TCP Operation 

 
Parameter Definition Range 

P36 Initial TCP congestion window (2) Integer 
P37 Initial slow-start threshold Integer 

P38 Threshold for switching from exponential to logarithm slow-start 
(100) Integer 

 
Parameter P38 influences slow-start operation only if the value of the initial slow-

start threshold (P37) exceeds the value of P38. Assuming this condition, the congestion 
window begins at the value of P36 and then increases exponentially with each round-trip 
time until reaching the value of P38, after which the congestion window increases 
logarithmically until reaching P37 and then linearly. Assuming that P37 < P38, the 
congestion window increases exponentially until reaching P37 and then linearly. Of 
course, under either assumption, whenever a loss is encountered, slow-start is abandoned 
and the congestion window increases linearly when standard TCP is being simulated. 
 

Table 4-7. Recap of Sensitivity Analysis Factors and Mapping to MesoNetHS Parameters 
 
 Factor Definition MesoNetHS 

Parameter(s) 
x1 Propagation delay P15 
x2 Network speed P17 Network 

Factors x3 Buffer sizing P22 
x4 Average file size for web pages P8 
x5 Average think time between web clicks P9 User 

Factors x6 Probability a user opts to transfer a larger file P10 
x7 Probability a source or receiver is on a fast host P26 
x8 Scaling factor for number of sources & receivers P28 
x9 Distribution of sources P29 & P30 

Source & 
Receiver 
Factors 

x10 Distribution of receivers P31 & P32 
Protocol 
Factors x11 Initial TCP slow-start threshold P37 

 
4.2.1.7 Recap of Factors Selected for Sensitivity Analysis. Table 4-7 recaps the eleven 
factors selected for the sensitivity analysis and the relationship of those factors to 
MesoNetHS parameters. Parameters not included in Table 4-7 are assigned fixed values, 
as indicated in Tables 4-1 through 4-6. 

As Table 4-7 demonstrates, the sensitivity analysis is designed to consider the 
influence of four main classes of factors: (1) network factors, (2) user factors, (3) factors 
affecting sources and receivers and (4) protocol factors. The factors are fairly balanced 
with three or four in each category, except for a single protocol factor. In general, the 
three protocol-related factors might have been fixed; however, the inclusion of the initial 
slow-start threshold as a factor was driven by a specific question, about which the related 
literature [5, 7, 11] indicates there is no widespread agreement. Now that values have 
been assigned to 25 fixed parameters, it remains to select the number of levels and 
settings for the 11 factors identified in Table 4-7. We address that topic next. 
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4.2.2 Number of Levels and Settings for MesoNetHS Factors 
Adopting the convention of a two-level experiment allows us to produce OFF designs, as 
often used in engineering studies [85, 86, 91] and to benefit from the positive effects such 
designs have on related analysis techniques. For this reason, we decided to choose two 
levels for each factor in our sensitivity analysis. Of course, doing so limits our 
conclusions to the range of settings chosen for our factors. Even here we are assuming 
that the system behaves linearly in the range between any two settings. If we have reason 
to believe that system behavior is non-linear between particular settings, then we should 
not select such settings for our sensitivity analysis. To extend confidence in the findings 
produced by our sensitivity analysis, we should explore different specific values for our 
settings and see whether or not our conclusions also hold for those new values. We adopt 
this approach for our sensitivity analysis. Here, we focus on our initial sensitivity 
analysis. We present our secondary sensitivity analysis in Appendix C. 

In choosing specific settings for our two levels (plus and minus) of each factor, 
we were guided by a desire to complete our 64 experiment runs within a week or so of 
computing time. We had already determined that computation time in our model was 
influenced by the number of packets that need to be processed during a simulation. Given 
that we had decided to fix our simulation to a 20-minute period of network evolution, this 
meant that the computational requirements of our model would be driven largely by the 
number of sources and the network speed. For this reason, we chose to restrict our 
simulated network to a few tens of thousands of potential sources and to restrict our 
network speed to about 10 Gbps in the backbone. Increasing the number of potential 
sources and the network speed would increase our computational requirements. We 
decided that increasing the number of sources and the network speed would not be 
necessary for our sensitivity analysis. Of course, we verified this decision by using more 
sources and higher backbone speeds in Appendix C. 
 
4.2.2.1 Two-Level Factor Settings. Table 4-8 presents settings chosen for the plus and 
minus levels for all eleven factors in the sensitivity analysis. Next, we discuss the reasons 
underlying our choices and the ramifications for the related simulations.  
 
4.2.2.2 Rationale for (and Ramifications of) Network Factor Settings. The topology used 
in our experiments (recall Fig. 3-1) has defined link propagation delays (recall Table 3-1) 
that lead to specified minimum round-trip times on designated routes (see Table 3-2). We 
decided to assign one setting (x1 = 1) to indicate the propagation delays defined in this 
topology and a second setting (x1 = 2) that doubles those propagation delays. With the 
minus setting, paths in the topology average a round-trip propagation delay of 41 time 
steps and a maximum round-trip propagation delay of 100 time steps. This is consistent 
with a network spanning the United States. When the plus setting is used, average and 
maximum propagation delays increase to 81 and 200 time steps, respectively. The 
increased propagation delays are consistent with a network that spans from the west coast 
of Asia across the United States and into Europe. Note that the setting for propagation 
delay also influences buffer sizes because the average round-trip propagation delay 
makes up the RTT component of the buffer-sizing algorithm. 
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Table 4-8. Two-Level Settings for Each of 11 Factors in Sensitivity Analysis 
 
 Factor Plus Minus Parameter Mapping 

x1 2 1 +(P15 = 2) or –(P15 = 1) 
x25 400 800 +(P17 = 400) or –(P17 = 800) Network 

Factors x3 RTTxC RTTxC/SQR(n) +(P22 = 1) or +(P22 = 2) 
x4 100 50 +(P8 = 100) or –(P8 = 50) 
x5 5000 2000 +(P9 = 5000) or –(P9 = 2000) User 

Factors x66 0.01 0.02 +(P10 = 0.01) or –(P10 = 0.02) 
x76 0.2 0.4 +(P26 = 0.2) or –(P26 = 0.4) 
x8 3 2 +(P28 = 3) or –(P28 = 2) 

x9 P2P WEB +(P29 = 0.33 and P30 = 0.33) or 
–(P29 = 0.13 and P30 = 0.53) 

Source & 
Receiver 
Factors 

x10 P2P WEB +(P31 = 0.33 and P32 = 0.33) or 
–(P31 = 0.5 and P32 = 0.25) 

Protocol 
Factors x11 1.07x109 43 +(P37 = 1.07x109) or –(P37 = 43) 

 
 For network speed, we chose to consider a backbone operating near 10 Gbps. 

Thus, we chose 800 ppts (packets per time step – 800000 packets per second) as the top 
speed of our backbone routers. (800000 packets per second x 12000 bits per packet = 9.6 
Gbps). Of course, modern backbone routers operate at many times this speed; however, 
we were interested in keeping our simulation time within reason, while still providing 
some level of load to the simulated network. We chose to define our slower network 
speed as half our higher speed; thus, we chose 400 packets per time step, which equates 
to a 4.8 Gbps backbone. Note that the choice of backbone router speed determines the 
choice of router speeds for the other five router types, as shown in Table 4-9. In addition, 
router speeds influence buffer size because router speed equates to the capacity (C) 
component of the buffer-sizing algorithm. 
 
Table 4-9. Relationship among the Speed of Backbone Routers and the Speed of Other Router Types 
 

Router Type Plus Minus 
Backbone 400 ppts 800 ppts 
POP 100 ppts 200 ppts 
Typical Access 10 ppts 20 ppts 
Fast Access 20 ppts 40 ppts 
Directly Connected Access 100 ppts 200 ppts 

 
For buffer sizes, we chose two algorithms. One algorithm, RTTxC, represents the 

conventional wisdom [41] regarding how to select buffer sizes to match the expected 
round-trip time of routes transiting the router and also the capacity of links transiting the 
router. The second algorithm, RTTxC/SQR(n), represents an alternate proposal that 
suggests that you could reduce buffer capacity proportional to the square root of the 

                                                 
5 Unfortunately, we coded an increased network speed under the minus setting (and a lower network speed 
under the plus setting). The reader should bear this in mind when interpreting the results in following 
sections. 
6 We also coded this setting incorrectly. Fortunately, this factor doesn’t have a large influence on model 
response, so it does not become confusing in the discussion. 
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expected number of flows transiting a router. In the paper proposing the second algorithm 
[38], it was left as future work to assess the influence of this algorithm in a large network. 
This open research question motivated us to include the second buffer-sizing algorithm as 
an alternative to the typical algorithm. 
 
4.2.2.3 Rationale for (and Ramifications of) User Factor Settings. Defining user behavior 
required selecting three parameters: average file size, average think time and likelihood 
of downloading a larger file. These parameters are meant to characterize web users who 
click from web page to web page and occasionally download a picture or a paper or a 
music file. Previous research [34-37] has established that Internet file sizes exhibit a 
long-tailed distribution that can be approximated with a Pareto distribution with a shape 
parameter below 2. We adopted this approach. On the other hand, we need to select an 
average for the distribution (factor x4). We chose 100 packets (100 packets x 1500 bytes 
per packet = 150000 bytes per Web page) as a reasonable size for typical Web pages. We 
decided to also consider smaller Web pages at half that size: 50 packets (75000 bytes). 

The think time (x5) between Web clicks could be chosen in two different ways. 
One way is to imagine how long a user typically dwells on a page, while perusing it. 
Another way is to choose times to obtain a desired load of active users on the network. 
We took this second approach. A more heavily loaded network would be represented by 
sources that clicked on a Web link every 2000 time steps (x5 = 2 seconds), while we 
modeled a more lightly loaded network through sources that clicked on a Web link every 
5000 time steps (x5 = 5 seconds). Of course, this factor interacts with the number of 
potential users. Many potential users clicking very often create a heavier load and fewer 
potential users clicking less often create a lighter load. And combinations would fall in 
between. Note that a heavily loaded network would require users to take longer to 
transfer their files and thus would mean that users might not be able to arrive for 
additional transfers quickly because they are slower with on-going transfers. This implies 
that there is some dependency-based feedback inherent in the model. Such feedback is 
probably congruent with the same type of feedback inherent in real networks. The overall 
effect of this technique for modeling network traffic is not clear; however, one must 
bound the number of simulated users in some fashion. 

The probability for a user to decide to download a larger document (x6) 
represents the possibility that, after looking at a web page, the user decides to download a 
paper or a photo or some other document that is larger than a typical web page. Since we 
set that file size multiplier to a fixed value (10), a user will download files with an 
average size of 1.5 Mbytes (x4 = 100) or 750 Kbytes (x4 = 50). As with normal Web 
objects, these larger documents will be distributed according to a Pareto distribution, 
which gives a long tail. Lacking concrete measurements, we chose to imagine that a user 
might download a larger document once in every 100 clicks; thus, we could set x6 = 0.01. 
We also decided to consider the situation where a user downloads a document twice as 
often (x6 = 0.02), or twice in every 100 clicks. 
 
4.2.2.4 Rationale for (and Ramifications of) Source & Receiver Factor Settings. Defining 
parameters for sources and receivers required deciding how fast each source or receiver 
could operate, determining how many sources and receivers existed in the topology and 
also indicating the distribution of sources and receivers. These decisions influenced the 
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number of potential active flows and the probability of flows between various classes of 
access router. We begin by noting that computers connected to the Internet are in 
transition from slower speed connections (e.g., 100 Mbps) to higher speed connections 
(e.g., 1 Gbps); thus, sources and receivers operate on computers with different network-
connection speeds. To reflect this, we decided to experiment with two different mixes of 
computer speeds: 20% fast computers (x7 = 0.20) and 40% fast computers (x7 = 0.40). 

We began by fixing the base number of sources (P27) under each access router to 
100. Since each router has on average four times as many receivers as sources, the base 
number of receivers then becomes 400. We decided to investigate two scaling factors for 
the number of sources and receivers; thus, we set the scaling factor to either two (x8 = 2) 
or three (x8 = 3). A scaling factor of two implies that each access router will have around 
200 sources and 800 receivers, while a scaling factor of three implies that each access 
router will have about 300 sources and 1200 receivers. Thus, the total number of potential 
sources in the network will vary from around 18560 to 41700 and the total number of 
potential receivers will vary from around 111200 to 219600. 

The average number of sources and receivers under each access router (and also 
total sources and receivers in the network) will be further adjusted through the 
distribution pattern assigned to sources (x9) and receivers (x10). The combination of 
distribution patterns will also affect the number of sources and receivers under each 
access router and throughout the network. (Sec. 3.2.4 explains the specific relationships 
that determine the resulting distribution of sources and receivers.) 

To recap, given a specified base number of sources and receivers, a scaling factor 
and a distributional pattern for sources and for receivers, MesoNetHS populates the 
network topology with a specified number of sources and receivers and distributes those 
sources and receivers in the required proportion under each class of access router: normal 
(N-class7) routers, fast (F-class) routers and directly connected (D-class) routers. Table 4-
10 shows the resulting distribution of sources for each combination of relevant factors 
(x8, x9 and x10) used in our sensitivity analysis. Table 4-11 shows the resulting 
distribution of receivers. A given distribution of sources and receivers also lead to a 
particular apportioning of flows among the three classes of access router, as shown in 
Table 4-12. 

 
 

Table 4-10. Relation between Factors and Number and Distribution of Sources 
 

x8 x9 x10 Total 
Sources 

% under 
D Routers 

% under 
F Routers 

% under 
N Routers 

2 P2P P2P 27,800 4.32 20.14 75.54 
3 P2P P2P 41,700 4.32 20.14 75.54 
2 WEB WEB 18,560 6.46 48.27 45.25 
3 WEB WEB 27,840 6.46 48.27 45.25 
2 P2P WEB 27,800 4.32 20.14 75.54 
3 P2P WEB 41,700 4.32 20.14 75.54 
2 WEB P2P 18,560 6.46 48.27 45.25 
3 WEB P2P 27,840 6.46 48.27 45.25 

                                                 
7 We continue our convention of color coding designators for access-router classes to match the colors used 
in Fig. 3-1. 
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Table 4-11. Relation between Factors and Number and Distribution of Receivers 
 

x8 x9 x10 Total 
Receivers 

% under 
D Routers 

% under 
F Routers 

% under 
N Routers 

2 P2P P2P 111,200 4.32 20.14 75.54 
3 P2P P2P 166,800 4.32 20.14 75.54 
2 WEB WEB 146,400 2.45 11.47 86.06 
3 WEB WEB 219,600 2.45 11.47 86.06 
2 P2P WEB 146,400 2.45 11.47 86.06 
3 P2P WEB 219,600 2.45 11.47 86.06 
2 WEB P2P 111,200 4.32 20.14 75.54 
3 WEB P2P 166,800 4.32 20.14 75.54 

 
 

Table 4-12. Relation between Factors and Distribution of Flow Classes 
 

x8 x9 x10 % DD 
Flows 

% DF 
Flows 

% DN 
Flows 

% FF 
Flows 

% FN 
Flows 

% NN 
Flows 

2 P2P P2P 0.186 1.74 6.52 4.05 30.43 57.06 
3 P2P P2P 0.186 1.74 6.52 4.05 30.43 57.06 
2 WEB WEB 0.159 1.92 6.67 5.53 46.74 38.95 
3 WEB WEB 0.159 1.92 6.67 5.53 46.74 38.95 
2 P2P WEB 0.106 0.99 5.57 2.31 26.00 65.01 
3 P2P WEB 0.106 0.99 5.57 2.31 26.00 65.01 
2 WEB P2P 0.279 3.38 6.83 9.72 45.58 34.18 
3 WEB P2P 0.279 3.38 6.83 9.72 45.58 34.18 
 
As the tables indicate, the distributional factors (x9 and x10) control the 

probability that flows go between specific combinations of access router classes: directly 
connected to directly connected (DD), directly connected to fast (DF), directly connected 
to normal (DN), fast to fast (FF), fast to normal (FN) and normal to normal (NN). The 
scale factor (x8) coupled with the fixed base sources parameter (P27) determines the 
number of potential active flows (which is also the number of sources). 
 

Table 4-14. Buffers for Combinations of Round-Trip Propagation Delay (x1) and Capacity (x2) 
 

x1 x2 Backbone Router 
Buffers (avg.) 

POP Router 
Buffers (avg.) 

Access Router 
Buffers (avg.) 

1 400 16277 4070 647 
2 400 32553 8139 1294 
1 800 32553 8139 1294 
2 800 65106 16277 2588 

 
One final note, the number and distribution of sources and receivers also 

influences the determination of router buffer sizes when using the RTTxC/SQR(n) 
algorithm. The RTTxC algorithm computes buffer sizes based on multiplying the average 
round-trip propagation delay in the network by the capacity of each router. Table 4-14 
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shows the results for this algorithm when using the factor values adopted in this 
sensitivity analysis. When switching to the RTTxC/SQR(n) algorithm, the values in Table 
4-14 are divided by the estimated average number of active flows expected to transit each 
router. This estimate depends on the number and distribution of sources and receivers 
throughput the topology. In general, using the RTTxC/SQR(n) algorithm reduces buffers 
within routers by one or two orders of magnitude. 
 
4.2.2.5 Rationale for (and Ramifications of) Protocol Factor Settings. After investigating 
the literature, we came to the realization that there is no consensus value to use for the 
initial TCP slow-start threshold. Some authors [5] suggest using the receive window 
provided by a corresponding TCP entity. Some authors [11] suggest picking a small 
value. Some authors [7] suggest picking a very large number. A colleague [4] indicated 
that some operating systems select this value based upon characteristics of the local 
network card. Given this general lack of consensus, we decided to include the initial TCP 
slow-start threshold as a factor (x11) in our sensitivity analysis. We decided there were 
two main schools of thought about choosing a value: choose a small value and choose a 
large value. To represent the small-value school of thought, we chose (x11 =) 43, which 
was recommended by Rick Stevens [11]. To represent the large-value school of thought, 
we chose an arbitrarily large value of (x11 =) 1.07x109, as suggested by Kevin Fall [7]. 
We also adopted the recommendation of Sally Floyd [8], where a flow increases its 
sending rate exponentially up to a congestion window of 100 and then logarithmically 
until a higher threshold is reached or loss encountered. The rationale for choosing a large 
value derives from the purpose of initial slow-start: to quickly determine how fast a 
source may send on a given path. Choosing a small value could lead a flow to switch to a 
linear increase prior to achieving its maximum bandwidth; thus, a flow might end before 
maximum bandwidth is achieved. We decided to see what difference the choice of initial 
TCP slow-start threshold would make given our other factors and parameter settings. 

4.2.3 Specific Combinations Simulated 
Given 11 factors, each with two possible levels, a full factorial experiment would require 
(211 =) 2048 simulation runs. Assuming an average run takes about 8.5 processor hours, 
then conducting all these simulation runs would require 17408 processor hours. If we 
split these among 24 processors, then we could complete the work in about 725 hours – 
or 30 days. We preferred to be able to complete our simulations within a week; thus, we 
adopted a 211-5 orthogonal fractional factorial (OFF) design that required only 64 
simulation runs. The design can be found in Fig. 4-1. To generate our parameterized runs, 
we set our fixed factors to the values indicated in Table 4-8 and then we generated 64 
configuration files that varied the factors (x1 to x11) as instructed by Fig. 4-1 – taking 
from Table 4-8 the PLUS values to substitute for the +1 designators in Fig. 4-1and the 
MINUS values to substitute for the -1 designators in Fig. 4-1. 

4.2.4 Responses Examined 
One of the issues we decided to explore with our sensitivity analysis was whether or not 
any responses from the system were correlated. This information could help us validate 
our model and could also help us to reduce the number of responses to analyze in future 
experiments. We selected candidate responses from among the measurements (see Sec. 
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3.3) provided by MesoNetHS. We selected responses in two classes: (a) responses that 
depict macroscopic behavior of the network and (b) responses that indicate user 
experience for various flow classes. We discuss these response classes in turn. 
 
4.2.4.1 Responses Characterizing Macroscopic Network Behavior. We chose 12 
fundamental responses to characterize macroscopic network behavior and we augmented 
those with four derived responses in order to investigate how well the fundamental 
responses represented the intended information. Table 4-15 lists the responses we used to 
characterize macroscopic behavior. MesoNetHS records each response as a value 
associated with each measurement interval; thus, providing a time series for each 
response. To compute the fundamental responses that we analyzed, we discarded data 
from the first 3000 of 6000 measurement intervals recorded. We then averaged the 
remaining data (from the second 3000 measurement intervals) to obtain a mean value for 
each response. To compute a derived response, we mathematically manipulated some 
combination of fundamental responses; we also sometimes included a factor setting. The 
details are given as appropriate in Table 4-15. 

We tracked the number of active flows (y1) over time and used that number to 
indicate the general amount of user activity in the network. Because more potential 
sources might lead to more active flows, we chose also to consider (y2) what proportion 
of potential flows was represented by the active flows. In this way, we could investigate 
whether the number of possible flows was a key determinant in the number of active 
flows, or whether the number of active flows was driven primarily by other factors. We 
separately measured the number of data packets entering (y3) and leaving (y4) the 
network because we wanted to understand what relationship, if any, exists between the 
rate at which packets are injected into the network and the number of active flows. Given 
the rate of packets entering and leaving the network, we could also measure the loss rate 
(y5), which should give us some rough indication of the amount of network congestion.  
 

Table 4-15. Responses Characterizing Macroscopic Network Behavior 
 
Response Definition 

y1 Active Flows – flows attempting to transfer data 
y2 Proportion of potential flows that were active: Active Flows/All Sources 
y3 Data packets entering the network per measurement interval 
y4 Data packets leaving the network per measurement interval 
y5 Loss Rate: y4/(y3+y4) 
y6 Flows Completed per measurement interval 
y7 Flow-Completion Rate: y6/(y6+y1) 
y8 Connection Failures per measurement interval 
y9 Connection-Failure Rate: y8/(y8+y1) 
y10 Retransmission Rate 
y11 Congestion Window per Flow 
y12 Window Increases per Flow per measurement interval 
y13 Negative Acknowledgments per Flow per measurement interval 
y14 Timeouts per Flow per measurement interval 
y15 Smoothed Round-Trip Time 
y16 Relative queuing delay: y15/(x1x41) 
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While the rate of data packets leaving the network gives us some idea of 
aggregate throughput, we were also interested in investigating the ability of the network 
to complete flows (y6), which could be combined with the number of active flows to 
yield a flow-completion rate (y7). Since we implemented TCP connection-establishment 
procedures, congestion could lead connection establishment to fail. We measured the 
number of connection failures (y8) and also related the failures to the number of active 
flows to create a connection-failure rate (y9). 

For active flows, we were interested to understand the average experience 
regarding the level of congestion. We suspected that several measures of flow congestion 
should be correlated. We measured the average retransmission rate (y10) for flows, which 
we postulated should be about twice the loss rate. We also measured the average 
congestion-window per flow (y11) – larger congestion windows indicate that flows 
should be receiving better throughputs. In addition to the congestion-window size, we 
chose to measure the average number of window increases (y12) received per flow 
during each measurement interval. To determine to what extent retransmissions arose 
from indicated losses vs. timeouts, we measured the number of negative 
acknowledgments (y13) and number of timeouts (y14) per flow. 

Finally, we were interested in monitoring smoothed round-trip time (y15), which 
might provide some indication of congestion. We also wanted to see how changing buffer 
sizes influenced round-trip time. We computed a relative queuing delay (y16) by 
factoring out propagation delay from the smoothed round-trip time. We computed y16 
because we wished to discover if there would be any differences in the pattern between 
smoothed round-trip time and queuing delay. 

 
4.2.4.2 Responses Characterizing User Experience. Aside from aggregate network 
behavior, we were interested in exploring the throughputs received for the six possible 
flows classes allowed by MesoNetHS. This required monitoring six additional responses, 
as shown in Table 4-16. Here, the measure gives average instantaneous throughput for a 
flow in each class; thus, the metric captures the throughput for active flows rather than 
flows that have finished. As with the aggregate measures, we computed the average value 
for each flow class over the final 3000 measurement intervals of each simulation run. 
 

Table 4-16. Responses Characterizing Instantaneous Throughput for Active Flows by Flow Class 
 

Response Definition 
y17 Average Throughput for Active DD Flows 
y18 Average Throughput for Active DF Flows 
y19 Average Throughput for Active DN Flows 
y20 Average Throughput for Active FF Flows 
y21 Average Throughput for Active FN Flows 
y22 Average Throughput for Active NN Flows 

 
We chose to examine the throughput of the various flow classes in order to 

determine whether or not different factors affect the throughput of flows transiting 
different types of access-routers. We collected separate throughput data for flows that 
completed and for flows that completed in each flow class. For purposes of our 
sensitivity analysis, we decided not to analyze the throughput data for completed flows. 
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4.3 Experiment Execution   
The experiment plan required 64 simulation runs, each simulating a different combination 
of factor settings (recall Fig. 4-1). We had 28 physical processors8 on which we could run 
our experiments; thus, we could conduct simulations in parallel. We were sharing these 
processors with other projects; so, we could not always use all of the available 
processors. Below, we give a brief discussion of the resource requirements for the 
simulations and then we recount our approach to data collection and summarization. 

4.3.1 Resource Requirements for Simulations 
Table 4-17 reports the characteristics of the 28 processors available for our sensitivity 
analysis. Since MesoNetHS is implemented in SLX, each of the processors had access to 
an SLX simulation environment. SLX comes in two varieties: one configured to run in a 
32-bit address space and one configured to run in a 64-bit address space. Some of the 
available processors were configured with a 64-bit operating system, which could support 
both the 32-bit and 64-bit versions of SLX. We chose to run all our simulations using the 
32-bit version of SLX. We made this choice because our simulations could fit easily 
within a 32-bit address space and 32-bit simulation runs faster than 64-bit simulation. 
This is true largely because 64-bit simulation requires the use of 64-bit arithmetic when 
manipulating pointers that address simulation objects. Note also that 64-bit simulation 
requires more memory than 32-bit simulation because of the doubling of size for address 
pointers. For these reasons, 64-bit simulation should be reserved for situations where the 
size of the simulation cannot be contained within a 32-bit address space. 
 

Table 4-17. Characteristics of Processors Executing Simulation Runs 
 
Node Physical 

Processors 
Speed 
(GHz) Hyperthreaded Memory 

(GB) 
Operating 
System 

ws7 4 3.66 Yes 20 Windows Server 2003 R2 x64 
Edition SP2 

ws8 4 3.66 Yes 20 Windows Server 2003 R2 x64 
Edition SP2 

ws9 8 2.6 No 32 Windows Server 2003 R2 x64 
Edition SP2 

ws10 8 2.6 No 32 Windows Server 2003 R2 x64 
Edition SP2 

DT 4 3.2 No 3 Windows XP SP2 
 
We executed the simulations in three rounds (runs 1-35, runs 36-50 and runs 51-

64) over about one week. All simulation runs required a similar amount of memory: on 
the order of 120 Mbytes. On the other hand, simulation runs required varying amounts of 
processor time, depending on the specific combination of factors and on the specific node 
used to execute the simulation. Table 4-18 recounts the execution time used for each 
simulation run. Executing all 64 runs required a total of 537.6 hours of processing time, 
                                                 
8 Note that 8 of these physical processors were configured with hyperthreadingTM enabled. Hyperthreading 
creates two independent logical threads on a single physical processor. With hyperthreading the number of 
available logical processors totaled (28 + 4 x 2 =) 36. On hyperthreaded processors, our simulations ran at 
(or below) half the speed that was possible without using hyperthreading. The reader should take this into 
account when interpreting the execution-time requirements given in Table 4-18. 
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which amounts to 8.4 hours on average. However, due to the fact that ws7 and ws8 used 
hyperthreading, this figure is somewhat misleading. 
 

Table 4-18. Execution Time (Hours) Required for Each Simulation Run 
 
Run Node Time Run Node Time Run Node Time Run Node Time 

1 ws9 7.7 17 ws7 13.8 33 DT 10.7 49 DT 6.8 
2 ws9 6.2 18 ws7 12.2 34 DT 6.5 50 DT 2.4 
3 ws9 3.8 19 ws7 11.5 35 DT 5.2 51 ws9 2 
4 ws9 4.3 20 ws7 12.9 36 ws9 4.5 52 ws9 3.6 
5 ws9 4.9 21 ws7 8.8 37 ws9 7.3 53 ws9 2.8 
6 ws9 9.2 22 ws7 15.6 38 ws9 6.9 54 ws9 3.1 
7 ws9 5.1 23 ws7 15.4 39 ws10 5.7 55 ws9 3 
8 ws9 4.1 24 ws7 8.4 40 ws9 4.9 56 ws9 3.2 
9 ws10 7.5 25 ws8 16.7 41 ws9 8.2 57 ws9 5.7 

10 ws10 8.8 26 ws8 24.6 42 ws10 8.3 58 ws10 5.6 
11 ws10 6.1 27 ws8 19.1 43 ws10 4.9 59 ws10 5 
12 ws10 4.3 28 ws8 16.4 44 ws9 4.8 60 ws10 4.1 
13 ws10 10.2 29 ws8 24.7 45 ws10 9.2 61 ws10 7.5 
14 ws10 8.5 30 ws8 22.5 46 ws9 8.2 62 ws10 4 
15 ws10 5.6 31 ws8 19 47 ws10 5.1 63 ws10 3.8 
16 ws10 5.1 32 ws8 19.9 48 DT 6.8 64 ws10 4.9 

 
Considering the processing time required for runs on individual nodes, runs on 

ws9 averaged 5.2 hours, runs on ws10 averaged 6.2 hours, runs on DT averaged 6.4 
hours, runs on ws7 averaged 12.3 hours and runs on ws8 averaged 20.4 hours. Grouping 
nodes into those that were not hyperthreaded (ws9, ws10 and DT) and those that were 
hyperthreaded (ws7 and ws8), we found that the hyperthreaded nodes required an average 
of 16.3 hours per run, while the non-hyperthreaded nodes required an average of 5.8 
hours per run. Thus, the hyperthreaded nodes took an average of 2.8 times longer than the 
non-hyperthreaded nodes to execute a simulation run. This suggests that the 
hyperthreaded processors ran at about 36% the speed of the non-hyperthreaded 
processors. Of course, to gauge the effects due to hyperthreading alone, one must account 
for the fact that the processor speeds of the hyperthreaded nodes were different than the 
processor speeds of the non-hyperthreaded nodes. 

Given that the processor speed of ws7 (and ws8) is 3.66 GHz, one would expect 
hyperthreading to provide half the processing speed, or (3.66/2 =) 1.83 GHz, to each 
logical thread. Thus, one might expect that it would take (2.6/1.83 =) 1.42 times longer to 
run simulations on ws7 (and ws8) than on ws9 (and ws10). We found that on average it 
took 2.8 times longer to run simulations on the hyperthreaded nodes. These findings do 
not provide a complete characterization of differences between hyperthreaded and non-
hyperthreaded operations. First, we did not run the same workload on both types of 
processors, as we split various experiment configurations among the processors. Second, 
the hyperthreaded processors used chip architectures (Intel Xenon MP) different from 
some of the non-hyperthreaded processors (ws9 and ws10 used AMD Opteron 8218 and 
DT used Intel Xenon). 
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4.3.2 Data Collection and Summarization 
MesoNetHS records response data as time series. This allows monitoring response 
changes over time. For example, Fig. 4-18 shows the time series for the number of active 
flows (response y1) during run 64 of our sensitivity analysis. As shown, the time series 
reports the number of active flows (ordinate) at the end of each of measurement interval 
for each of 6000 measurement intervals (abscissa) recorded during the simulation run. To 
facilitate our analyses, we summarize each response to an average value for each run. As 
illustrated in Fig. 4-18, we do this by discarding the first half of the data (measurement 
intervals 1 to 3000) and then computing the average value for the remaining data 
(measurement intervals 3001-6000). As illustrated in Fig. 4-18, discarding the first 3000 
measurement intervals eliminates transient startup effects and enables us to retain 
behavior representative of the model operating in steady-state. In this case, for run 64, the 
mean value of y1 over measurement intervals 3001-6000 is 21,467.6 flows.    
 

 
Figure 4-18. Example Illustrating the Technique used to Summarize System Responses 

 
 
We conduct such a summarization for all 22 responses under each of the 64 

conditions and collect the summarizations into a table, as shown in Fig. 4-19. Note that 
the value placed in the cell for response y1 and run 64 is the value we computed in Fig. 4-
18. The summarization table forms the basis for all of our analyses. 
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Run y1 y2 … y21 y22 

1 4680.619 0.168126 … 92.034 89.785 

2 6654.512 0.239371 … 72.596 57.738 

3 9431.405 0.339259 … 29.569 13.963 

4 11565.81 0.415439 … 23.427 19.882 

… … … … … … 

61 10319.55 0.247471 … 87.969 41.573 

62 1738.469 0.093668 … 159.298 161.602 

63 1783.509 0.096094 … 148.395 161.36 

64 21467.6 0.514811 … 26.159 9.981 
 

Figure 4-19. Sample Data Summarization: 22 Responses for each of 64 Simulation Runs 
 

 
 

 
Figure 4-20. Combined Matrix of Scatter Plots and Correlation Values for 22 Responses 
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4.4 Correlation Analysis   
Given 64 average values (one per run) for 22 responses, correlation analysis investigates 
the degree to which pairs of responses are linearly correlated. Recall that Tables 4-15 and 
4-16 identify the 22 responses. We begin by generating a scatter plot and computing the 
correlation for each pair of responses. Then we plot (in Fig. 4-20) the results as a 
combined matrix of scatter plots and correlation values. We order the diagonal by 
decreasing average correlation for each response with the 21 other responses. The highest 
average correlation is for response y7 and the lowest is for response y6. Correlations of .8 
and above are colored red, correlations between .3 and .79 are colored blue and 
correlations below .3 are colored green. 

Fig. 4-20 reveals some correlation groupings. For example, responses y7, y21, 
y22, y19, y12, y11, y1 and y2 show mutual correlations. Responses y5, y10, y14, y8 and 
y9 also exhibit mutual correlations. Strong correlations appear between selected pairs of 
responses: y21 and y22; y22 and y19; y5 and y10; y1 and y2; y8 and y9; y13 and y14; 
y18 and y20; y3 and y4. These mutual correlations suggest that it should prove feasible to 
reduce the number of responses examined from 22 to some lower dimension. On the 
other hand, a few responses (e.g., y6 and y17) appear largely uncorrelated with other 
responses. 
 

 
Figure 4-21. Frequency Distribution of the Absolute Value of Correlations for All Pairs of Responses 
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To identify particular correlation groups, we need to select a threshold for the 
absolute value of correlations such that above that threshold we will consider correlations 
sufficiently strong to warrant inclusion in further analyses, while we will discard 
correlations below that threshold. To help identify a reasonable threshold, we plot (in Fig. 
4-21) a frequency distribution of the absolute values of all correlation pairs. 

In Fig. 4-21, we emphasize (in red) the range of correlations that appear most 
significant. The range of correlations emphasized in Fig. 4-21 run from about 0.65 to 1.0; 
thus, we decided to use correlations whose absolute value exceeds 0.65. We discard 
correlations with lower absolute values. For the correlations retained, we produce an 
index-index plot (Fig. 4-22), where we order the indices (on both the ordinate and 
abscissa) by increasing count of mutual correlations. Where the count of mutual 
correlations is the same, our order is arbitrary. We begin with responses y6 and y17, 
which have no retained correlations. For those responses, we order y17 first because it 
has only one mutual correlation > 0.5, while y6 has two such correlations – thus, y17 is 
somewhat less correlated with other responses than is y6. 
 

 
 

Figure 4-22. Index-Index Plot for Correlation Pairs where |Correlation (Yi, Yj)| > 0.65 
 

Fig. 4-22 identifies seven clear correlation groups: y17 (no correlations); y6 (no 
correlations); y3 and y4 (pair-wise correlation); y15 and y16 (pair-wise correlation); y18 
and y20 (pair-wise correlation); y8, y13, y5, y10, y14 and y9 (28 mutual correlations); 
y11, y1, y7, y2, y19, y21, y22 and y12 (50 mutual correlations). This suggests that we 
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can characterize system response through seven, rather than 22, responses. Next, we 
address the issue of whether or not the seven correlation groupings make sense from the 
perspective of the network simulation model. We also discuss what information may be 
conveyed by lack of correlation. We begin our discussion with the three mutually 
correlated pairs and then consider the group with 28 mutual correlations, followed by the 
group with 50 mutual correlations. We close by considering the two uncorrelated 
responses.  

 The rate of data packets injected into the network (y3) is highly correlated (0.99) 
with the rate of packets leaving (y4). This strong correlation is expected because packets 
must enter the network before they can exit and the rate of entry and exit should be 
balanced (unless many packets are lost within the network). Perhaps more surprising is 
the fact that the rate of packets entering and exiting the network is not strongly correlated 
with any other responses. The closest correlation (around 0.5) is with the rate of flow 
completions (y6), which is largely uncorrelated with any other responses. One might 
expect correlation between the number of active flows (y1) and the number of packets 
entering and leaving the network; however, this is not the case. From this, we conclude 
that the rate of packets flowing through the network is influenced by factors different 
from those influencing the number of active flows. Thus, our sensitivity analysis needs to 
consider either the rate of packets entering or leaving the network but not both. 

The (SRTT) smoothed round-trip time (y15) and relative queuing delay (y16) are 
somewhat correlated (0.7). This makes sense because the relative queuing delay is 
computed by transforming the SRTT. The correlation is not particularly strong because 
the relative queuing delay factors out the propagation delay and gives enhanced weight to 
time spent in buffers. Buffer size has a greater influence on y16, while that influence is 
somewhat diluted (by propagation delay) in y15. The low strength of the correlation 
suggests that our sensitivity analysis should consider both y15 and y16. On the other 
hand, the reasons underlying the correlation suggest that perhaps we could use only y15, 
which captures influences due to both propagation delay and queuing delay. 

The average instantaneous throughput for DF flows (y18) is strongly correlated 
(0.98) with the throughput for FF flows (y20). This reflects the fact that throughput is 
constrained by the capabilities of the slower of the two access-router classes over which 
such flows transit. This strong correlation implies that we need only consider one of these 
two responses for our sensitivity analysis. 

The next correlation group in Fig. 4-22 consists of 28 mutual correlations among 
six responses: loss rate (y5); connection failures (y8) and connection-failure rate (y9); 
retransmission rate (y10); negative acknowledgment rate (y13) and timeout rate (y14). 
Most of these mutual correlations exceed 0.8. The correlations among these responses 
appear reasonable because packet losses have numerous consequences: negative 
acknowledgments or timeouts, connection failures and retransmissions. The strongest 
correlation (0.99) exists between loss rate and retransmission rate. In fact, since both data 
packets and acknowledgments may be lost, one would expect the retransmission rate to 
be about twice the loss rate. The (0.89) correlation between loss rate and connection 
failures is lower because connection attempts are retried; thus, three connection attempts 
must be lost before a connection fails. The (0.79) correlation between loss rate and 
negative acknowledgment rate (as seen by sources) is lower because negative 
acknowledgments may also be lost; thus, losses push up the rate at which receivers send 
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negative acknowledgments but also increase probability that negative acknowledgments 
are lost. When acknowledgments (negative or positive) are lost, the rate of timeouts 
increases; thus, there is a higher correlation (0.88) between loss rate and timeouts. The 
six responses in this correlation group are measures of packet losses and the ensuing 
consequences for the network. Our sensitivity analysis need only consider one of these 
responses, such as retransmission rate (y10), which reflects both packet losses and the 
main consequence. 

The final correlation group consists of 50 mutual correlations among eight 
responses: active flows (y1) and proportion of possible flows that are active (y2); flow-
completion rate (y7); average congestion window (y11) and window-increase rate (y12); 
and average instantaneous throughput for DN (y19), FN (y21) and NN (y22) flows. Most 
correlations, which are negative, stem from sharing network resources. Increasing active 
flows leads to decreases in: flow-completion rate, the average congestion window, 
window-increase rate and instantaneous throughput for flows transiting normal access 
routers. Flows (DN, FN and NN) transiting normal access routers are most numerous; 
thus, sharing access routers affects the throughput of these flows. As the number of flows 
transiting an access router increases, each flow receives a lower share of the bandwidth 
and so will receive lower throughput. Lower throughput implies smaller congestion 
windows. Smaller congestion windows imply a slower rate of window increases. More 
active connections also imply a lower rate of connection completion. Note, however, that 
the (-0.5) correlation between active connections and average congestion window is not 
strong enough to be included in this correlation group. Stronger correlations exist 
between average congestion window and flow throughputs (about 0.8) and window-
increase rate (0.85). This suggests that congestion-window size is influenced by factors 
not solely related to the number of active connections. In fact, in Sec. 4.1.3.3 we showed 
that congestion-window size is influenced by network speed, buffer-sizing algorithm and 
initial slow-start threshold, as well as by factors that influence the number of active 
connections. For our sensitivity analysis we can select one response (such as y22) to 
reflect the degree of sharing among common network resources. We should probably also 
include the number of active flows in order to investigate what factors influence the need 
to share resources. 

The two remaining responses, flows completed (y6) and average instantaneous 
throughput for DD flows (y17), are uncorrelated with other responses. Apparently, the 
number of flows completed is driven by factors different from the factors driving other 
responses. The reason for this is not obvious.  Throughput for DD flows is also driven by 
factors different from the factors influencing throughput for other flow classes. The 
reason for this appears straightforward. First, DD flows are relatively few in number, 
when compared with other flow classes. Second, DD flows transit high-speed access 
routers that are connected directly to backbone routers; thus, DD flows face less 
contention for bandwidth on the ingress and egress paths of the network. Since y6 and 
y17 are uncorrelated with other responses, we must include them in our sensitivity 
analysis. 

To recap, Table 4-19 identifies the responses we chose to investigate during our 
sensitivity analysis. Correlation analysis suggested that we could characterize system 
response using only seven of 22 responses. We decided to include an eighth response: the 
number of active flows (y1). This added response allowed us to consider which factors 
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lead to an increased number of active flows, a main influence on the degree of resource 
sharing required within a network. Two responses deal with the aggregate throughput of 
packets (y4) and flows (y6). One response (y10) reflects the degree and consequences of 
packet losses. One response (y15) mirrors the degree of network delay. The remaining 
responses gauge throughput for flows constrained by transiting directly connected (y17), 
fast (y20) or normal (y22) access routers.   

 
Table 4-19. Responses Selected for Investigation in Sensitivity Analysis 

 
Response Definition 

y1 Average number of active flows 
y4 Average number of packet output per measurement interval 
y6 Average number of flows completed per measurement interval 

y10 Average retransmission rate 
y15 Average smoothed round-trip time 
y17 Average instantaneous throughput for DD flows 
y20 Average instantaneous throughput for FF flows 
y22 Average instantaneous throughput for NN flows 

 

4.5 Principal Components Analysis   
Principal components analysis (PCA) is an alternative (or complementary) technique 
often used to assess the covariance structure of a set responses [92]. In this section, we 
describe the findings of a PCA applied to the 22 responses from our sensitivity analysis 
simulation runs. As the first step in the PCA, we transform our data responses into a 
standardized form by subtracting the mean value (over all 64 conditions) from each 
response to yield (22 x 64 =) 1408 normalized data points. In this way, all responses are 
placed on an equivalent scale with respect to variance around the mean. Next, we find a 
weight vector that yields the maximum possible variance (or standard deviation), subject 
to the constraint that the sum of all weights (with each weight squared) is equal to one. 
We repeat this process, possibly up to the total number of responses, and each time 
require the weights selected to be orthogonal to the weights used in previous steps. Using 
this technique we are looking for the largest sources of variation in different directions 
through the data with each step. Each different direction through the data is considered a 
principal component. The amount of variation accounted for diminishes with each 
principal component considered. At some point, most of the variance will be accounted 
for and one could stop the analysis. 

For example, consider Figure 4-23, which displays the results of a PCA for the 22 
responses from our sensitivity simulations. The upper left-hand plot depicts the total 
(6.646112) standard deviation (SD) across all responses (y1 through y22). The remaining 
22 plots show the standard deviation accounted for by each of 22 principal components in 
decreasing order of magnitude. We note that most of the variation in the data is accounted 
for by the first four principal components. Next, we plot the weights associated with each 
response in each of the first four principal components. Figure 4-24 shows this 
information.  

The results of the PCA suggest that the behavior of our model can be represented 
with as few as four responses, instead of the seven responses suggested by our correlation 
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analysis. We can group responses by principal component, as shown in Tables 4-20 
through 4-23. 
 

 
Figure 4-23. Principal Components Analysis of 22 Responses 

 
 

 
 

Figure 4-24. Weight Vector for the First Four Principal Components 
 

The first principal component (Table 4-20) combines two response groups 
identified in the correlation analysis. One group represents the level of congestion present 
in the network and the second group represents the effects of congestion on the 
throughput of flows that transit typical access routers. Such flows are most numerous in 
any given simulation. Further, congestion occurs most often at access routers. Thus, the 
PCA finds that the largest source of variance in the 22 responses arises from the level of 
congestion at access routers in the simulated network. 
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Table 4-20 Responses Composing Principal Component One 

 
Response Definition 

y1 Average number of active flows 
y2 Proportion of possible flows that are active 
y5 Loss rate 
y7 Flow-completion rate 

y10 Retransmission rate 
y11 Average congestion window 
y12 Window-increase rate 
y13 Negative-acknowledgment rate 
y14 Timeout rate 
y19 Average instantaneous throughput for DN flows 
y21 Average instantaneous throughput for FN flows 
y22 Average instantaneous throughput for NN flows 

 
 

Table 4-21. Responses Composing Principal Component Two 
 

Response Definition 
y15 Smoothed round-trip time 
y16 Relative queuing delay 

 
The second principal component (Table 4-21) corresponds to a pair of responses 

(y15 and y16) grouped together by the correlation analysis. These responses represent the 
level of delay within the network. 

 
Table 4-22. Responses Composing Principal Component Three 

 
Response Definition 

y3 Packets input 
y4 Packets output 

y17 Average instantaneous throughput for DD flows 
y18 Average instantaneous throughput for DF flows 
y20 Average instantaneous throughput for FF flows 

 
The third principle component (Table 4-22) unites three separate groupings found 

in the correlation analysis. One group represents the number of data packets flowing in 
and out of the network, which correlation analysis suggested were not strongly correlated 
with other responses. Note, though, that there were moderate correlations with throughput 
on faster flows (y17, y18 and y20) and with the number of flows completing (y6). In fact, 
the PCA assigns similar weights for y3 and y4 in both principal components three and 
four. (For this reason, we also include y3 and y4 in the grouping associated with principal 
component four.) Responses relating to throughputs for flows transiting only fast and 
directly-connected routers were grouped together by the principal components analysis, 
while correlation analysis separated these responses. Principal component three also 
seems to include the effects of the higher throughput flows on packets flowing into and 
out of the network. 
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The fourth principal component represents the ability of the network to complete 
flows. Included in this component is the association with packets entering and leaving the 
network. If called upon to place y3 and y4 into only a single principal component, we 
would choose to place them into PC4. 

 
Table 4-23. Responses Composing Principal Component Four 

Response Definition 
y3 Packets input 
y4 Packets output 
y6 Flows completed per measurement interval 

 
The principal components analysis both confirms the findings of the correlation 

analysis and also provides additional information. For example, the PCA groups together 
the symptoms and effects of congestion. This appears sensible. The PCA also reveals a 
connection between packets in and out and two other groupings: throughput on high-
throughput flows and the number of connections completed. The correlation analysis 
hinted at these connections. The PCA suggests that throughput on DD flows should be 
grouped together with throughput on DF and FF flows; the correlation analysis indicated 
that DD flows should be studied separately. We will use findings from both the 
correlation and principal-components analyses as we investigate the sensitivity of model 
responses to input parameters.   

4.6 Sensitivity Analysis   
In this section, we use the experiment design, the model responses and the results of the 
correlation and principal components analyses to assess the sensitivity of MesoNetHS to 
changes in eleven input factors. We begin by exploring how model inputs affect the eight 
responses identified by our correlation analysis (recall Table 4-19). Subsequently, we 
consider how the four main principal components (recall Tables 4-20 through 4-23) vary 
with changes in input factors. 

4.6.1 Sensitivity Analysis Guided by Correlation Analysis 
We begin by exploring how model inputs affect three, congestion-related responses: 
number of active flows (y1), retransmission rate (y10) and average instantaneous 
throughput for NN flows (y22). Subsequently, we consider the five remaining responses 
in the following order: average smoothed round-trip time (y15), rate of data packets 
output (y4), number of flows completed per measurement interval (y6) and average 
instantaneous throughput for DD flows (y17) and for FF flows (y20). 
 
4.6.1.1 Congestion-Related Responses. For the topology and experiment design we 
adopted, flows transiting through typical (N-class) access routers were must numerous 
and N-class routers were the slowest access routers. For these reasons, congestion tends 
to occur most often in N-class access routers, which affects the throughput of flows 
transiting such routers. The affected flows include DN, FN and NN flows, which our 
analysis showed to be significantly correlated. We selected NN flows as a representative 
flow class to consider. The throughput experienced by NN flows is likely to be affected 
by the number of active flows transiting N-class access routers and by the retransmission 
rate on those flows. Since flows transiting N-class access routers are most numerous, 
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macroscopic measures of the number of active flows and the retransmission rate network-
wide should be indicative of the level of congestion experienced by NN flows. For these 
reasons, we decided to consider y1, y10 and y22 as a related set of responses. 

We decided to first examine factors that influence the number of active flows in 
the network, since the number of active flows is likely to affect congestion. Fig. 4-25 
gives the main-effects plot highlighting factors influencing the number of active flows. 
The main factors appear to fall into three categories: (a) number of sources underneath N-
class access routers, (b) idle interval for those sources and (c) duration for which flows 
remain active. The think time of sources (x5) is the main influence on the number of 
active flows. The shorter the think time the more often sources become active and 
attempt to transfer files (i.e., sequences of packets). Naturally, the more sources that exist 
under N-class access routers, the greater will be the effects of shorter think time. The 
number of sources under N-class access routers is influenced by two factors: the base 
number (x8) of sources used to populate the topology and the distribution (x9) of those 
sources. The plus setting for x9 increases the probability flows will exist between sources 
and receivers under N-class access routers. This setting gives the network a bit of a peer-
to-peer (P2P) character. 
 

 
 

Figure 4-25. Main-Effects Plot for Response y1 (Average Number of Active Flows) 
 

For flows active between N-class access routers, the longer it takes for flows to 
complete, the more likely the number of active flows will increase. There is a bit of 
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reinforcement at work here. The more active flows that transit a given access router, the 
lower will be the throughput of each flow and the longer it will take for each flow to 
finish transferring its packets. Thus, the higher the arrival rate of flows (i.e., the lower the 
source think time) the larger the number of active flows. Two other factors have 
significant influence on the time taken to complete flows. The first factor is the average 
file size (x4). Larger files take longer to transfer because more packets must be relayed 
and acknowledged. The second factor is network speed (x2): a slower network (plus 
setting) will take longer to transfer files of any particular size. Fig. 4-25 reveals this 
complex collection of related and reinforcing influences on the number of active flows. 

Some other plots (not reproduced here) from the ten-step analysis also reveal 
interactions between number and distribution of sources (x8/x9), file size and distribution 
of sources (x4/x9) and think time and distribution of sources (x5/x9). These interactions 
stand to reason from the discussion contained in the previous paragraph. The effects from 
these factor interactions are much less significant than the main factors alone. In fact, the 
analysis of all 22 responses reveals that MesoNetHS simulations are driven by main 
factors and not by interactions among factors. 
  

 
 

Figure 4-26. Main-Effects Plot for Response y10 (Average Retransmission Rate) 
 

Congestion at N-class access routers could certainly lead to packet losses, which 
would stimulate retransmissions and cause flows to take longer to complete because the 
required number of packet transmissions would increase. Given this reasoning, one 
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would expect many of the same factors influencing the number of active flows to also 
influence the retransmission rate. Fig. 4-26 displays the main-effects plot for network-
wide retransmission rate (y10). Comparing Fig. 4-25 and Fig. 4-26 one can certainly see 
significant overlap in the main factors: number (x8) and distribution of sources (x9), 
average file size (x4) and think time (x5) and network speed (x2). In fact, the same 
settings for these factors that lead to increased number of active flows also lead to 
increased retransmission rate. The main difference is that retransmission rate is 
influenced most significantly (and equally) by network speed (x2) and buffer sizing 
algorithm (x3). Fewer buffers (minus setting) and lower network speed (plus setting) lead 
to increased probability of packet losses, which stimulate retransmissions. 

The fact that buffer size was not so important with respect to the number of active 
flows reflects TCP congestion control. Given a larger number of flows, the TCP 
congestion-control mechanism reacts to losses by adjusting flow sending rate: slowing 
packet transmissions, which leads to lower throughputs but also mitigates packet losses. 
Fig. 4-26 shows that mitigating packet losses becomes more difficult when buffer sizes 
are severely restricted. One would expect the main effects influencing retransmission rate 
to be identical to the main effects influencing loss rate (y5). Our review of the main-
effects plot (not reproduced here) for loss rate confirms this expectation. 
 
 

 
 
Figure 4-27. Main-Effects Plot for Response y22 (Average Instantaneous Throughput for N-N Flows) 
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Given the analysis related to number of active flows and retransmission rate, one 
would expect throughput9 on NN flows to be driven primarily by a relationship between 
available bandwidth (network speed) and number of active flows. The main-effects plot, 
Fig. 4-27, supports this expectation. Factors leading to fewer active flows include a lower 
number of sources (x8 minus) and a distribution that leads to fewer NN flows (x9 minus), 
as well as longer think time (x5 plus). Setting x9 to minus increases the probability that 
sources under N-class access routers will exchange data with receivers under F-class 
access routers, which gives the network a bit of a Web-centric character. With fewer 
active NN flows and higher network speed (x2 minus), the throughput achieved by NN 
flows is higher; under reverse conditions the throughput is lower. 

Fig. 4-27 also reveals some subtle, but less significant, effects. Shorter 
propagation delay (x1 minus) yields higher throughput. This occurs because sources 
receive feedback more quickly and timeout values remain lower. Perhaps unexpectedly, 
throughput is higher when file sizes are smaller (x4 minus). This appears related to 
reducing the number of active flows, as flows complete more quickly when fewer packets 
must be transferred. Finally, larger buffer sizes (x3 plus) lead to higher throughput. This 
appears due to experiencing fewer losses, which requires fewer retransmissions and 
timeouts. 
 
4.6.1.2 Delay-Related Responses. We selected average, smoothed, round-trip time 
(SRTT) as the response (y15) reflecting changes in network delay. Fig. 4-28 gives the 
related main-effects plot, which reveals that buffer-sizing algorithm and propagation 
delay are the main factors influencing SRTT. This makes eminent sense: higher 
propagation delay (x1 plus) and larger buffer sizes (x3 plus) lead directly to increase in 
SRTT. Larger buffer sizes permit bigger queues of packets, which increases queuing 
delay. Fig. 4-28 also reveals some minor effects, which suggest that congestion 
influences SRTT. This makes sense: more congestion leads to more packets residing in 
the bigger buffers. 
 
4.6.1.3 Responses Related to Macroscopic Throughput. To represent the macroscopic 
throughput of the network, we selected two responses: data packets output per interval 
(y4) and flows completed per interval (y6). The first response represents the rate at which 
packets are flowing through the network, while the second response represents the rate at 
which flows are being completed by the network. We begin by considering the rate of 
packet output. 

Fig. 4-29 reveals that the main influence on the rate of packet output is network 
speed: higher network speed (x2 minus) means a greater rate of packet output. This 
stands to reason in a network with a sufficient number of active flows. The combination 
of shorter think times (x5 minus) and more sources (x8 plus) leads to an increase in the 
number of flows and the higher network speed implies that each flow can transmit faster; 
thus, the aggregate rate of packet output should be greater under these circumstances. File 
size is another factor significantly affecting the rate of packet output. Larger file sizes (x4 
plus) lead to greater throughputs because a smaller portion of the transfer occurs during 
slow-start, the transfer phase during which a flow’s congestion window is lowest. Flows 
                                                 
9 Note that, though we use the term throughput when discussing flow classes, we actually measure what is 
often referred to as goodput; thus, retransmissions are not considered to be throughput. 
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transferring with a larger congestion window achieve higher throughput, which helps to 
increase the aggregate network throughput. 
 

 
 

Figure 4-28. Main-Effects Plot for Response y15 (Average Smoothed Round-Trip Time) 
 

As shown in Fig. 4-30, with one major exception, the story regarding the rate of 
flow completions is quite similar to the story regarding the rate of packet outputs. A 
sufficient number of connections (x5 minus and x8 plus) combined with higher network 
speed (x2 minus) contributes to a higher rate of flow completion. The exception involves 
file size (x4). In the case of packets output, larger file sizes (x4 plus) led to higher 
throughputs and thus to more packets output. On the contrary, for flows completed, 
smaller file size led to a higher completion rate. This stands to reason; smaller flows will 
be completed sooner. The sooner flows can be completed, the more flows can be 
completed per unit of time. 
 
4.6.1.4 Responses Related to Advantaged Flow Classes. The final two responses we 
investigate represent throughputs achieved over advantaged flow classes, which are flows 
that transit between sources and receivers located under directly-connected and fast 
access routers. We examine the average instantaneous throughput of DD flows (y17) and 
FF flows (y20). 
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Figure 4-29. Main-Effects Plot for Response y4 (Average Packets Output per Measurement Interval) 
 
 
 

Figure 4-30. Main-Effects Plot for Response y6 (Flows Completed per Measurement Interval) 
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Each DD flow transits across a pair of D-class access routers, which are directly 
connected to backbone routers. D-class access routers are comparable in speed to POP 
routers, which are 10 times faster than N-class access routers. Given these factors, DD 
flows are the most advantaged in the simulation and should be able to achieve highest 
throughputs under the traffic scenario adopted for the sensitivity analysis. Few factors 
should impede the throughput of DD flows. Fig. 4-31 reveals that the throughput of DD 
flows is influenced by only two factors: propagation delay (x1) and file size (x4). This 
makes sense. Shorter propagation delay (x1 minus) permits faster feedback on DD flows, 
which allows the congestion window to increase more quickly. The rate of feedback is 
most important during the initial slow-start phase, where the congestion window starts at 
a small size but doubles with each acknowledgment received. The influence of file size is 
also clear. Larger file sizes (x4 plus) allow more of the packets in a file to be transferred 
after the flow reaches its peak sending rate. Smaller file sizes (x4 minus) imply that more 
of the packets in a file will be sent early in the slow-start phase, when a flow is building 
up toward its peak sending rate. Throughput early in slow-start will be much smaller than 
throughput after a flow reaches its peak rate. 

 

 
 
Figure 4-31. Main-Effects Plot for Response y17 (Average Instantaneous Throughput of D-D Flows) 

 
Two other classes of advantaged flows are those where a source or receiver is 

under an F-class access router and its correspondent is under either an F-class or D-class 
access router. These flows comprise the following classes: DF flows and FF flows. The 
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throughput achievable on these flows is constrained by the F-class access routers, which 
operate at twice the speed of N-class access routers. DF and FF flows are less advantaged 
than DD flows. We use the throughput on FF flows (response y20) to represent both 
classes. 

 Fig. 4-32 shows the main effects influencing throughput on FF flows. FF flows 
are influenced by a more complex mix of factors than DD flows. The significance of 
propagation delay (x1) and file size (x4) are two clear common factors between all 
advantaged flow classes. Shorter propagation delay means quicker feedback, which leads 
to faster increase in the congestion window for flows that are not impeded by congestion. 
Larger file sizes allow more of a flow’s packets to be transferred at a higher sending rate. 
Less advantaged (DN, FN and NN) flows are influenced mainly by congestion; thus, 
propagation delay has less affect on those flows. 

 

 
Figure 4-32. Main-Effects Plot for Response y20 (Average Instantaneous Throughput of F-F Flows) 

 
Unlike DD flows, FF flows can face some congestion because selected source 

distributions lead to higher numbers of FN flows. Specifically, a source distribution (x9 
minus) that gives the network a Web-centric characteristic leads to more FN flows, which 
compete for throughput with FF and DF flows. In addition, lower average think time (x5 
minus) leads to more active flows that can compete for throughput. Under these 
circumstances, higher network speed (x2 minus) allows competing flows to achieve 
higher throughputs. The influence of all these factors is evident in Fig. 4-32. 
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Our investigation of throughput reveals three general categories of flows. 
Throughput in one category, which includes the most numerous (DN, FN and NN) flows, 
is influenced mainly by congestion and network speed. Throughput in a second category, 
which includes only the most advantaged and least numerous DD flows, is influenced 
mainly by propagation delay and file size. Throughput in the remaining category(DF and 
FF flows) is influenced by a combination of the factors influencing the other two 
categories. 

4.6.2 Sensitivity Analysis Guided by Principal Component Analysis 
In this section we examine the sensitivity of the principal components to variations in 
model inputs. Recall from our PCA (Sec. 4.5) that we identified four main principal 
components accounting for most variation in the model’s 22 responses. We viewed these 
principal components, summarized in Table 4-24, as groupings of responses representing 
different aspects of the model’s behavior. The reader may note a correspondence between 
the groupings by principal component and the groupings used (in Sec. 4.6.1) to describe 
the sensitivity analysis of responses guided by correlation analysis. This correspondence 
suggests that the PCA identified aspects of system response aligned with aspects derived 
by a domain expert examining system responses. Below, we report the results of applying 
the ten-step graphical analysis to the principal components identified in Table 4-24. 
 

Table 4-24. Definition of Major Principal Components in Model Response 
 
Principal Component Responses in Principal Component 

Congestion (PC1) y1, y2, y5, y7, y10, y11, y12, y13, y14, y19, 
y21, y22 

Delay (PC2) y15, y16 
Throughput for Advantaged Flows (PC3) y17, y18, y20 
Macroscopic Throughput (PC4) y3, y4, y6 
 
4.6.2.1 Congestion. Given that PC1 represents the effects of network congestion, one 
would expect significant congruence between factors affecting PC1 and factors affecting 
responses driven by congestion. Previously, we analyzed three congestion-related 
responses: number of active flows (y1), retransmission rate (y10) and average 
instantaneous throughput for NN flows (y22). We also noted that loss rate (y5) and 
retransmission rate were related closely. Analysis of PC1 should show that the same 
factors influence PC1 as influence responses y1, y5, y10 and y22. Fig. 4-33 displays the 
main-effects plot for PC1. The key factors influencing PC1, in order of significance, 
include: network speed (x2), think time (x5), distribution (x9) and number (x8) of 
sources, file size (x4) and buffer size (x3). This set of factors is also the union of factors 
most significantly driving responses y1, y10 and y22. Further, given insights from our 
previous analyses, we conclude that Fig. 4-33 illustrates the following factors induce 
network congestion and its consequences: slower network speed (x2 plus), smaller buffer 
sizes (x3 minus), larger file size (x4 plus), shorter think time (x5 minus), more sources 
(x8 plus) and a P2P-like distribution of sources (x9 plus). Reversing these factors eases 
network congestion and its consequences.  

The reasons that these factors modulate network congestion have already been 
explained in Sec. 4.6.1.1. Our analysis suggests that factors modulating network 
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congestion will influence all responses grouped under PC1. For example, increasing 
network congestion lowers the average congestion window (y11), decreases the rate of 
congestion-window increases (y12), increases the rate of negative acknowledgments 
(y13) and timeouts (y14) and reduces average throughput for DN (y19), FN (y21) and 
NN (y22) flows. For the traffic scenario adopted, the macroscopic pattern of network 
congestion relates primarily to the most numerous types of flows, which transit the most 
numerous N-class access routers. Other factors influence less numerous, more 
advantaged flows, as discussed below when considering PC3. 

 

 
 

Figure 4-32. Main-Effects Plot for PC1 (Network Congestion) 
 
4.6.2.2 Delay. Given that PC2 represents effects on network delay, one would expect 
significant congruence between factors affecting PC2 and factors affecting responses 
driven by delay. Previously, we analyzed one congestion-related response: average 
smoothed round-trip time – SRTT (y15). SRTT was driven primarily by two factors: 
buffer size (x3) and propagation delay (x1). Note that SRTT is significantly correlated 
(0.70) with relative queuing delay (y16), which is driven mainly by one factor: buffer size 
(x3). One would expect PC2 to be driven by the same factors that drive SRTT and 
relative queuing delay. Fig. 4-33 depicts the main-effects plot for PC2. The plot shows 
that PC2 is mainly influenced by two factors: buffer size and propagation delay. Fig. 4-33 
also reveals a minor influence of think time (x5). Interpreting Fig. 4-33 shows that 
average network delay increases with increases in propagation delay (x1 plus) and buffer 



Study of Proposed Internet Congestion-Control Mechanisms NIST 

Mills, et al. DRAFT 4-58 

size (x2 plus). Further, Fig. 4-33 suggests that decreasing think time (x5 minus) tends to 
increase delay; this is likely due to the fact that more flows are active simultaneously, 
which helps to fill the larger available buffer space. 

These results indicate that, for the traffic scenario used here, network delay is 
largely orthogonal to network congestion. Why might this be so? Under congestion, the 
TCP congestion-control mechanism causes flows to reduce their sending rate. This adapts 
the flow of packets into the network in accord with perceived congestion. The feedback 
rate for the congestion-control mechanism depends largely on network delay, which is 
due to two factors: propagation delay and queuing delay. Propagation delay is modulated 
by the distance packets must travel and queuing delay is modulated by the size of buffers 
in network routers. Congestion cannot affect the distance that packets must travel. When 
buffers are small, congestion cannot affect the queuing delay because queues will be 
small. Only when buffers are large can the degree of congestion influence network delay; 
however, in this case, TCP congestion-control reacts to reduce the rate of traffic entering 
the network, which tends to limit the number of packets in the network. For these 
reasons, results suggesting orthogonality between network congestion and delay appear 
reasonable.   
 

 
 

Figure 4-33. Main-Effects Plot for PC2 (Network Delay) 
 
4.6.2.3 Throughput for Advantaged Flows. Given that PC3 represents the effects on 
throughput for advantaged flows, one would expect significant congruence between 
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factors affecting PC3 and factors affecting throughput for DD (y17), DF (y18) and FF 
(y20) flows. Previously, we analyzed factors influencing throughput on DD and FF 
flows. Factors influencing throughput on DF flows (not included in this report) are 
identical to the factors influencing FF flow throughput. The main factors influencing 
throughput for advantaged flows include: propagation delay (x1), file size (x4), network 
speed (x2), distribution of sources (x9) and think time (x5). Review of Fig. 4-34 shows 
that the same factors influence PC3. PC3 is also driven to some extent by buffer size (x3), 
which was not a significant factor in the previous analysis of throughput for DD or FF 
flows. 
 

 
 

Figure 4-34. Main-Effects Plot for PC3 (Throughput for Advantaged Flows) 
 

One could interpret Fig. 4-34 as depicting lower throughput above the zero line 
and higher throughput below the zero line. Using this interpretation, Fig. 4-34 indicates 
that higher throughput on advantaged flows results from: larger file sizes (x4 plus), 
higher network speed (x2 minus), shorter propagation delay (x1 minus), and more P2P-
like network traffic (x9 plus). Reversing the settings for these factors would lead to lower 
throughputs. These findings are consistent with our previous analysis of the factors 
influencing throughput for DD (y17) and FF (y20) flows. 

One somewhat new piece of information is revealed by Fig. 4-34: the influence of 
buffer size on throughput for advantaged flows. In our previous analyses, buffer size had 
a more modest influence on throughput. The influence that was present indicated that 
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smaller buffers led to lower throughputs and larger buffers led to higher throughputs. 
This seems to make sense because small buffers lead to increased losses, which lead to 
increased retransmissions, which lead to longer file transfer times, which results in lower 
throughputs. Fig. 4-34 shows the same influence; thus, the interpretation of PC3 remains 
consistent with the earlier results for DD and FF flows. 

 
4.6.2.4 Macroscopic Throughput. Given that PC4 represents effects on macroscopic 
(network-wide) throughput, one would expect significant congruence between factors 
affecting PC4 and factors influencing the rate of data packets leaving the network (y4) 
and the flow-completion rate (y6). Recall, though, that one factor, file size (x4), had 
opposite influence on y6 and y4. With this information, we should be able to determine 
which aspect of macroscopic throughput is represented by PC4. The previous PCA (see 
Sec. 4.5) suggested that PC4 represents macroscopic throughput of flow completions. 
 

 
Figure 4-35. Main-Effects Plot for PC4 (Macroscopic Throughput) 

 
Fig. 4-35 displays the main-effects plot for PC4. The primary factors influencing 

PC4, in order of significance, include: network speed (x2), think time (x5) and file size 
(x4). Interpreting Fig. 4-35 suggests that higher network speed (x2 minus) and shorter 
think time (x5 minus) increase macroscopic throughput.10 These findings are consistent 

                                                 
10 Note that PCA involves taking square roots and thus the sign of the change in variance is not significant; 
only the magnitude is significant. This means that interpretation of the main-effects plots for principal 
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with the factors influencing both the rate of packet output (y4) and the rate of flow 
completion (y6). Fig. 4-35 shows that smaller file size (x4 minus) causes variation in the 
same direction as higher network speed and shorter think time. From this, we conclude 
that PC4 represents macroscopic throughput of flow completions. This agrees with the 
previous PCA. 

4.6.3 Summary of Findings from the Sensitivity Analysis 
Results from the sensitivity analysis, aided by correlation and principal-components 
analyses, increased our confidence in MesoNetHS. The behavioral patterns and 
relationships revealed by the sensitivity analysis aligned with our expectations. Further, 
the sensitivity analysis provided significant insight into model operation. We recap our 
key findings here. We begin with a summary of the main aspects of model behavior. 
Second, we characterize the major factors influencing model behavior. Third, we identify 
and discuss factors that appear to have little influence on model behavior. 
 
4.6.3.1 Main Aspects of Model Behavior. The sensitivity analysis revealed the model to 
have six main behavioral aspects: congestion, delay, throughout for DD flows, 
throughput for DF and FF flows, packet throughput and flow-completion throughput. We 
discuss each of these in turn. 

Congestion. The largest behavioral aspect of the model relates to macroscopic 
congestion, which occurs primarily in the slowest (N-class) access routers. In the 
topology employed for the sensitivity analysis, most users (represented as model sources) 
accessed the network through the (105) N-class routers. This is analogous to business and 
home users that connect to a network via limited bandwidth links. Higher network tiers 
(represented in the model by 22 POP and 11 backbone routers) typically operate at speeds 
sufficient to support traffic entering the network from the access tier. The topology used 
in the sensitivity analysis reflects this fact of network design. The model’s heterogeneous 
topology allowed selected (D-class and F-class) access routers to operate at higher 
speeds. (Twenty-eight) F-class access routers represented larger businesses that might 
support Web sites, which could be accessed by many users, most of whom connect to the 
network through N-class routers. (Six) D-class access routers represented research 
institutions and very large corporations that connect directly to the network backbone. 

The net result of this topology is that most active flows transit N-class access 
routers because most users reside underneath such routers. These flows include NN, FN 
and DN flows. Since these flows are most numerous, their behavior tends to drive 
macroscopic congestion, which occurs at the network edge (i.e., in the access tier). Of 
course, this is also due in part to the homogeneous Web-like traffic model employed 
during the sensitivity analysis. Regardless of traffic model, one should expect network 
congestion to arise primarily at the access tier because transit networks are continuously 
monitored by network providers and the bandwidth in the POP and backbone tiers is 
provisioned to meet traffic demands from the access tier. 

Throughput available to individual NN, FN and DN flows is constrained by the 
bandwidth of N-class routers. This means that lower network speed (x2 plus) will reduce 
flow throughputs, while higher speed (x2 minus) will increase flow throughputs. Further, 
                                                                                                                                                 
components must be aided by context provided from previous interpretation of main-effects influencing 
particular responses. 
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the more flows (y1) that transit an N-class router, the lower will be the individual 
throughputs for each flow. This behavior is revealed by the related response variables: 
y19, y21 and y22. The number of active flows transiting an access router is influenced 
primarily by three factors: number (x8) and distribution (x9) of sources and average idle 
time (x5) between source transfers. Increasing the number of sources leads to increased 
congestion within a fixed topology of N-class access routers. In the sensitivity analysis, 
the FN to NN ratio (in number of flows) shifts depending on the distribution of sources. 
With the plus setting for x9 the pattern of flows takes on a P2P-like characteristic, where 
the FN to NN ratio decreases. With the minus setting the flow pattern adopts a Web-
centric characteristic, where the FN to NN ratio increases. Since NN flows take slightly 
longer to complete than FN flows, the P2P pattern tends to result in more flows transiting 
N-class routers at any given instant. And, of course, the shorter the idle time between 
transfers the more sources will arrive in any given period. 

Network congestion also influences macroscopic responses, including: loss (y5) 
and retransmission (y10) rates, congestion window (y11) and its rate of increase (y12), 
and rate of negative acknowledgments (y13) and timeouts (y14). As with flow 
throughputs, these responses can be primarily attributed to the relative number of flows 
simultaneously transiting N-class access routers, as well as to the speed of N-class 
routers. The existence of fewer simultaneous flows, combined with higher speed, creates 
a better experience for individual flows and less congestion at the network edge. 

To recap, congestion occurs at the network edge. The primary effects of 
congestion are due to flows transiting N-class access routers. Higher speed N-class 
routers mitigate congestion to some extent. The macroscopic effects of congestion are 
due to the most numerous flow types: NN, FN and DN flows. 

Delay. Network delay, measured as smoothed round-trip time (SRTT), is 
influenced by two main factors: propagation delay (x1) and buffer-sizing algorithm (x3). 
As one would expect, longer propagation delay and larger buffer sizes lead to increased 
SRTT (y15). Further, relative queuing delay (y16) is driven only by buffer size. These 
relationships are as expected. Perhaps unexpected is that network delay is largely 
orthogonal to congestion. We attribute this to the fact that the TCP congestion-control 
mechanism responds to network congestion by slowing the rate of packets injected into 
the network and thus limiting the number of packets that might otherwise be sitting in 
network buffers. 

Throughput for DD Flows. For DD flows, both the source and receiver reside 
under D-class access routers, which connect directly to backbone routers and operate at 
the same speed as POP routers. Further, the number of simultaneously active DD flows is 
typically quite small, relative to other flow classes. Given these facts, DD flows should 
be able to achieve throughputs constrained only by the minimum of the speeds of the 
source and receiver. The sensitivity analysis revealed that, unique among flow classes, 
throughput of DD flows is influenced by only two factors: propagation delay (x1) and file 
size (x4). 

A DD flow must transit through TCP slow-start before reaching its maximum 
achievable throughput. The time taken to reach maximum throughput then depends upon 
the feedback rate on the flow. The feedback rate is determined mainly by propagation 
delay. Longer propagation delay lengthens time taken to achieve maximum throughput. 
Further, for larger files, more packets may be transferred at maximum throughput; thus, 
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average throughput is higher. For the traffic patterns used in the sensitivity analysis, no 
other factors influenced throughput of DD flows. For this reason, DD flows must be 
given separate consideration from other flow classes.   

Throughput for DF and FF Flows. DF and FF flows could potentially achieve 
maximum throughputs constrained only by the minimum of the speeds of the source and 
receiver; however, some other factors can interfere. For example, DF and FF flows 
compete for throughput with FN flows, which might be smaller or larger in number, 
depending upon various factors discussed previously. When the relative number of FN 
flows is smaller, then DF and FF throughputs are influenced mainly by propagation delay 
and file size, as is the case for DD flows. When the relative number of FN flows is larger, 
then DF and FF throughputs are influenced more by the factors that influence throughput 
of FN flows. 

Packet Throughput. Packet throughput (y4) is influenced primarily by network 
speed (x2), idle time of sources (x5) and file size (x4). When network speed is faster (x2 
minus), flow congestion windows are larger; thus, flows can send more packets per unit 
of time. When idle time is smaller (x5 minus), more flows tend to be active, which means 
more flows are injecting packets into the network. Finally, when file sizes are larger (x4 
plus), then more flows are operating at their maximum achievable throughputs; so more 
packets are being injected into the network. The higher the network speed and the more 
packets being injected into the network, the greater the number of packets leaving the 
network. These factors determine packet throughput. Of course, when there are many 
active flows and lower network speed, then congestion increases and the TCP 
congestion-control mechanism slows the rate of packets entering the network, which also 
slows the rate of packets exiting the network. 

Flow-Completion Throughput. Flow-completion throughput (y6) is also 
influenced primarily by network speed, idle time of sources and file size. In this case, 
however, smaller file sizes (x4 minus) lead to shorter file-transfer times, which increases 
the number of flows completed in a given time period. Of course, since each file transfer 
spends a lower proportion of its duration at maximum achievable throughput, the number 
of packets injected will be lower than if the file size is smaller. Thus, to some extent, 
variations in file size lead to a tradeoff between packet throughput and flow-completion 
throughput.     
 
4.6.3.2 Major Factors Influencing Model Behavior. Based on the results of the sensitivity 
analysis, we can identify the major factors influencing the behavior of MesoNetHS. We 
consider the results of the analysis by a domain expert and also the PCA. We begin with 
the results from a domain expert, which are based on six main behavioral characteristics, 
as identified in the preceding section. 

We use one response to represent each characteristic: packet throughput (y4), 
flow-completion throughput (y6), congestion (y10), delay (y15) and throughput of DD 
(y17) and FF (y20) flows. Table 4-25 shows the result of a rank analysis, where the 
relative influence of each factor on each of the six responses is assigned a rank from one 
(most influential) to 11 (least influential) based upon the degree to which the factor 
altered the response when moving from a plus to a minus setting. The average rank is 
computed for each factor, and then the average rank is converted into an integer ranking 
based on ordering the factors from most (one) to least (11) influential. The table shows 
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that network speed (x2) is the most influential factor, followed by file size (x4) and think 
time (x5). Next is number of sources (x8), followed by propagation delay (x1) and 
distribution of sources (x9). Buffer-sizing algorithm (x3) ranks seventh. The remaining 
factors lag: initial slow-start threshold (x11), distribution of receivers (x10), probability 
that a flow transfers a larger document (x6) and then probability that a host is fast (x7). 

Table 4-26 gives a similar analysis based on the top four principal components 
identified by the PCA. The PCA squeezes out some redundancy included in the analysis 
conducted by the domain expert. In particular, the domain expert separated throughput 
for advantaged flows into two responses (y17 and y20) based upon an observation that 
different factors drove the two responses. In addition, the domain expert noted that packet 
throughput (y4) was driven in two different directions, depending upon file size (x4); 
thus, decided to retain packet throughput as a separate response. The PCA amalgamated 
y17 and y20 (in PC3) and also combined y4 with y6 (in PC4). 
 

Table 4-25. Rank Analysis based on Domain Expertise 
 

 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 
y4 9.5 1 8 3 2 9.5 11 4 5 6.5 6.5 
y6 11 1 6 2 3 9 10 4 5 7.5 7.5 
y10 7 1.5 1.5 5 5 10 10 5 3 8 10 
y15 2 3 1 4 5 8 10 6 7 10 10 
y17 1 8 10.5 2 8 5 5 3 10.5 8 5 
y20 1 3 8 5 4 10 11 6 2 9 7 

Average Rank 5.25 2.92 5.83 3.50 4.50 8.58 9.50 4.67 5.42 8.17 7.67 
Ordinal Rank 5 1 7 2 3 10 11 4 6 9 8 

 
Table 4-26. Rank Analysis based on Principal-Components Analysis 

 
 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 

PC1 10.5 1 6 5 2 10.5 9 4 3 7.5 7.5
PC2 2 6 1 7 3 8.5 8.5 4 11 10 5
PC3 3 2 5 1 6 8 10.5 7 4 9 10.5
PC4 5 1 4 3 2 10 11 7 9 8 6

Average Rank 5.13 2.50 4.00 4.00 3.25 9.25 9.75 5.50 6.75 8.63 7.25
Ordinal Rank 5 1 4 4 2 10 11 6 7 9 8 

 
Comparing Tables 4-25 and 4-26 reveals similarities (in the main) and a few 

differences. Both tables rank factors x6, x7, x10 and x11 as not very influential on system 
response. Both tables identify network speed as the main factor driving response and both 
tables also rank file size and think time as significant factors. Both tables also agree on 
the relative influence of propagation delay. The PCA suggests that buffer size is fairly 
influential, while the domain expert finds buffer size to be less significant. When the 
redundancies (y17 and y4) are removed from Table 4-25, the significance of buffer size is 
comparable for both analyses. Overall, the analyses are quite consistent.  

  
4.6.3.3 Factors Exhibiting Little Influence on Model Behavior. The sensitivity analysis, 
whether based on domain expertise or principal components, shows that system response 
is little influenced by four factors: probability of transferring a larger file (x6), probability 
that a source is on a fast host (x7), distribution of receivers (x9) and initial slow-start 
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threshold. The experiment design varied the probability of transferring a (10x) larger file 
from 0.01 (x6 plus) to 0.02 (x6 minus). Apparently, the difference in these probabilities 
was small enough that the system response was not influenced. Results might have 
proven different if the higher probability were increased; however, this would imply that 
a lower proportion of file transfers were reserved for simple web browsing activities. 

  The probability that a source is on a fast host (x7) makes little difference in 
system response because most sources existed underneath N-class access routers, which 
had limited bandwidth to share among those sources. Apparently, due to multiplexing 
with other sources, most sources were seldom able to realize their maximum potential 
transmission rate. 

The distribution of receivers (x10) had little influence on results because no 
matter the setting, most receivers resided under N-class access routers. The proportion of 
receivers under N-class access routers varied from 76% (x10 plus) to 86% (x10 minus). 
The distribution of receivers had more significance regarding the number of receivers 
under D-class access routers (4% and 2% for x10 plus and minus, respectively) and under 
F-class access routers (20% and 12% for x10 plus and minus, respectively). 

The initial slow-start threshold (x11) had significant influence on only one 
response: average congestion-window size (y11). Absent losses, the congestion window 
on a flow can become very high even though flow throughput will be limited by the 
minimum of the maximum speeds of the source and receiver. Setting a high initial slow-
start threshold (x11 plus) allows flows to increase their congestion window very quickly 
to a large size. Setting a lower initial slow-start threshold (x11 minus) permits quick 
increase to a small size and then linear increase afterward. Thus, when congestion is 
light, using a large threshold for initial slow-start permitted the average congestion-
window size to become much larger, even though there was little influence on flow 
throughput. 

4.7 Exploring Effects of Buffer Sizing   
The sensitivity analysis of MesoNetHS used two algorithms for buffer sizing. One 
algorithm, which is recommended practice [41], sets buffer size by multiplying average 
estimated round-trip time by capacity. The second algorithm, suggested by McKeown 
and colleagues [38], divides buffer size computed from the first algorithm by the square 
root of the expected number of flows. This second algorithm requires much less buffer 
space in network routers. McKeown and colleagues conducted an analytical study and 
empirical experiment that found similar performance when using either buffer sizing 
algorithm. The McKeown study, which was limited to a small number of flows transiting 
a few routers, suggested that network providers could deliver reasonable performance 
while requiring much less memory in routers. The study left for future work 
consideration of the effects of the alternate buffer-sizing algorithm in a network-wide 
context. Our sensitivity analysis was not intended explicitly to study detailed effects of 
buffer-sizing algorithm; however, the experiment design used does provide information 
that could shed some light on the topic. 

In this section, we use the results from our sensitivity experiment to explore the 
effects of buffer-sizing algorithm on overall network behavior and user experience. Our 
goal is to develop evidence relevant to the findings of the McKeown study. First, we 
consider the effects that choice of buffer-sizing algorithm will have on smoothed round-
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trip time (SRTT) and on relative queuing delay. In previous discussions, we showed that 
buffer-sizing algorithm influenced both these aspects of network delay. Here, we look a 
bit more explicitly at the data. Second, we conduct a rank analysis based on selected 
responses chosen to characterize overall network behavior and user experience. 

 
4.7.1 Effects on Delay Variation. Fig. 4-36 presents a scatter plot for SRTT.  Fig. 4-37 
shows a similar scatter plot for relative queuing delay. Each scatter plot depicts how the 
related response varies with the two settings of each of the 11 factors used in our 
experiments. For the current discussion we are interested in the buffer-sizing algorithm 
(factor x3). Fig. 4-36 shows that the choice of buffer-sizing algorithm shifts the pattern of 
SRTT. The McKeown algorithm restricts variation in SRTT. This occurs because buffer 
sizes are much smaller and thus queuing delays must also be smaller. 
 

 
Figure 4-36. Scatter Plot of Smoothed Round Trip Time (y15) for Each Experiment Factor 

 
Fig. 4-37 illustrates clearly that reduced buffer size restricts the range of queuing 

delay that packets experience. Reducing variation in queuing delay within a network 
leads to more predictable SRTT and also to faster feedback regarding congestion. These 
traits might be considered valuable for selected networks and applications. On the other 
hand, one wonders whether more predictable delay might come at the cost of worsening 
behavior in other aspects of the network. The McKeown study suggested that smaller 
buffer size would not detract from user experience. We investigate this question next. 
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4.7.2 Effects on Other Aspects of Network Behavior. In this section, we consider the 
relative influence of propagation delay (x1), network speed (x2) and buffer-sizing 
algorithm (x3) on selected responses, chosen to represent macroscopic network behavior 
and user experience. To represent macroscopic behavior, we use packet throughput (y4), 
flow-completion throughput (y6), retransmission rate (y10) and relative queuing delay 
(y16). To represent user experience, we use average throughput from three different flow 
classes: DD flows (y17), FF flows (y20) and NN flows (Y22). We aim to determine 
which of the three factors (x1, x2 or x3) has largest influence on the combined responses. 
 

  
Figure 4-37. Scatter Plot of Relative Queuing Delay (y16) for Each Experiment Factor 

 
We use a rank analysis to study the effects of our chosen factors on our selected 

responses. In this particular analysis, we elected to use a larger number to indicate higher 
rank and a lower number to indicate lower rank. We begin by combining our three factors 
into a condition that can be assigned one of eight settings, as illustrated in Table 4-27. 
Next, we compute the average value for each of our responses under each condition. 
Table 4-28 displays the results of this averaging. 

Using the average responses from Table 4-28, we next rank each condition from 
high (8) to low (1) for each response, based on the appropriate ordering criteria. For 
retransmission rate (y6) and relative queuing delay (y16) a lower value would be ranked 
higher. For the other five responses in Table 4-28 a higher value would be ranked higher. 
After ranking the conditions with respect to each response, we compute an average 
ranking. The results of our ranking are shown in Table 4-29. 
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Table 4-27. Mapping of Factor Settings to Eight Conditions 
 
 Values 

Condition Factor Settings 
x1:x2:x3 

Propagation Delay 
Multiplier 

Backbone Router 
Speed 

Buffer Sizing 
Algorithm 

C1 M:M:M 1 800 RTTxC/SQR(n) 
C2 P:M:M 2 800 RTTxC/SQR(n) 
C3 M:P:M 1 400 RTTxC/SQR(n) 
C4 P:P:M 2 400 RTTxC/SQR(n) 
C5 M:M:P 1 800 RTTxC 
C6 P:M:P 2 800 RTTxC 
C7 M:P:P 1 400 RTTxC 
C8 P:P:P 2 400 RTTxC 

 
 

Table 4-28. Average Response Values for Each Condition 
 

 Response 
Condition y4 y6 y10 y16 y17 y20 y22 

C1 109,863.71 1,384.55 0.07 1.53 229.88 167.12 107.06 
C2 104,049.61 1,218.14 0.05 1.45 138.02 97.66 70.59 
C3 68,721.38 803.31 0.27 1.41 229.82 89.81 37.48 
C4 69,996.51 872.54 0.17 1.39 137.65 73.92 28.25 
C5 111,195.23 1,324.93 0.02 2.52 237.65 169.29 119.39 
C6 109,949.76 1,409.62 0 1.91 138.17 106.73 96.33 
C7 74,509.45 956.32 0.08 3.27 226.01 131.99 51.3 
C8 70,170.53 881.34 0.04 2.83 136.26 79.82 37.04 

 
 

Table 4-29. Ranking for Each Condition vs. Each Response 
 

 Condition 
Response C1 C2 C3 C4 C5 C6 C7 C8 

y4 6 5 1 2 8 7 4 3 
y6 7 5 1 2 6 8 4 3 

y10 4 5 1 2 7 8 3 6 
y16 5 6 7 8 3 4 1 2 
y17 7 3 6 2 8 4 5 1 
y20 7 4 5 1 8 5 6 2 
y22 7 5 3 1 8 6 4 2 

Average Rank 6.1 4.7 3.4 2.6 6.9 6.0 3.9 2.7 
 

We can assign the average rank for each condition to the vertex of a cube, where 
each vertex represents a specific combination of settings for propagation delay, network 
speed and buffer size. Fig. 4-38 shows the cube corresponding to Table 4-29.  Moving 
along the edges among the vertices on the cube allows us to determine changes in ranking 
attributable to each factor. The change in each factor (x1, x2 and x3) across all conditions 
is represented by a set of four different edges from among the 12 edges contained in the 
cube. We extract the relevant changes in ranking and display them in Table 4-30. 
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4-38. Average Condition Ranking Displayed on Vertices of a Cube 
 

Interpreting Table 4-30 we see that changing network speed has the largest effect 
on the responses we selected. Changing propagation delay has the second largest effect. 
Changing buffer-sizing algorithm has the smallest effect. Further, Fig. 4-38 shows that 
changing from fewer to more buffers has a larger effect when network speed is high and 
propagation delay is long. This makes intuitive sense because more packets could 
potentially be inside the network when speed and propagation delay increases; thus, a 
higher proportion of the increased buffers would likely be occupied. 

 
Table 4-30. Changes in Ranking Attributable to Each Factor 

 
 Propagation Delay (x1) Network Speed (x2) Buffer Sizing (x3) 

Edge 1 1.4 2.7 0.8 
Edge 2 0.8 2.1 0.5 
Edge 3 0.9 3 1.3 
Edge 4 1.2 3.3 0.1 

 
While our examination of the effect of buffer-sizing algorithm should not be 

considered definitive, the results we extracted from our sensitivity experiment tend to 
support the findings of McKeown and colleagues. For the topology and traffic patterns 
used in our study, reducing buffer sizes by the square root of the expected number of 
active flows transiting each router had little overall effect on macroscopic network 
behavior and user experience. On the other hand, we found that reducing buffer sizes can 
markedly restrict the range of variation in queuing delay and thus in round-trip times. 
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Reducing variance in round-trip times allows faster feedback about losses and permits the 
TCP flows to adapt more quickly, which could offset some of the losses that might 
otherwise occur due to reducing the number of buffers. 

4.8 Conclusions   
We described a method for conducting sensitivity analyses for simulations of large, 
complex systems, such as communications networks, computing grids and service-
oriented architectures. The method included: orthogonal fractional factorial (OFF) design 
of two-level experiments, correlation and principal-components analyses and a ten-step 
graphical analysis. We applied the method to gain an understanding of MesoNetHS 
(described in Sec. 3). Correlation and principal-components analyses revealed the main 
dimensions of MesoNetHS behavior to include: (1) congestion, (2) delay, (3) throughput 
of advantaged flows and (4) aggregate rate of flow completions. See Appendix C for 
another sensitivity analysis of MesoNetHS using different parameter combinations. 

Sensitivity analysis identified the main factors influencing each aspect of 
MesoNetHS behavior. Congestion is influenced primarily by network speed, number and 
distribution of sources and average idle time for sources. Delay is influenced primarily by 
buffer size and propagation delay. Advantaged flows come in two categories: DD flows 
and FF (and DF) flows. Throughput for DD flows is influenced by two factors: 
propagation delay and file size. While propagation delay and file size prove influential, 
throughput for FF flows is also affected by network speed and distribution and idle time 
of sources. These additional factors reflect situations where increased numbers of FN 
flows compete with DF and FF flows. The aggregate rate of flow completions is 
influenced by network speed, source idle times and file size. Using rank analysis, we 
found the order of overall influence exerted by key factors. From more to less influential, 
the overall influence of factors was ordered as follows: network speed, file size and idle 
time, number of sources, propagation delay, distribution of sources and buffer size. 

Sensitivity analysis also identified four factors that had little influence on the 
behavior of MesoNetHS. These factors included: probability of electing to download a 
larger file, probability of sources and receivers residing on fast hosts, distribution of 
receivers and initial slow-start threshold. 

We extended our analysis to investigate explicitly the relative influence of 
network speed, propagation delay and buffer size on overall behavior of the model. We 
found that network speed had greatest influence and buffer size had least influence. We 
also showed that very small buffer sizes restrict the range of variance in smoothed round-
trip times. Further, we found that buffer size has greater influence on model behavior 
when network speed and propagation delay are larger. 

Overall, analyses conducted on MesoNetHS increase our confidence in the 
model’s correctness and reasonableness. The fundamental characteristics of the model 
and the topology, as investigated here and in Appendix C, provide a reasonable basis for 
comparing the effects of alternate congestion-control algorithms on macroscopic network 
behavior and user experience. In the next section, we discuss the congestion-control 
algorithms we will study and we show how we modeled those algorithms.       
 


